Daubechies Wavelet /Scaling Filters: I

e orthonormality constraints on {h;} yield orthonormal W, but
these alone are not sufficient to yield ‘reasonable’ MRA (i.e.,
one interpretable as a ‘scale by scale’” decomposition)

e ‘regularity’ conditions lead to Daubechies wavelet filters

e Daubechies {h;}’s defined via squared gain functions:

L
L1

L
5—1+1
H(D)(f) = 2sin’(r f) Z (2 " ) cos?! (7 f)
[
[=0
— 2sinl (7 f) o squared gain for difference filter of order L /2

— 2nd part is squared gain for either ‘all-pass’ filter (L = 2) or
low-pass filter (L = 4,6, ...) with width L /2

WMTSA: 105-106 VI-1



Daubechies Wavelet /Scaling Filters: 11

e corresponding squared gain for {g;} given by
L_

D Lo N (310 o
GP)(f) = 2cost(mf) (2 ) sin” (7 f)
[
[=0
o filter {g;} fully defined by transfer function G(2)()
o specifying GL)(f) = |GP)(f)|? just constrains {g;}
o L = 2: 2 real-valued filters with same squared gain G(P)(-):
1 1 | 1
{gO:W7 91:W} and {gO:_Wv glz_w,}
but, if we insist )~ g; = /2 rather than —4/2, only 1 filter
o L = 4: 4 filters with G(P)(+) (two directions paired with +1)
o as L 1, get more filters with different G2)(-) but same G(P)()

WMTSA: 105-106 VI-2



Daubechies Wavelet /Scaling Filters: 111

e can obtain all possible {g;} (and hence {h;}) systematically
using a procedure called ‘spectral factorization’

e Daubechies (1992) defined two classes of wavelets via criteria
that select a particular scaling filter {g;}

e one criterion leads to ‘extremal phase’ class

e another criterion leads to ‘least asymmetric’ class

WMTSA: 106-107 VI-3



Extremal Phase Scaling Filters: I

e denote these filters by { ggep)}

e by definition, if {g;} and {gl(ep )} have same G(P)(+), then

m m 9
Zg?ﬁZ[g}ep)} form=0,..., L—1
[=0 [=0

e summing up to m defines mth term of partial energy sequence

e partial energy builds up fastest for { gl(ep >} (‘front loaded’)

e note: above condition also called ‘minimum phase’

o filter of width L called D(L) scaling filter; e.g., D(4), D(6)
o {g}ep)} for L =4,6,...,20 are on course Web site

WMTSA: 106-109 VIi4



Extremal Phase Scaling Filters: 11

e spectral factorization leads to four possible {g;} for L = 8

1

WMTSA: 493-494 VI-5



Extremal Phase Scaling Filters: III

e here are corresponding partial energy sequences

S
/777

partial energy sequences

e scaling filter (a) on previous overhead is D(8) scaling filter

WMTSA: 493-494 VI-6



Extremal Phase Scaling Filters for L =4.6....,20
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e note that { gl(ep >}’S are front loaded

WMTSA: 108 VI-7



Extremal Phase Wavelet Filters for L =4.6,...,20

e note that {hl(ep >}’S are back loaded

WMTSA: 108

VI-8
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D(4) Wavelet & Scaling Filters Revisited

™} L=

(RSP} el Ly =10
I ——
{ hfjf)} W-ﬁTTTTTf._MW_........_.. L, = 46
{g} - L=4

g5} M Ly =10
g5y S inil Ly =22
(g ff)} Bt aA Ly = 46

e jth level D(4) wavelet filters {hﬁp >}’S are back loaded, whereas

corresponding scaling filters { gﬁp >}’S are front loaded

VI-9



D(6) Wavelet & Scaling Filters Revisited

{hz(ep)} 4"4.1 I =6
{h;f)} WTH*"' Ly = 16
[RSDY e 7t Ly = 36
. N U
{g”} L—
[} e Ly =16
{57} R Ls =36
{g fl@} ettt T b eessseeeenesssssetseenneeee Li— 6

e again {hgflp >}’S are back loaded while { g;.?lp )}’s are front loaded

VI-10



Least Asymmetric Scaling Filters: Introduction

e denote these filters by { glM}

e idea is to pick the filter closest to being symmetric, with sym-
metry being measured in terms of the phase function 6(-):

GP)(f) =/ gP) ()"
e filter of width L called LA(L) scaling filter; e.g., LA(8), LA(16)
e LA(2), LA(4) and LA(6) same as Haar, D(4) and D(6)
e LA(L) and D(L) scaling filters differ for L = 8,10, 12, . ..

e (): why is symmetry of interest?

WMTSA: 107-108 VI-11



Assigning Times to Wavelet Coeflicients: 1

e recall example of Jy = 4 partial Haar DW'T:

i ||I. ||||||-|||'-||.|'|".|| W3

— '||'|"|"'| Pt R ||| |||" ‘||"'-|' W2

; """:' """'I'I" ""I "I"'I"l"l - "I'I"""'II""" "I""""':""' ! ""I"'|I"'|'II|"'|'|'; 'I'I"'|||'|"|I'"||'I I|"II'| ||"'I'|'I | 'I"I"'|l||ll' | Wl
—4421
I \
—53.8 W/| | | |

1800 1850 1000 1950 2000
e Q: how did we decide to plot Wy 4 at 1848.37

VI-12



Assigning Times to Wavelet Coeflicients: 11

e symmetry in filter allows association of W ; with X3 values

e recall formation of W3 ¢ in N = 16 example:
Wia Tmm““““

Wig Xy =" papremmme=es sum = W3
Xy imﬂ*fflh

e can associate W3 with time 3.5 because Haar {h3;} has a
well-defined point of symmetry:

VI-13



Zero Phase Filters: 1

e LA class of wavelet and scaling filters designed to exhibit ‘near
symmetry’ about some point in the filter

e makes it easier to align W, and V4 with values in X

e can quantify symmetry by considering ‘zero phase’ filters, so
need to introduce ideas behind this type of filter

o consider filter {u;} «— U(-); i.e, U(f) = S.7°_ e 271!

o write U(f) = |U(f)|e®f), where the gain function is defined
by |U(f)|, and 6(-) is the phase function

WMTSA: 108-110 VI-14



Zero Phase Filters: 11

o let {u;'} be {u;} periodized to length N

o ixer. [33] says that {u;} «— {U(%)}, where both [ and k
take the values 0, 1, ..., N —1

e let {X;} be time series of length N with DFT { A%}
o let {Y3} be { Xy} circularly filtered with {u;'}:

N—-1

i= > ui Xy jmodn: t=0,1,...,N—1
[=0

o hence {Y;} «— {U (%)X}

WMTSA: 108-110 VI-15



Zero Phase Filters: 111

o since {Y;} +— {U(%)Xk} inverse DFT says

k 2mkt /N
ZUN Z7T/

e suppose {u;} has zero phase; ie., B(f) =0 forall f
o since U(f) = |U(f)|, have U(k) ()], so

Z ‘U % |Xkei27ﬂ€t/N

o U ( )| X1 & X have the same phase, but amplitudes can differ

e thus components in output {Yz} that are undamped by filter
will line up with similar components in input { X}

WMTSA: 108-110 VI-16



Zero Phase Filters: 1V

e examples with and without zero phase:

(1/2, 1=0;
1/2, 1=0,1;
up =4 1/4, I==41; and ug; = |

’ ’ 0, otherwise,

0, otherwise;

\

for which {uq ;} +— cos?(m f) and {ug} +— e~/ cos(7 f)

WMTSA: 108-110 VI-17



Zero Phase Filters: V

e [ig. 110: example of filtering { Xy} with low-pass filters {u ;}
and {ug 1}

Wl Xt WX:W W;XT“?#

-8 -4 0 -8 -4 0
t t t

WMTSA: 110 VI-18



Linear Phase Filters: 1

e LA {g;}’s formulated in terms of linear phase filters

e to relate linear phase and zero phase ideas, consider circularly
shifting {Y;} by v units:

Y%(V) EYtJerodNa t=0,...,N—1
e example: v = 2 & N = 11 yields Y8(2) = Y319 mod 11 = Y10,

with Y8<2> occurring 2 time units earlier than Y7jg
o {Y;L(V)} advanced version of {Y;} if v > 0
o {Y;}l/)} delayed version of {Yz} if v < 0

WMTSA: 111 VI-19



Linear Phase Filters: 11

e note following:

N—1
(V) o
Yt — YH—V mod N — Uy Xt+u—l mod N
[=0
N—1—v
O
— Z ul—|—th—l mod N
[=—v
N—1—v
O
= Z U141 mod NXt—I mod N
[=—v
N—1
@)
- Z U4y mod N¥t—I mod N
[=0

e thus can advance filter output by advancing filter

WMTSA: 111 VI-20



Linear Phase Filters: 111

o {uj,, an:l=0,...,N —1} periodized version of
{ugm =uy,l=...,-1,0,1,...}

e phase properties of {uy, .\ } depend on transfer function
U™)(.) for {ugy)}

o Exer. [111]: UW(f) = e2mfry(f)

e suppose {u;} has zero phase so U(f) = |U(f)|

e implies {UEV)} has 8W)(f) = 27 fv

o {ugy)} sald to have linear phase

e conclusion: if v is an integer, can convert linear phase filter to
zero phase filter by appropriately advancing the filter

WMTSA: 111 VI-21



Linear Phase Filters: 1V

e example:
1/2, 1=1;
ug; =< 1/4, 1 =0 or 2; +— cos*(m fe "/
0, otherwise;

— 03(f) = —2n f, i.e., linear phase with v = —1
— advancing {ug;} by 1 unit yields zero phase filter {uy ;}

WMTSA: 111 VI-22



Definition of Least Asymmetric Scaling Filters

o consider the set of phase functions 8(C)(.) associated with all
possible factorizations of G(P)(-) such that 3 g; = /2

o definition of LA(L) scaling filter: factorization of GP)(-) with
9(G)(-) such that

min { max ‘(9<G)(f) — 27Tfﬂ‘}
R R AS

IS minimized
o let v be the & that minimizes the above; ie., 8C)(f) =~ 2r fv

o let {hgl@} denote wavelet filter corresponding to LA(L) scaling
filter {glaa)}

WMTSA: 112 VI-23



Determination of LA(8) Scaling Filter

e recall four possible {g;} for L =8

WMTSA: 493-494 VI-24



Phase Function for Filter (a)

DT

phase function

f

o setting v = —2 in 27 fv vields best approximation to 6(C)(f)
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Phase Function for Filter (b)

DT

phase function

f

e setting v = —3 in 27 fv yields best approximation to ¢9<G)( f)

VI-26



Phase Function for Filter (c)

phase function

o setting v = —4 in 27 fv vields best approximation to 6(C)(f)

VI-27



Phase Function for Filter (d)

DT \
41 . A
3T -
27 -

phase function
o
|

e setting v = —5 in 2w fv yields best approximation to ¢9<G)( f)

VI-28



9\G)(f) — 2r fv for Filters (a), (b), (c) and (d)

1.0
0.5
2,
=
(|
0.0
=
D
0.5 1
1.0 . .
0.5 0.0 0.5

o filters (b) & (c¢) both qualify as least asymmetric — use (b)

VI-29



Least Asymmetric Scaling Filters for L = 8§, 10, ..., 20
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e in contrast to D(L) scaling filters, { glu@}’s are not front loaded

o {glaa’)} for L = 8,10, ...,20 are on course Web site

WMTSA: 112, 109 VI-30



Least Asymmetric Wavelet Filters for L = 8§, 10,...,20

—_ L=238
*%h L =10
S L=12
*m%# L=14
- L =16
*m%%m L =18
RS L =20

e in contrast to D(L) wavelet filters, {hgla)}’s are not back loaded

WMTSA: 112 VI-31



Phase Functions for LA Wavelet Filters: 1

e phase function for {glaa)} satisties () (f) ~ 27 fv
e Eixer. [112]: transfer function for wavelet filter is
H(f) _ €—i27Tf<L—1>+i7TG(% . f)
_ 6—@'27rf(L—1)+i7r‘G(% _ f)‘6¢9<G>(%—f)

e hence phase function for wavelet filter is

0 (f) = —2mf(L—1) +m+69(G — )
—2nf(L—1)+7m+7v — 2w fv
—2rf(L—14+v)+7m(v+1)
= 2nf(L—1+4v)

if v is odd because (v + 1) is then a multiple of 27

Q

e thus v odd implies that {h;la)} is approximately linear phase

WMTSA: 112 VI-32



Phase Functions for LA Wavelet Filters: 11

e for tabulated LA coefficients, have

(L1, i L =8,12,16,20 (ie., & is even);
V:<—%, if L =10 or 18;

Lo, ifL=14

so v is indeed odd for all 7 LA scaling filters

e conclusion: LA wavelet filters also = linear phase

e appropriate shift to get zero phase is —(L — 1 + v)

WMTSA: 112-113 VI-33



Shifts for Higher Level Filters: 1

j—1
{loj} «— Gi(H=]]G2s

{hja} <= Hi(f) = H2 7 ))Gj(f),
phase functions for {g;;} and {h;;} are given by

j—2
Z@ 2'f) & 6 >(f) :@(H>(QJ—1f)+Zg(G>
[=0

SO {gj,l} & {hj} are approximately linear phase also

WMTSA: 113-114 VI-34



Shifts for Higher Level Filters: 11

e Eixer. [114]:
9§G>(f) R QWfV;G) with V§G> = (2 — 1)
9;H>(f) ~ QWfV;H) with V](-H> = (Y7L - 1]+ v)
e in terms of widths L; = (20 —1)(L—1)+1 of {951} &{h;1},
have \&) ~ ) L all cases
g T T2

e note: % odd poorer approximation to linear phase than % even

(for details, see discussion concerning Fig. 115 in textbook)

WMTSA: 114-115 VI-35



Aligning Filter Outputs

e can use V< ) & V< ) to align elements of W; & 'V ;o with X

e working through some details (see pp. 114-5 of text), find that,
if X3 is associated with actual time tg+t At, LA wavelet coet-
ficient W, 4 can be associated with an interval of width 27; A¢
centered at

to + (Qj(tJr 1) —1— ‘V;H)‘ mod V) At,

where, e.g., \ \ = [7(27 — 1) +1]/2 for LA(8) wavelet

e similarly, LA scahng coefficient Vz, ; can be associated with an
interval of width A ;, At centered at

t0+(2‘]0(t+1)—1—\u ]modN)A

WMTSA: 114-116 VI-36



LA(8) Wavelet & Scaling Filters Revisited

{h} *-rIT' L=
{h2,l} “""-nj%-'“"“ Lo =22
{h3,} w-w---zm%«----«w Ly =50
_M,.ﬂTTTm__W_ﬁ_.............mm Ly =106
{91} ﬂ-%-“ I —
{92} *-"ﬂFl"""“ Loy =22
{93} wﬂﬂ%wwm L3 =50

{ o l} m.......___.__..______.,..-w-rfTTTTTTTTTTTTTTW—-WW L, =106

e vertical lines indicate point of approximate symmetry

WMTSA: 98 VI-37



Aligning Wavelet Coefficients with Time Series: I

o Wi7= lei() hi X15—1 mod 16, 1.6., inner product of vectors:

hf - = n Y L o n = = » - = = = "

X15—l mod 16 : § " . - i . l l | .

X5 X4 X13 X2 X11 Xqg Xog Xz X7 X X5 Xy X3 Xo X1 X

coefficient WLO ‘ W171 ‘ WLQ ‘ W1’3 ‘ W1’4 ‘ W1,5 ‘ W176 ‘ W1’7
associated time| 13 ‘ 15 ‘ 1 ‘ 3 ‘ 5 ‘ 7 ‘ 9 ‘ 11

e order in which elements of W1 should be displayed is thus
W1,27 W1,37 W1,47 W1,57 Wl,67 W1,77 W1,07 Wl,l

WMTSA: 98 VI-38



Aligning Wavelet Coefficients with Time Series: 11

o recall that we can use N x N matrix 7% to circularly shift W
by k£ units

— shift is to the right it £ is positive
— shift is to the left if k is negative

e can express reordering elements of
T
Wy = Wy g, W11, Wy 9, W1 3, W14, W15 Wi Wi7l
as they occur in time using

T_2W1 — [Wl,za W1,37 W1,47 W1,57 W1,67 W1;7’ WLO’ WLl]T

WMTSA: 98 VI-39



Example of Jy =4 LA(8) Partial DWT

e oxygen isotope records X from Antarctic ice core

WMTSA: 98

—44.2

—53.8

1900 1950 2000

year

1800 1850
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Example of Jy=4 LA(8) MODWT

e oxygen isotope records X from Antarctic ice core

WMTSA: 98

—44.2
_538 L L L L I L I L L L l L L L L J
1800 1850 1900 1950 2000
year
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Summary of Daubechies Filters: 1

e by definition, scaling filters {g;} of the Daubechies class have a
squared gain function given by

Nl

—1

L _
G0 () =20ty 3 (7)) snln)
[

|
-

o for given width L, there are several filters with the same G(P)()
(these differ only in their phase functions)

e need to impose additional constraints to pick unique filter

WMTSA: 153-156 VI-42



Summary of Daubechies Filters: 11

e extremal (or minimum) phase constraint leads to the D(L) scal-
ing filters, denoted as {gl(ep >} (these maximize the increase in
the partial energy sequence)

e least asymmetric constraint leads to the LA(L) scaling filters,
denoted as {gl(la>}

— approximately zero phase atter shifting by v
— zero phase helps align filter output with input
— shift v depends on L in a simple manner

— corresponding wavelet filters {hgla)} are also approximately

(H)

zero phase after shifting by v, = —(L — 1 —v)

WMTSA: 153-156 VI-43



Coiflets

e another class of filters yielding differences of weighted averages
(due to Daubechies, but suggested by R. Coifman)

e C(L) filters defined for widths L = 6,12, 18,24 and 30
e has /3 embedded differencing operations rather than L /2

e can express squared gain function 7—[<C)( f) as

i1 7 2
(2 Sil"l(ﬂ'f))% Z (6 _ll i l) COSZZ(Wf) -+ COS%(ﬂ'f)F(f) ,
[=0

where F(-) is chosen so that H&(f) + HO)(f + 1) =2
(however, F'(+) cannot be expressed in closed form)
e by some measures, coiflets are more symmetric than LA filters,

but their triangular shapes can be problematic

WMTSA: 123-125 VI-44



C(6) Wavelet & Scaling Filters Revisited

!

{ h 4 l} L) -.IH#TTT!-.H“- S ———

la}

{92 l} 4.“..!’7 TF-...

{93} m-f‘”ﬂ%m‘“ﬁ-—“

-!FFTTTTTTTTTTTTFFFF-!..._ ——

e vertical lines indicate point of approximate symmetry
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Zero-Phase Wavelet (Zephlet) Transform: I

e possible to construct orthonormal DW'T' based on filters whose
squared gain functions are consistent with those ot Daubechies,
but with ezxact zero phase, as follows

e with NV being a positive even integer, let H(-) be a squared gain
function satistying

”H(ﬁ) + H(ﬁ l) = 2 for all ﬁ

o let {h;} be the inverse DFT of the sequence {7—[1/2(%)}

N—-1

- 1

hl N Z 7_{1/2 %) ZQW]CZ/N Z — O7 1, N 1
k=0

o define g; = (—1)'hy, and let {G( )} denote its DF'T

e with g(%) = |@(%)|2, can argue that H(N) + Q<N> =

VI-46



Zero-Phase Wavelet (Zephlet) Transform: II

e define the % x N matrices
 hi hg hn—i hy—g hy—3 -+ hs hy h3 ho]

D — hg  ha  hi hg hy—y--- h7 he hs hy
N1 hy—2 An_3 hy—g hy_5 -+ h3 ho by ho
and
9o gN—-1 gN—2 GN-3 GN—4 *** 94 93 92 91
C = g2 91 90 9N-19N-2 " 96 95 94 93

IN—2 N—-3 gN—4 GN—5 IN—6 *"* 92 91 90 gN—1_
(note that, while Dy has a form analogous to W; & V), corre-
sponding rows in C; and Dy differ by a circular shift of one)

VI-47



Zero-Phase Wavelet (Zephlet) Transform: III

e can show that the NV x N matrix formed by stacking D; on
top of Cq is a real-valued orthonormal matrix; i.e,

D = [221] is such that DID = Iy
1

e proof of above result (subject of forthcoming exercise!) is similar
in spirit to proof that W is orthonormal, but details differ

e algorithms for computing DW'T and zephlet transform are, re-
spectively, O(N) and O(N - logy(N))

VI-48



Zero-Phase Wavelet (Zephlet) Transform: IV

e for case NV = L = 16, let’s compare values in rows of V; based
on Daubechies’ least asymmetric filter and corresponding Cy
(after alignments for easier comparison)

DWT filter g; = g zephlet transform filter g;
©) 0

A A

/ ) O
OO0 -4+~ -\-O_@/Q@-@-@—@ JCIGLCICN / --)- \ LOC00
o~

o for given N & L, squared magnitudes of DF'Ts of {g7'} & {g;}
at fr. = k/N are exactly the same, but phase functions differ,

with that for {g;} given by 0(fi.) =0

VI-49



Zero-Phase Wavelet (Zephlet) Transform: V

e for fixed L > &, values in rows of zephlet transform change as
N increases (DW'T rows just add more 0’s for all N > L)

e consider zephlet transform based on least asymmetric filter for
L =8 and cases N = 8 (pluses) and N = 32 (circles)

P

/)

G—) l

@
-- E}@—E}E}G-G-GG-G-G-@‘@\@:@/ -- - -\@3_@»@@@@@@@@@@@-6-6- -

VI-50



Zero-Phase Wavelet (Zephlet) Transform: VI

e can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

_ 1\
=57 [+ (1S + (1S ] w2

for large N = 2M, where

- 2l1+1
sin(7m==)
S; 4 = sin ol + 117 M=l 4
’ { | M )sin(ﬂ—%fil)

e Haar-based {g;} for N = 32:

/O
S Q

-- @@@@@‘@‘@‘@'@‘@‘@@@@/ - -\O@@@@@o@@@@@@@-@- -

VI-51



Comparison of Outputs from LA(8) & Zephlet
Scaling Filters (Input is Doppler Signal)

20 25 30 35 40
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