
Daubechies Wavelet/Scaling Filters: I

• orthonormality constraints on {hl} yield orthonormal W , but
these alone are not sufficient to yield ‘reasonable’ MRA (i.e.,
one interpretable as a ‘scale by scale’ decomposition)

• ‘regularity’ conditions lead to Daubechies wavelet filters

• Daubechies {hl}’s defined via squared gain functions:

H(D)(f ) ≡ 2 sinL(πf )

L
2−1∑
l=0

(L
2 − 1 + l

l

)
cos2l(πf )

− 2 sinL(πf ) ∝ squared gain for difference filter of order L/2

− 2nd part is squared gain for either ‘all-pass’ filter (L = 2) or
low-pass filter (L = 4, 6, . . .) with width L/2
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Daubechies Wavelet/Scaling Filters: II

• corresponding squared gain for {gl} given by

G(D)(f ) = 2 cosL(πf )

L
2−1∑
l=0

(L
2 − 1 + l

l

)
sin2l(πf )

• filter {gl} fully defined by transfer function G(D)(·)
• specifying G(D)(f ) = |G(D)(f )|2 just constrains {gl}
• L = 2: 2 real-valued filters with same squared gain G(D)(·):

{ g0 = 1√
2
, g1 = 1√

2 } and { g0 = − 1√
2
, g1 = − 1√

2 , }
but, if we insist

∑
gl =

√
2 rather than −

√
2, only 1 filter

• L = 4: 4 filters with G(D)(·) (two directions paired with ±1)

• as L ↑, get more filters with different G(D)(·) but same G(D)(·)
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Daubechies Wavelet/Scaling Filters: III

• can obtain all possible {gl} (and hence {hl}) systematically
using a procedure called ‘spectral factorization’

• Daubechies (1992) defined two classes of wavelets via criteria
that select a particular scaling filter {gl}
• one criterion leads to ‘extremal phase’ class

• another criterion leads to ‘least asymmetric’ class
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Extremal Phase Scaling Filters: I

• denote these filters by {g(ep)
l }

• by definition, if {gl} and {g(ep)
l } have same G(D)(·), then

m∑
l=0

g2
l ≤

m∑
l=0

[
g

(ep)
l

]2
for m = 0, . . . , L− 1

• summing up to m defines mth term of partial energy sequence

• partial energy builds up fastest for {g(ep)
l } (‘front loaded’)

• note: above condition also called ‘minimum phase’

• filter of width L called D(L) scaling filter; e.g., D(4), D(6)

• {g(ep)
l } for L = 4, 6, . . . , 20 are on course Web site
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Extremal Phase Scaling Filters: II

• spectral factorization leads to four possible {gl} for L = 8
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Extremal Phase Scaling Filters: III

• here are corresponding partial energy sequences
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• scaling filter (a) on previous overhead is D(8) scaling filter
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Extremal Phase Scaling Filters for L = 4, 6, . . . , 20
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L = 4

L = 6

L = 8

L = 10

L = 12

L = 14

L = 16

L = 18

L = 20

• note that {g(ep)
l }’s are front loaded
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Extremal Phase Wavelet Filters for L = 4, 6, . . . , 20
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L = 4

L = 6

L = 8

L = 10

L = 12

L = 14

L = 16

L = 18

L = 20

• note that {h(ep)
l }’s are back loaded
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D(4) Wavelet & Scaling Filters Revisited

..

.

.

....

.

.

.

.

.
.

........

.
.
.
.

.

.
.
.

.
..
...

................
.
.
.
..
..
.

.

.
.
...
..
.
..
....
.......

.

.

.

.

.
.
.
.

.

.
.
.
..

.
..
..
..
.

.
..
.....

......

..
...
...
....
...
.
.
................

.............

{h(ep)l }

{h(ep)2,l }

{h(ep)3,l }

{h(ep)4,l }

{g(ep)l }

{g(ep)2,l }

{g(ep)3,l }

{g(ep)4,l }

L = 4

L2 = 10

L3 = 22

L4 = 46

L = 4

L2 = 10

L3 = 22

L4 = 46

• jth level D(4) wavelet filters {h(ep)
j,l }’s are back loaded, whereas

corresponding scaling filters {g(ep)
j,l }’s are front loaded
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D(6) Wavelet & Scaling Filters Revisited
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{h(ep)l }

{h(ep)2,l }

{h(ep)3,l }

{h(ep)4,l }

{g(ep)l }

{g(ep)2,l }

{g(ep)3,l }

{g(ep)4,l }

L = 6

L2 = 16

L3 = 36

L4 = 76

L = 6

L2 = 16

L3 = 36

L4 = 76

• again {h(ep)
j,l }’s are back loaded while {g(ep)

j,l }’s are front loaded

VI–10



Least Asymmetric Scaling Filters: Introduction

• denote these filters by {g(la)
l }

• idea is to pick the filter closest to being symmetric, with sym-
metry being measured in terms of the phase function θ(·):

G(D)(f ) =

√
G(D)(f )eiθ(f )

• filter of width L called LA(L) scaling filter; e.g., LA(8), LA(16)

• LA(2), LA(4) and LA(6) same as Haar, D(4) and D(6)

• LA(L) and D(L) scaling filters differ for L = 8, 10, 12, . . .

• Q: why is symmetry of interest?
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Assigning Times to Wavelet Coefficients: I

• recall example of J0 = 4 partial Haar DWT:

 

 

     

 

V4

W4
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W2

W1

X
−44.2

−53.8
1800 1850 1900 1950 2000

• Q: how did we decide to plot W4,4 at 1848.3?
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Assigning Times to Wavelet Coefficients: II

• symmetry in filter allows association of Wj,t with Xt values

• recall formation of W3,0 in N = 16 example:
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• can associate W3,0 with time 3.5 because Haar {h3,l} has a
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Zero Phase Filters: I

• LA class of wavelet and scaling filters designed to exhibit ‘near
symmetry’ about some point in the filter

• makes it easier to align Wj,t and VJ0,t with values in X

• can quantify symmetry by considering ‘zero phase’ filters, so
need to introduce ideas behind this type of filter

• consider filter {ul} ←→ U(·); i.e, U(f ) =
∑∞
l=−∞ ule

−i2πfl

• write U(f ) = |U(f )|eiθ(f ), where the gain function is defined
by |U(f )|, and θ(·) is the phase function

WMTSA: 108–110 VI–14



Zero Phase Filters: II

• let {u◦l } be {ul} periodized to length N

• Exer. [33] says that {u◦l } ←→ {U( kN )}, where both l and k
take the values 0, 1, . . . , N − 1

• let {Xt} be time series of length N with DFT {Xk}
• let {Yt} be {Xt} circularly filtered with {u◦l }:

Yt ≡
N−1∑
l=0

u◦lXt−l mod N , t = 0, 1, . . . , N − 1

• hence {Yt} ←→ {U( kN )Xk}
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Zero Phase Filters: III

• since {Yt} ←→ {U( kN )Xk}, inverse DFT says

Yt =
1

N

N−1∑
k=0

U( kN )Xkei2πkt/N

• suppose {ul} has zero phase; i.e., θ(f ) = 0 for all f

• since U(f ) = |U(f )|, have U( kN ) = |U( kN )|, so

Yt =
1

N

N−1∑
k=0

|U( kN )|Xkei2πkt/N

• |U( kN )|Xk & Xk have the same phase, but amplitudes can differ

• thus components in output {Yt} that are undamped by filter
will line up with similar components in input {Xt}
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Zero Phase Filters: IV

• examples with and without zero phase:

u1,l =


1/2, l = 0;

1/4, l = ±1;

0, otherwise;

and u2,l =

{
1/2, l = 0, 1;

0, otherwise,

for which {u1,l} ←→ cos2(πf ) and {u2,l} ←→ e−iπf cos(πf )

.......

.

.

.

....... ........

..

.......

. .
u1,l u2,l

0

−8 −4 0 4 8 −8 −4 0 4 8
l l
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Zero Phase Filters: V

• Fig. 110: example of filtering {Xt} with low-pass filters {u1,l}
and {u2,l}
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Xt X ∗ u1,l X ∗ u2,l
0
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t t t
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Linear Phase Filters: I

• LA {gl}’s formulated in terms of linear phase filters

• to relate linear phase and zero phase ideas, consider circularly
shifting {Yt} by ν units:

Y
(ν)
t ≡ Yt+ν mod N , t = 0, . . . , N − 1

• example: ν = 2 & N = 11 yields Y
(2)

8 = Y8+2 mod 11 = Y10,

with Y
(2)

8 occurring 2 time units earlier than Y10

• {Y (ν)
t } advanced version of {Yt} if ν > 0

• {Y (ν)
t } delayed version of {Yt} if ν < 0

WMTSA: 111 VI–19



Linear Phase Filters: II

• note following:

Y
(ν)
t = Yt+ν mod N =

N−1∑
l=0

u◦lXt+ν−l mod N

=

N−1−ν∑
l=−ν

u◦l+νXt−l mod N

=

N−1−ν∑
l=−ν

u◦l+ν mod NXt−l mod N

=

N−1∑
l=0

u◦l+ν mod NXt−l mod N

• thus can advance filter output by advancing filter
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Linear Phase Filters: III

• {u◦l+ν mod N : l = 0, . . . , N − 1} periodized version of

{u(ν)
l ≡ ul+ν : l = . . . ,−1, 0, 1, . . .}

• phase properties of {u◦l+ν mod N} depend on transfer function

U (ν)(·) for {u(ν)
l }

• Exer. [111]: U (ν)(f ) = ei2πfνU(f )

• suppose {ul} has zero phase so U(f ) = |U(f )|

• implies {u(ν)
l } has θ(ν)(f ) = 2πfν

• {u(ν)
l } said to have linear phase

• conclusion: if ν is an integer, can convert linear phase filter to
zero phase filter by appropriately advancing the filter

WMTSA: 111 VI–21



Linear Phase Filters: IV

• example:

u3,l =


1/2, l = 1;

1/4, l = 0 or 2;

0, otherwise;

←→ cos2(πf )e−i2πf

− θ3(f ) = −2πf , i.e., linear phase with ν = −1

− advancing {u3,l} by 1 unit yields zero phase filter {u1,l}

.......
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.

...............

.

.

.

......

.

.

u3,l u1,l

0

−8 −4 0 4 8 −8 −4 0 4 8
l l
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Definition of Least Asymmetric Scaling Filters

• consider the set of phase functions θ(G)(·) associated with all

possible factorizations of G(D)(·) such that
∑
gl =

√
2

• definition of LA(L) scaling filter: factorization of G(D)(·) with

θ(G)(·) such that

min
ν̃=0,±1,...

{
max
−1

2≤f≤
1
2

∣∣∣θ(G)(f )− 2πfν̃
∣∣∣}

is minimized

• let ν be the ν̃ that minimizes the above; i.e., θ(G)(f ) ≈ 2πfν

• let {h(la)
l } denote wavelet filter corresponding to LA(L) scaling

filter {g(la)
l }
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Determination of LA(8) Scaling Filter

• recall four possible {gl} for L = 8
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(d)
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Phase Function for Filter (a)
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• setting ν = −2 in 2πfν yields best approximation to θ(G)(f )
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Phase Function for Filter (b)
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• setting ν = −3 in 2πfν yields best approximation to θ(G)(f )
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Phase Function for Filter (c)
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• setting ν = −4 in 2πfν yields best approximation to θ(G)(f )
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Phase Function for Filter (d)
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• setting ν = −5 in 2πfν yields best approximation to θ(G)(f )
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θ(G)(f )− 2πfν for Filters (a), (b), (c) and (d)
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• filters (b) & (c) both qualify as least asymmetric – use (b)
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Least Asymmetric Scaling Filters for L = 8, 10, . . . , 20
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L = 8

L = 10

L = 12

L = 14

L = 16

L = 18

L = 20

• in contrast to D(L) scaling filters, {g(la)
l }’s are not front loaded

• {g(la)
l } for L = 8, 10, . . . , 20 are on course Web site
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Least Asymmetric Wavelet Filters for L = 8, 10, . . . , 20
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• in contrast to D(L) wavelet filters, {h(la)
l }’s are not back loaded
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Phase Functions for LA Wavelet Filters: I

• phase function for {g(la)
l } satisfies θ(G)(f ) ≈ 2πfν

• Exer. [112]: transfer function for wavelet filter is

H(f ) = e−i2πf (L−1)+iπG(1
2 − f )

= e−i2πf (L−1)+iπ|G(1
2 − f )|eiθ

(G)(1
2−f )

• hence phase function for wavelet filter is

θ(H)(f ) = −2πf (L− 1) + π + θ(G)(1
2 − f )

≈ −2πf (L− 1) + π + πν − 2πfν

= −2πf (L− 1 + ν) + π(ν + 1)

= −2πf (L− 1 + ν)

if ν is odd because π(ν + 1) is then a multiple of 2π

• thus ν odd implies that {h(la)
l } is approximately linear phase
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Phase Functions for LA Wavelet Filters: II

• for tabulated LA coefficients, have

ν =


−L2 + 1, if L = 8, 12, 16, 20 (i.e., L2 is even);

−L2 , if L = 10 or 18;

−L2 + 2, if L = 14,

so ν is indeed odd for all 7 LA scaling filters

• conclusion: LA wavelet filters also ≈ linear phase

• appropriate shift to get zero phase is −(L− 1 + ν)
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Shifts for Higher Level Filters: I

• since

{gj,l} ←→ Gj(f ) =

j−1∏
l=0

G(2lf )

{hj,l} ←→ Hj(f ) = H(2j−1f )Gj−1(f ),

phase functions for {gj,l} and {hj,l} are given by

θ
(G)
j (f ) =

j−1∑
l=0

θ(G)(2lf ) & θ
(H)
j (f ) = θ(H)(2j−1f )+

j−2∑
l=0

θ(G)(2lf ),

so {gj,l} & {hj,l} are approximately linear phase also
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Shifts for Higher Level Filters: II

• Exer. [114]:

θ
(G)
j (f ) ≈ 2πfν

(G)
j with ν

(G)
j ≡ (2j − 1)ν

θ
(H)
j (f ) ≈ 2πfν

(H)
j with ν

(H)
j ≡ −(2j−1[L− 1] + ν)

• in terms of widths Lj = (2j− 1)(L− 1) + 1 of {gj,l} & {hj,l},
have ν

(G)
j ≈ ν

(H)
j ≈ −Lj2 in all cases

• note: L2 odd poorer approximation to linear phase than L
2 even

(for details, see discussion concerning Fig. 115 in textbook)
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Aligning Filter Outputs

• can use ν
(H)
j & ν

(G)
J0

to align elements of Wj & VJ0
with X

• working through some details (see pp. 114–5 of text), find that,
if Xt is associated with actual time t0 + t∆t, LA wavelet coef-
ficient Wj,t can be associated with an interval of width 2τj ∆t
centered at

t0 + (2j(t + 1)− 1− |ν(H)
j | mod N) ∆t,

where, e.g., |ν(H)
j | = [7(2j − 1) + 1]/2 for LA(8) wavelet

• similarly, LA scaling coefficient VJ0,t can be associated with an
interval of width λJ0

∆t centered at

t0 + (2J0(t + 1)− 1− |ν(G)
J0
| mod N) ∆t
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LA(8) Wavelet & Scaling Filters Revisited
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{hl}

{h2,l}

{h3,l}

{h4,l}

{gl}

{g2,l}

{g3,l}

{g4,l}

L = 8

L2 = 22

L3 = 50

L4 = 106

L = 8

L2 = 22

L3 = 50

L4 = 106

• vertical lines indicate point of approximate symmetry
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Aligning Wavelet Coefficients with Time Series: I

•W1,0 =
∑15
l=0 h

◦
lX1−l mod 16, i.e., inner product of vectors:
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. . . . . . . . .
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h◦l

X1−l mod 16

X1 X0 X15X14X13X12X11X10 X9 X8 X7 X6 X5 X4 X3 X2

coefficient W1,0 W1,1 W1,2 W1,3 W1,4 W1,5 W1,6 W1,7

associated time 13
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Aligning Wavelet Coefficients with Time Series: I

•W1,1 =
∑15
l=0 h

◦
lX3−l mod 16, i.e., inner product of vectors:
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h◦l

X3−l mod 16

X3 X2 X1 X0 X15X14X13X12X11X10 X9 X8 X7 X6 X5 X4

coefficient W1,0 W1,1 W1,2 W1,3 W1,4 W1,5 W1,6 W1,7

associated time 13 15
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Aligning Wavelet Coefficients with Time Series: I

•W1,2 =
∑15
l=0 h

◦
lX5−l mod 16, i.e., inner product of vectors:

. .
.

.

.

.

.
. . . . . . . . .

.

.

.

.
.

.

.

.

.
.

.
.

.

.
.

.

h◦l

X5−l mod 16

X5 X4 X3 X2 X1 X0 X15X14X13X12X11X10 X9 X8 X7 X6

coefficient W1,0 W1,1 W1,2 W1,3 W1,4 W1,5 W1,6 W1,7

associated time 13 15 1
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Aligning Wavelet Coefficients with Time Series: I

•W1,3 =
∑15
l=0 h

◦
lX7−l mod 16, i.e., inner product of vectors:

. .
.

.

.

.

.
. . . . . . . . .

.
.

.

.

.

.
.

.

.

.

.
.

.
.

.

.

h◦l

X7−l mod 16

X7 X6 X5 X4 X3 X2 X1 X0 X15X14X13X12X11X10 X9 X8

coefficient W1,0 W1,1 W1,2 W1,3 W1,4 W1,5 W1,6 W1,7

associated time 13 15 1 3
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Aligning Wavelet Coefficients with Time Series: I

•W1,4 =
∑15
l=0 h

◦
lX9−l mod 16, i.e., inner product of vectors:

. .
.

.

.

.

.
. . . . . . . . .

.
.

.
.

.

.

.

.
.

.

.

.

.
.

.
.

h◦l

X9−l mod 16

X9 X8 X7 X6 X5 X4 X3 X2 X1 X0 X15X14X13X12X11X10

coefficient W1,0 W1,1 W1,2 W1,3 W1,4 W1,5 W1,6 W1,7

associated time 13 15 1 3 5
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Aligning Wavelet Coefficients with Time Series: I

•W1,5 =
∑15
l=0 h

◦
lX11−l mod 16, i.e., inner product of vectors:

. .
.

.

.

.

.
. . . . . . . . .

.
.

.
.

.
.

.

.

.

.
.

.

.

.

.
.

h◦l

X11−l mod 16

X11X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0 X15X14X13X12

coefficient W1,0 W1,1 W1,2 W1,3 W1,4 W1,5 W1,6 W1,7

associated time 13 15 1 3 5 7
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Aligning Wavelet Coefficients with Time Series: I

•W1,6 =
∑15
l=0 h

◦
lX13−l mod 16, i.e., inner product of vectors:

. .
.

.

.

.

.
. . . . . . . . .

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.

h◦l

X13−l mod 16

X13X12X11X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0 X15X14

coefficient W1,0 W1,1 W1,2 W1,3 W1,4 W1,5 W1,6 W1,7

associated time 13 15 1 3 5 7 9
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Aligning Wavelet Coefficients with Time Series: I

•W1,7 =
∑15
l=0 h

◦
lX15−l mod 16, i.e., inner product of vectors:

. .
.

.

.

.

.
. . . . . . . . .

.
.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

h◦l

X15−l mod 16

X15X14X13X12X11X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

coefficient W1,0 W1,1 W1,2 W1,3 W1,4 W1,5 W1,6 W1,7

associated time 13 15 1 3 5 7 9 11

• order in which elements of W1 should be displayed is thus

W1,2,W1,3,W1,4,W1,5,W1,6,W1,7,W1,0,W1,1

VI–38



Aligning Wavelet Coefficients with Time Series: II

• recall that we can use N ×N matrix T k to circularly shift W1
by k units

– shift is to the right if k is positive

– shift is to the left if k is negative

• can express reordering elements of

W1 = [W1,0,W1,1,W1,2,W1,3,W1,4,W1,5,W1,6,W1,7]T

as they occur in time using

T −2W1 = [W1,2,W1,3,W1,4,W1,5,W1,6,W1,7,W1,0,W1,1]T
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Example of J0 = 4 LA(8) Partial DWT

• oxygen isotope records X from Antarctic ice core

 

 

     

 

T −2V4

T −3W4

T −3W3

T −2W2

T −2W1

X
−44.2

−53.8
1800 1850 1900 1950 2000

year
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Example of J0 = 4 LA(8) MODWT

• oxygen isotope records X from Antarctic ice core

 

 

     

 

T −45Ṽ4

T −53W̃4

T −25W̃3

T −11W̃2

T −4W̃1

X

−44.2

−53.8
1800 1850 1900 1950 2000

year
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Summary of Daubechies Filters: I

• by definition, scaling filters {gl} of the Daubechies class have a
squared gain function given by

G(D)(f ) = 2 cosL(πf )

L
2−1∑
l=0

(L
2 − 1 + l

l

)
sin2l(πf )

• for given width L, there are several filters with the same G(D)(·)
(these differ only in their phase functions)

• need to impose additional constraints to pick unique filter

WMTSA: 153–156 VI–42



Summary of Daubechies Filters: II

• extremal (or minimum) phase constraint leads to the D(L) scal-

ing filters, denoted as {g(ep)
l } (these maximize the increase in

the partial energy sequence)

• least asymmetric constraint leads to the LA(L) scaling filters,

denoted as {g(la)
l }

− approximately zero phase after shifting by ν

− zero phase helps align filter output with input

− shift ν depends on L in a simple manner

− corresponding wavelet filters {h(la)
l } are also approximately

zero phase after shifting by ν
(H)
1 ≡ −(L− 1− ν)

WMTSA: 153–156 VI–43



Coiflets

• another class of filters yielding differences of weighted averages
(due to Daubechies, but suggested by R. Coifman)

• C(L) filters defined for widths L = 6, 12, 18, 24 and 30

• has L/3 embedded differencing operations rather than L/2

• can express squared gain function H(c)(f ) as

(2 sin(πf ))
2L
3


L
6−1∑
l=0

(L
6 − 1 + l

l

)
cos2l(πf ) + cos

L
3 (πf )F (f )


2

,

where F (·) is chosen so that H(c)(f ) +H(c)(f + 1
2) = 2

(however, F (·) cannot be expressed in closed form)

• by some measures, coiflets are more symmetric than LA filters,
but their triangular shapes can be problematic

WMTSA: 123–125 VI–44



C(6) Wavelet & Scaling Filters Revisited
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{hl}

{h2,l}

{h3,l}

{h4,l}

{gl}

{g2,l}

{g3,l}

{g4,l}

L = 6

L1 = 16

L2 = 36

L3 = 76

L = 6

L1 = 16

L2 = 36

L3 = 76

• vertical lines indicate point of approximate symmetry
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Zero-Phase Wavelet (Zephlet) Transform: I

• possible to construct orthonormal DWT based on filters whose
squared gain functions are consistent with those of Daubechies,
but with exact zero phase, as follows

• with N being a positive even integer, letH(·) be a squared gain
function satisfying

H( kN ) +H( kN + 1
2) = 2 for all k

N

• let {h̄l} be the inverse DFT of the sequence {H1/2( kN )}:

h̄l ≡
1

N

N−1∑
k=0

H1/2( kN )ei2πkl/N , l = 0, 1, . . . , N − 1

• define ḡl = (−1)lh̄l, and let {G( kN )} denote its DFT

• with G( kN ) ≡ |G( kN )|2, can argue that H( kN ) + G( kN ) = 2
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Zero-Phase Wavelet (Zephlet) Transform: II

• define the N
2 ×N matrices

D1 =


h̄1 h̄0 h̄N−1 h̄N−2 h̄N−3 · · · h̄5 h̄4 h̄3 h̄2
h̄3 h̄2 h̄1 h̄0 h̄N−1 · · · h̄7 h̄6 h̄5 h̄4
... ... ... ... ... . . . ... ... ... ...

h̄N−1 h̄N−2 h̄N−3 h̄N−4 h̄N−5 · · · h̄3 h̄2 h̄1 h̄0


and

C1 =


ḡ0 ḡN−1 ḡN−2 ḡN−3 ḡN−4 · · · ḡ4 ḡ3 ḡ2 ḡ1
ḡ2 ḡ1 ḡ0 ḡN−1 ḡN−2 · · · ḡ6 ḡ5 ḡ4 ḡ3
... ... ... ... ... . . . ... ... ... ...

ḡN−2 ḡN−3 ḡN−4 ḡN−5 ḡN−6 · · · ḡ2 ḡ1 ḡ0 ḡN−1


(note that, while D1 has a form analogous to W1 & V1, corre-
sponding rows in C1 and D1 differ by a circular shift of one)
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Zero-Phase Wavelet (Zephlet) Transform: III

• can show that the N × N matrix formed by stacking D1 on
top of C1 is a real-valued orthonormal matrix; i.e,

D ≡
[
D1
C1

]
is such that DTD = IN

• proof of above result (subject of forthcoming exercise!) is similar
in spirit to proof that W is orthonormal, but details differ

• algorithms for computing DWT and zephlet transform are, re-
spectively, O(N) and O(N · log2(N))
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Zero-Phase Wavelet (Zephlet) Transform: IV

• for case N = L = 16, let’s compare values in rows of V1 based
on Daubechies’ least asymmetric filter and corresponding C1
(after alignments for easier comparison)

DWT filter g◦l = gl zephlet transform filter ḡl

• for given N & L, squared magnitudes of DFTs of {g◦l } & {ḡl}
at fk = k/N are exactly the same, but phase functions differ,
with that for {ḡl} given by θ(fk) = 0
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Zero-Phase Wavelet (Zephlet) Transform: V

• for fixed L ≥ 8, values in rows of zephlet transform change as
N increases (DWT rows just add more 0’s for all N ≥ L)

• consider zephlet transform based on least asymmetric filter for
L = 8 and cases N = 8 (pluses) and N = 32 (circles)

+ +

+

+

+

+ +
+
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 2:

VI–51



Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 4:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 6:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 8:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 10:

VI–51



Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 12:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 14:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 16:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 18:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 20:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 22:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 24:

VI–51



Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 26:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 28:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 30:
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Zero-Phase Wavelet (Zephlet) Transform: VI

• can work out expression for elements in zephlet transform ex-
plicitly in Haar case (L = 2):

ḡl =

√
2

N

[
1 + (−1)lSl,+ + (−1)l+1Sl,−

]
≈ 2(−1)l

√
2

π(1− 4l2)
for large N = 2M , where

Sl,± ≡ sin([2l ± 1]πM−1
4M )

sin(π2l±1
4 )

sin(π2l±1
4M )

• Haar-based {ḡl} for N = 32:
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Comparison of Outputs from LA(8) & Zephlet
Scaling Filters (Input is Doppler Signal)

20 25 30 35 40

VI–52


