Daubechies Wavelet/Scaling Filters: I

- orthonormality constraints on $\{h_l\}$ yield orthonormal \mathcal{W} , but these alone are not sufficient to yield 'reasonable' MRA (i.e., one interpretable as a 'scale by scale' decomposition)
- 'regularity' conditions lead to Daubechies wavelet filters
- Daubechies $\{h_l\}$'s *defined* via squared gain functions:

$$\mathcal{H}^{(D)}(f) \equiv 2\sin^L(\pi f) \sum_{l=0}^{\frac{L}{2}-1} \binom{\frac{L}{2}-1+l}{l} \cos^{2l}(\pi f)$$

 $-2\sin^{L}(\pi f) \propto \text{squared gain for difference filter of order } L/2$ - 2nd part is squared gain for either 'all-pass' filter (L = 2) or low-pass filter (L = 4, 6, ...) with width L/2

Daubechies Wavelet/Scaling Filters: II

• corresponding squared gain for $\{g_l\}$ given by

$$\mathcal{G}^{(D)}(f) = 2\cos^{L}(\pi f) \sum_{l=0}^{\frac{L}{2}-1} {\binom{\frac{L}{2}-1+l}{l} \sin^{2l}(\pi f)}$$

- filter $\{g_l\}$ fully defined by transfer function $G^{(D)}(\cdot)$
- specifying $\mathcal{G}^{(D)}(f) = |G^{(D)}(f)|^2$ just constrains $\{g_l\}$
- L = 2: 2 real-valued filters with same squared gain G^(D)(·): { g₀ = 1/√2, g₁ = 1/√2 } and { g₀ = -1/√2, g₁ = -1/√2, }
 but, if we insist ∑ g_l = √2 rather than -√2, only 1 filter
 L = 4: 4 filters with G^(D)(·) (two directions paired with ±1)
- as $L \uparrow$, get more filters with different $G^{(D)}(\cdot)$ but same $\mathcal{G}^{(D)}(\cdot)$

Daubechies Wavelet/Scaling Filters: III

- can obtain all possible $\{g_l\}$ (and hence $\{h_l\}$) systematically using a procedure called 'spectral factorization'
- Daubechies (1992) defined two classes of wavelets via criteria that select a particular scaling filter $\{g_l\}$
- one criterion leads to 'extremal phase' class
- another criterion leads to 'least asymmetric' class

Extremal Phase Scaling Filters: I

• denote these filters by $\{g_l^{(ep)}\}$

• by definition, if $\{g_l\}$ and $\{g_l^{(ep)}\}$ have same $\mathcal{G}^{(D)}(\cdot)$, then

$$\sum_{l=0}^{m} g_l^2 \le \sum_{l=0}^{m} \left[g_l^{(ep)} \right]^2 \text{ for } m = 0, \dots, L-1$$

• summing up to m defines mth term of partial energy sequence

- \bullet partial energy builds up fastest for $\{g_l^{(ep)}\}$ ('front loaded')
- note: above condition also called 'minimum phase'
- filter of width L called D(L) scaling filter; e.g., D(4), D(6)

•
$$\{g_l^{(ep)}\}$$
 for $L = 4, 6, \dots, 20$ are on course Web site

Extremal Phase Scaling Filters: II

• spectral factorization leads to four possible $\{g_l\}$ for L = 8

Extremal Phase Scaling Filters: III

• here are corresponding partial energy sequences

• scaling filter (a) on previous overhead is D(8) scaling filter

Extremal Phase Scaling Filters for $L = 4, 6, \ldots, 20$

• note that $\{g_l^{(ep)}\}$'s are front loaded

WMTSA: 108

Extremal Phase Wavelet Filters for $L = 4, 6, \ldots, 20$

WMTSA: 108

D(4) Wavelet & Scaling Filters Revisited

D(6) Wavelet & Scaling Filters Revisited

$$\bullet$$
 again $\{h_{j,l}^{(ep)}\}$'s are back loaded while $\{g_{j,l}^{(ep)}\}$'s are front loaded

Least Asymmetric Scaling Filters: Introduction

- denote these filters by $\{g_l^{(la)}\}$
- idea is to pick the filter closest to being symmetric, with symmetry being measured in terms of the phase function $\theta(\cdot)$:

$$G^{(D)}(f) = \sqrt{\mathcal{G}^{(D)}(f)}e^{i\theta(f)}$$

- filter of width L called LA(L) scaling filter; e.g., LA(8), LA(16)
- LA(2), LA(4) and LA(6) same as Haar, D(4) and D(6)
- LA(L) and D(L) scaling filters differ for L = 8, 10, 12, ...
- Q: why is symmetry of interest?

Assigning Times to Wavelet Coefficients: I

• recall example of $J_0 = 4$ partial Haar DWT:

Assigning Times to Wavelet Coefficients: II

symmetry in filter allows association of W_{j,t} with X_t values
recall formation of W_{3,0} in N = 16 example:

• can associate $W_{3,0}$ with time 3.5 because Haar $\{h_{3,l}\}$ has a well-defined point of symmetry:

Zero Phase Filters: I

- LA class of wavelet and scaling filters designed to exhibit 'near symmetry' about some point in the filter
- makes it easier to align $W_{j,t}$ and $V_{J_0,t}$ with values in **X**
- can quantify symmetry by considering 'zero phase' filters, so need to introduce ideas behind this type of filter
- consider filter $\{u_l\} \longleftrightarrow U(\cdot)$; i.e., $U(f) = \sum_{l=-\infty}^{\infty} u_l e^{-i2\pi fl}$
- write $U(f) = |U(f)|e^{i\theta(f)}$, where the gain function is defined by |U(f)|, and $\theta(\cdot)$ is the phase function

Zero Phase Filters: II

- let $\{u_l^{\circ}\}$ be $\{u_l\}$ periodized to length N
- Exer. [33] says that $\{u_l^{\circ}\} \longleftrightarrow \{U(\frac{k}{N})\}$, where both l and k take the values $0, 1, \ldots, N-1$
- let $\{X_t\}$ be time series of length N with DFT $\{\mathcal{X}_k\}$
- let $\{Y_t\}$ be $\{X_t\}$ circularly filtered with $\{u_l^{\circ}\}$:

$$Y_t \equiv \sum_{l=0}^{N-1} u_l^{\circ} X_{t-l \mod N}, \quad t = 0, 1, \dots, N-1$$

• hence $\{Y_t\} \longleftrightarrow \{U(\frac{k}{N})\mathcal{X}_k\}$

Zero Phase Filters: III

• since
$$\{Y_t\} \longleftrightarrow \{U(\frac{k}{N})\mathcal{X}_k\}$$
, inverse DFT says

$$Y_t = \frac{1}{N} \sum_{k=0}^{N-1} U(\frac{k}{N})\mathcal{X}_k e^{i2\pi kt/N}$$

 \bullet suppose $\{u_l\}$ has zero phase; i.e., $\theta(f)=0$ for all f

- since U(f) = |U(f)|, have $U(\frac{k}{N}) = |U(\frac{k}{N})|$, so $Y_t = \frac{1}{N} \sum_{k=0}^{N-1} |U(\frac{k}{N})| \mathcal{X}_k e^{i2\pi kt/N}$
- $|U(\frac{k}{N})|\mathcal{X}_k \& \mathcal{X}_k$ have the same phase, but amplitudes can differ
- thus components in output $\{Y_t\}$ that are undamped by filter will line up with similar components in input $\{X_t\}$

Zero Phase Filters: IV

• examples with and without zero phase:

$$u_{1,l} = \begin{cases} 1/2, & l = 0; \\ 1/4, & l = \pm 1; \\ 0, & \text{otherwise;} \end{cases} \text{ and } u_{2,l} = \begin{cases} 1/2, & l = 0, 1; \\ 0, & \text{otherwise,} \end{cases}$$

for which $\{u_{1,l}\} \longleftrightarrow \cos^2(\pi f)$ and $\{u_{2,l}\} \longleftrightarrow e^{-i\pi f} \cos(\pi f)$

Zero Phase Filters: V

• Fig. 110: example of filtering $\{X_t\}$ with low-pass filters $\{u_{1,l}\}$ and $\{u_{2,l}\}$

Linear Phase Filters: I

- LA $\{g_l\}$'s formulated in terms of linear phase filters
- to relate linear phase and zero phase ideas, consider circularly shifting $\{Y_t\}$ by ν units:

$$Y_t^{(\nu)} \equiv Y_{t+\nu \bmod N}, \quad t = 0, \dots, N-1$$

- example: $\nu = 2 \& N = 11$ yields $Y_8^{(2)} = Y_{8+2 \mod 11} = Y_{10}$, with $Y_8^{(2)}$ occurring 2 time units earlier than Y_{10}
- $\{Y_t^{(\nu)}\}$ advanced version of $\{Y_t\}$ if $\nu > 0$
- $\{Y_t^{(\nu)}\}$ delayed version of $\{Y_t\}$ if $\nu < 0$

Linear Phase Filters: II

• note following:

$$Y_{t}^{(\nu)} = Y_{t+\nu \mod N} = \sum_{l=0}^{N-1} u_{l}^{\circ} X_{t+\nu-l \mod N}$$
$$= \sum_{l=-\nu}^{N-1-\nu} u_{l+\nu}^{\circ} X_{t-l \mod N}$$
$$= \sum_{l=-\nu}^{N-1-\nu} u_{l+\nu \mod N}^{\circ} X_{t-l \mod N}$$
$$= \sum_{l=0}^{N-1} u_{l+\nu \mod N}^{\circ} X_{t-l \mod N}$$

• thus can advance filter output by advancing filter

WMTSA: 111

Linear Phase Filters: III

- { $u_{l+\nu \mod N}^{\circ}$: $l = 0, \dots, N-1$ } periodized version of { $u_{l}^{(\nu)} \equiv u_{l+\nu}$: $l = \dots, -1, 0, 1, \dots$ }
- phase properties of $\{u_{l+\nu \bmod N}^{\circ}\}$ depend on transfer function $U^{(\nu)}(\cdot)$ for $\{u_l^{(\nu)}\}$
- Exer. [111]: $U^{(\nu)}(f) = e^{i2\pi f\nu}U(f)$
- \bullet suppose $\{u_l\}$ has zero phase so U(f) = |U(f)|
- implies $\{u_l^{(\nu)}\}$ has $\theta^{(\nu)}(f) = 2\pi f \nu$
- $\{u_l^{(\nu)}\}$ said to have linear phase
- conclusion: if ν is an integer, can convert linear phase filter to zero phase filter by appropriately advancing the filter

Linear Phase Filters: IV

• example:

$$u_{3,l} = \begin{cases} 1/2, & l = 1; \\ 1/4, & l = 0 \text{ or } 2; \longleftrightarrow \cos^2(\pi f) e^{-i2\pi f} \\ 0, & \text{otherwise}; \end{cases}$$

 $-\theta_3(f) = -2\pi f$, i.e., linear phase with $\nu = -1$ - advancing $\{u_{3,l}\}$ by 1 unit yields zero phase filter $\{u_{1,l}\}$

WMTSA: 111

Definition of Least Asymmetric Scaling Filters

- consider the set of phase functions $\theta^{(G)}(\cdot)$ associated with all possible factorizations of $\mathcal{G}^{(D)}(\cdot)$ such that $\sum g_l = \sqrt{2}$
- definition of LA(L) scaling filter: factorization of $\mathcal{G}^{(D)}(\cdot)$ with $\theta^{(G)}(\cdot)$ such that

$$\min_{\tilde{\nu}=0,\pm 1,\dots} \left\{ \max_{-\frac{1}{2} \le f \le \frac{1}{2}} \left| \theta^{(G)}(f) - 2\pi f \tilde{\nu} \right| \right\}$$

is minimized

let ν be the ν̃ that minimizes the above; i.e., θ^(G)(f) ≈ 2πfν
let {h_l^(la)} denote wavelet filter corresponding to LA(L) scaling filter {g_l^(la)}

Determination of LA(8) Scaling Filter

• recall four possible $\{g_l\}$ for L = 8

Phase Function for Filter (a)

• setting $\nu = -2$ in $2\pi f \nu$ yields best approximation to $\theta^{(G)}(f)$

Phase Function for Filter (b)

• setting $\nu = -3$ in $2\pi f \nu$ yields best approximation to $\theta^{(G)}(f)$

Phase Function for Filter (c)

• setting $\nu = -4$ in $2\pi f \nu$ yields best approximation to $\theta^{(G)}(f)$

Phase Function for Filter (d)

• setting $\nu = -5$ in $2\pi f \nu$ yields best approximation to $\theta^{(G)}(f)$

 $\theta^{(G)}(f) - 2\pi f \nu$ for Filters (a), (b), (c) and (d)

• filters (b) & (c) both qualify as least asymmetric – use (b)

Least Asymmetric Scaling Filters for $L = 8, 10, \ldots, 20$

- in contrast to D(L) scaling filters, $\{g_l^{(la)}\}$'s are not front loaded
- $\{g_l^{(la)}\}$ for $L = 8, 10, \dots, 20$ are on course Web site

Least Asymmetric Wavelet Filters for $L = 8, 10, \ldots, 20$

• in contrast to D(L) wavelet filters, $\{h_l^{(la)}\}$'s are not back loaded

WMTSA: 112

Phase Functions for LA Wavelet Filters: I

• phase function for $\{g_l^{(la)}\}$ satisfies $\theta^{(G)}(f) \approx 2\pi f \nu$

• Exer. [112]: transfer function for wavelet filter is

$$H(f) = e^{-i2\pi f(L-1) + i\pi} G(\frac{1}{2} - f)$$

= $e^{-i2\pi f(L-1) + i\pi} |G(\frac{1}{2} - f)| e^{i\theta^{(G)}(\frac{1}{2} - f)}$

• hence phase function for wavelet filter is

$$\begin{aligned} \theta^{(H)}(f) &= -2\pi f(L-1) + \pi + \theta^{(G)}(\frac{1}{2} - f) \\ &\approx -2\pi f(L-1) + \pi + \pi\nu - 2\pi f\nu \\ &= -2\pi f(L-1+\nu) + \pi(\nu+1) \\ &= -2\pi f(L-1+\nu) \end{aligned}$$

if ν is odd because $\pi(\nu+1)$ is then a multiple of 2π

• thus ν odd implies that $\{h_l^{(la)}\}$ is approximately linear phase

Phase Functions for LA Wavelet Filters: II

• for tabulated LA coefficients, have

$$\nu = \begin{cases} -\frac{L}{2} + 1, & \text{if } L = 8, 12, 16, 20 \text{ (i.e., } \frac{L}{2} \text{ is even}); \\ -\frac{L}{2}, & \text{if } L = 10 \text{ or } 18; \\ -\frac{L}{2} + 2, & \text{if } L = 14, \end{cases}$$

so ν is indeed odd for all 7 LA scaling filters

- conclusion: LA wavelet filters also \approx linear phase
- appropriate shift to get zero phase is $-(L 1 + \nu)$

Shifts for Higher Level Filters: I

• since

$$\{g_{j,l}\} \longleftrightarrow G_j(f) = \prod_{l=0}^{j-1} G(2^l f)$$
$$\{h_{j,l}\} \longleftrightarrow H_j(f) = H(2^{j-1}f)G_{j-1}(f),$$

phase functions for $\{g_{j,l}\}$ and $\{h_{j,l}\}$ are given by

$$\theta_{j}^{(G)}(f) = \sum_{l=0}^{j-1} \theta^{(G)}(2^{l}f) \& \ \theta_{j}^{(H)}(f) = \theta^{(H)}(2^{j-1}f) + \sum_{l=0}^{j-2} \theta^{(G)}(2^{l}f),$$

so $\{g_{j,l}\}$ & $\{h_{j,l}\}$ are approximately linear phase also

WMTSA: 113-114

Shifts for Higher Level Filters: II

- Exer. [114]: $\theta_j^{(G)}(f) \approx 2\pi f \nu_j^{(G)}$ with $\nu_j^{(G)} \equiv (2^j - 1)\nu$ $\theta_j^{(H)}(f) \approx 2\pi f \nu_j^{(H)}$ with $\nu_j^{(H)} \equiv -(2^{j-1}[L-1] + \nu)$
- in terms of widths $L_j = (2^j 1)(L 1) + 1$ of $\{g_{j,l}\} \& \{h_{j,l}\}$, have $\nu_j^{(G)} \approx \nu_j^{(H)} \approx -\frac{L_j}{2}$ in all cases
- note: $\frac{L}{2}$ odd poorer approximation to linear phase than $\frac{L}{2}$ even (for details, see discussion concerning Fig. 115 in textbook)

Aligning Filter Outputs

can use ν_j^(H) & ν_{J₀}^(G) to align elements of W_j & V_{J₀} with X
working through some details (see pp. 114–5 of text), find that, if X_t is associated with actual time t₀ + t Δt, LA wavelet coefficient W_{j,t} can be associated with an interval of width 2τ_j Δt centered at

$$t_0 + (2^j(t+1) - 1 - |\nu_j^{(H)}| \mod N) \Delta t,$$

where, e.g., $|\nu_j^{(H)}| = [7(2^j - 1) + 1]/2$ for LA(8) wavelet

• similarly, LA scaling coefficient $V_{J_0,t}$ can be associated with an interval of width $\lambda_{J_0} \Delta t$ centered at

$$t_0 + (2^{J_0}(t+1) - 1 - |\nu_{J_0}^{(G)}| \bmod N) \, \Delta t$$
LA(8) Wavelet & Scaling Filters Revisited

• vertical lines indicate point of approximate symmetry

- recall that we can use $N \times N$ matrix \mathcal{T}^k to circularly shift \mathbf{W}_1 by k units
 - shift is to the right if k is positive
 - shift is to the left if k is negative
- can express reordering elements of

 $\mathbf{W}_1 = [W_{1,0}, W_{1,1}, W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}]^T$ as they occur in time using

 $\mathcal{T}^{-2}\mathbf{W}_1 = [W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}, W_{1,0}, W_{1,1}]^T$

Example of $J_0 = 4$ LA(8) Partial DWT

• oxygen isotope records **X** from Antarctic ice core

Example of $J_0 = 4$ LA(8) MODWT

 \bullet oxygen isotope records **X** from Antarctic ice core

Summary of Daubechies Filters: I

• by definition, scaling filters $\{g_l\}$ of the Daubechies class have a squared gain function given by

$$\mathcal{G}^{(D)}(f) = 2\cos^{L}(\pi f) \sum_{l=0}^{\frac{L}{2}-1} \binom{\frac{L}{2}-1+l}{l} \sin^{2l}(\pi f)$$

- for given width L, there are several filters with the same $\mathcal{G}^{(D)}(\cdot)$ (these differ only in their phase functions)
- need to impose additional constraints to pick unique filter

Summary of Daubechies Filters: II

- extremal (or minimum) phase constraint leads to the D(L) scaling filters, denoted as $\{g_l^{(ep)}\}$ (these maximize the increase in the partial energy sequence)
- least asymmetric constraint leads to the LA(L) scaling filters, denoted as $\{g_l^{(la)}\}$
 - approximately zero phase after shifting by ν
 - zero phase helps align filter output with input
 - shift ν depends on L in a simple manner
 - corresponding wavelet filters $\{h_l^{(la)}\}\$ are also approximately zero phase after shifting by $\nu_1^{(H)} \equiv -(L-1-\nu)$

Coiflets

- another class of filters yielding differences of weighted averages (due to Daubechies, but suggested by R. Coifman)
- C(L) filters defined for widths L = 6, 12, 18, 24 and 30
- \bullet has L/3 embedded differencing operations rather than L/2
- can express squared gain function $\mathcal{H}^{(c)}(f)$ as

$$(2\sin(\pi f))^{\frac{2L}{3}} \left(\sum_{l=0}^{\frac{L}{6}-1} \binom{\frac{L}{6}-1+l}{l} \cos^{2l}(\pi f) + \cos^{\frac{L}{3}}(\pi f)F(f) \right)^2,$$

where $F(\cdot)$ is chosen so that $\mathcal{H}^{(c)}(f) + \mathcal{H}^{(c)}(f + \frac{1}{2}) = 2$ (however, $F(\cdot)$ cannot be expressed in closed form)

• by some measures, coiflets are more symmetric than LA filters, but their triangular shapes can be problematic

WMTSA: 123–125

C(6) Wavelet & Scaling Filters Revisited

• vertical lines indicate point of approximate symmetry

- possible to construct orthonormal DWT based on filters whose squared gain functions are consistent with those of Daubechies, but with *exact* zero phase, as follows
- with N being a positive even integer, let $\mathcal{H}(\cdot)$ be a squared gain function satisfying

$$\mathcal{H}(\frac{k}{N}) + \mathcal{H}(\frac{k}{N} + \frac{1}{2}) = 2$$
 for all $\frac{k}{N}$

• let $\{\bar{h}_l\}$ be the inverse DFT of the sequence $\{\mathcal{H}^{1/2}(\frac{k}{N})\}$:

$$\bar{h}_l \equiv \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{H}^{1/2}(\frac{k}{N}) e^{i2\pi k l/N}, \quad l = 0, 1, \dots, N-1$$

• define $\bar{g}_l = (-1)^l \bar{h}_l$, and let $\{\overline{G}(\frac{k}{N})\}$ denote its DFT

• with
$$\mathcal{G}(\frac{k}{N}) \equiv |\overline{G}(\frac{k}{N})|^2$$
, can argue that $\mathcal{H}(\frac{k}{N}) + \mathcal{G}(\frac{k}{N}) = 2$

• define the $\frac{N}{2} \times N$ matrices

$$\mathcal{D}_{1} = \begin{bmatrix} \bar{h}_{1} & \bar{h}_{0} & \bar{h}_{N-1} & \bar{h}_{N-2} & \bar{h}_{N-3} & \cdots & \bar{h}_{5} & \bar{h}_{4} & \bar{h}_{3} & \bar{h}_{2} \\ \bar{h}_{3} & \bar{h}_{2} & \bar{h}_{1} & \bar{h}_{0} & \bar{h}_{N-1} & \cdots & \bar{h}_{7} & \bar{h}_{6} & \bar{h}_{5} & \bar{h}_{4} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \bar{h}_{N-1} & \bar{h}_{N-2} & \bar{h}_{N-3} & \bar{h}_{N-4} & \bar{h}_{N-5} & \cdots & \bar{h}_{3} & \bar{h}_{2} & \bar{h}_{1} & \bar{h}_{0} \end{bmatrix}$$
and

$$\mathcal{C}_{1} = \begin{bmatrix} \overline{g}_{0} & \overline{g}_{N-1} & \overline{g}_{N-2} & \overline{g}_{N-3} & \overline{g}_{N-4} & \cdots & \overline{g}_{4} & \overline{g}_{3} & \overline{g}_{2} & \overline{g}_{1} \\ \overline{g}_{2} & \overline{g}_{1} & \overline{g}_{0} & \overline{g}_{N-1} & \overline{g}_{N-2} & \cdots & \overline{g}_{6} & \overline{g}_{5} & \overline{g}_{4} & \overline{g}_{3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \overline{g}_{N-2} & \overline{g}_{N-3} & \overline{g}_{N-4} & \overline{g}_{N-5} & \overline{g}_{N-6} & \cdots & \overline{g}_{2} & \overline{g}_{1} & \overline{g}_{0} & \overline{g}_{N-1} \end{bmatrix}$$
(note that, while \mathcal{D}_{1} has a form analogous to \mathcal{W}_{1} & \mathcal{V}_{1} , corresponding rows in \mathcal{C}_{1} and \mathcal{D}_{1} differ by a circular shift of one)

_

• can show that the $N \times N$ matrix formed by stacking \mathcal{D}_1 on top of \mathcal{C}_1 is a real-valued orthonormal matrix; i.e,

$$\mathcal{D} \equiv \begin{bmatrix} \mathcal{D}_1 \\ \mathcal{C}_1 \end{bmatrix}$$
 is such that $\mathcal{D}^T \mathcal{D} = I_N$

- proof of above result (subject of forthcoming exercise!) is similar in spirit to proof that \mathcal{W} is orthonormal, but details differ
- algorithms for computing DWT and zephlet transform are, respectively, $\mathcal{O}(N)$ and $\mathcal{O}(N \cdot \log_2(N))$

• for case N = L = 16, let's compare values in rows of \mathcal{V}_1 based on Daubechies' least asymmetric filter and corresponding \mathcal{C}_1 (after alignments for easier comparison)

• for given N & L, squared magnitudes of DFTs of $\{g_l^{\circ}\} \& \{\bar{g}_l\}$ at $f_k = k/N$ are *exactly* the same, but phase functions differ, with that for $\{\bar{g}_l\}$ given by $\theta(f_k) = 0$

- for fixed $L \ge 8$, values in rows of zephlet transform change as N increases (DWT rows just add more 0's for all $N \ge L$)
- consider zephlet transform based on least asymmetric filter for L = 8 and cases N = 8 (pluses) and N = 32 (circles)

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
for large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 2:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
 for large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 4:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

 \\- C)

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$

large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 6:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$

large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 8:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$

large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 10:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$

large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 12:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
for large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 14:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
for large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 16:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
for large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 18:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
for large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 20:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
for large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 22:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l \pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l \pm 1}{4})}{\sin(\pi \frac{2l \pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 24:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 26:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 28:

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l\pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l\pm 1}{4})}{\sin(\pi \frac{2l\pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 30:
Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform explicitly in Haar case (L = 2):

$$\bar{g}_l = \frac{\sqrt{2}}{N} \left[1 + (-1)^l S_{l,+} + (-1)^{l+1} S_{l,-} \right] \approx \frac{2(-1)^l \sqrt{2}}{\pi (1-4l^2)}$$
large $N = 2M$, where

$$S_{l,\pm} \equiv \sin([2l \pm 1]\pi \frac{M-1}{4M}) \frac{\sin(\pi \frac{2l \pm 1}{4})}{\sin(\pi \frac{2l \pm 1}{4M})}$$

• Haar-based $\{\bar{g}_l\}$ for N = 32:

for

Comparison of Outputs from LA(8) & Zephlet Scaling Filters (Input is Doppler Signal)

