
Maximal Overlap Discrete Wavelet Transform

• abbreviation is MODWT (pronounced ‘mod WT’)

• transforms very similar to the MODWT have been studied in
the literature under the following names:

− undecimated DWT (or nondecimated DWT)

− stationary DWT

− translation invariant DWT

− time invariant DWT

− redundant DWT

• also related to notions of ‘wavelet frames’ and ‘cycle spinning’

• basic idea: use values removed from DWT by downsampling
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Quick Comparison of the MODWT to the DWT

• unlike the DWT, MODWT is not orthonormal (in fact MODWT
is highly redundant)

• unlike the DWT, MODWT is defined naturally for all samples
sizes (i.e., N need not be a multiple of a power of two)

• similar to the DWT, can form multiresolution analyses (MRAs)
using MODWT, but with certain additional desirable features;
e.g., unlike the DWT, MODWT-based MRA has details and
smooths that shift along with X (if X has detail eDj, then

T mX has detail T m eDj)

• similar to the DWT, an analysis of variance (ANOVA) can be
based on MODWT wavelet coefficients

• unlike the DWT, MODWT discrete wavelet power spectrum
same for X and its circular shifts T mX
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Definition of MODWT Wavelet & Scaling Filters: I

• recall that we can obtain DWT wavelet and scaling coefficients
directly from X by filtering and downsampling:

X −→ Hj(
k
N ) −→

↓2j
Wj and X −→ Gj(

k
N ) −→

↓2j
Vj

• transfer functions Hj(·) and Gj(·) are associated with impluse
response sequences {hj,l} and {gj,l} via the usual relationships

{hj,l} ←→ Hj(·) and {gj,l} ←→ Gj(·),

and both filters have width Lj = (2j − 1)(L− 1) + 1

• define MODWT filters {h̃j,l} and {g̃j,l} by renormalizing the
DWT filters:

h̃j,l = hj,l/2j/2 and g̃j,l = gj,l/2j/2
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Definition of MODWT Wavelet & Scaling Filters: II

• widths Lj of MODWT and DWT filters are the same

• whereas DWT filters have unit energy, MODWT filters satisfy

Lj−1X

l=0

h̃2
j,l =

Lj−1X

l=0

g̃2
j,l =

1

2j

• let eHj(·) and eGj(·) be the corresponding transfer functions:

eHj(f) =
1

2j/2
Hj(f) and eGj(f) =

1

2j/2
Gj(f)

so that

{h̃j,l} ←→ eHj(·) and {g̃j,l} ←→ eGj(·)
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Definition of MODWT Coefficients: I

• level j MODWT wavelet and scaling coefficients are defined to
be output obtaining by filtering X with {h̃j,l} and {g̃j,l}:

X −→ eHj(
k
N ) −→ fWj and X −→ eGj(

k
N ) −→ eVj

• compare the above to its DWT equivalent:

X −→ Hj(
k
N ) −→

↓2j
Wj and X −→ Gj(

k
N ) −→

↓2j
Vj

• DWT and MODWT have different normalizations for filters,
and there is no downsampling by 2j in the MODWT

• level J0 MODWT consists of J0 + 1 vectors, namely,
fW1, fW2, . . . , fWJ0

and eVJ0
,

each of which has length N
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Definition of MODWT Coefficients: II

• MODWT of level J0 has (J0 + 1)N coefficients, whereas DWT
has N coefficients for any given J0

• whereas DWT of level J0 requires N to be integer multiple of
2J0, MODWT of level J0 is well-defined for any sample size N

• when N is divisible by 2J0, we can write

Wj,t =

Lj−1X

l=0

hj,lX2j(t+1)−1−l mod N & fWj,t =

Lj−1X

l=0

h̃j,lXt−l mod N,

and we have the relationship

Wj,t = 2j/2fWj,2j(t+1)−1 &, likewise, VJ0,t = 2J0/2eVJ0,2
J0(t+1)−1

(here fWj,t & eVJ0,t denote the tth elements of fWj & eVJ0
)
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Properties of the MODWT

• as was true with the DWT, we can use the MODWT to obtain

− a scale-based additive decomposition (MRA) and

− a scale-based energy decomposition (ANOVA)

• in addition, the MODWT can be computed efficiently via a
pyramid algorithm
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MODWT Multiresolution Analysis: I

• starting from the definition

fWj,t =

Lj−1X

l=0

h̃j,lXt−l mod N, have fWj,t =
N−1X

l=0

h̃◦j,lXt−l mod N,

where {h̃◦j,l} is {h̃j,l} periodized to length N

• can express the above in matrix notation as fWj = fWjX, where
fWj is the N ×N matrix given by



h̃◦j,0 h̃◦j,N−1 h̃◦j,N−2 h̃◦j,N−3 · · · h̃◦j,3 h̃◦j,2 h̃◦j,1
h̃◦j,1 h̃◦j,0 h̃◦j,N−1 h̃◦j,N−2 · · · h̃◦j,4 h̃◦j,3 h̃◦j,2

... ... ... ... · · · ... ... ...
h̃◦j,N−2 h̃◦j,N−3 h̃◦j,N−4 h̃◦j,N−5 · · · h̃◦j,1 h̃◦j,0 h̃◦j,N−1
h̃◦j,N−1 h̃◦j,N−2 h̃◦j,N−3 h̃◦j,N−4 · · · h̃◦j,2 h̃◦j,1 h̃◦j,0




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MODWT Multiresolution Analysis: II

• recalling the DWT relationship Dj = WT
j Wj, define jth level

MODWT detail as eDj = fWT
j

fWj

• similar development leads to definition for jth level MODWT
smooth as eSj = eVT

j
eVj

• will now show that level J0 MODWT-based MRA is given by

X =
J0X

j=1

eDj + eSJ0
,

which is analogous to the DWT-based MRA
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MODWT Multiresolution Analysis: III

• since eDj = fWT
j

fWj, let’s look at fWT
j :





h̃◦j,0 h̃◦j,1 h̃◦j,2 h̃◦j,3 · · · h̃◦j,N−3 h̃◦j,N−2 h̃◦j,N−1
h̃◦j,N−1 h̃◦j,0 h̃◦j,1 h̃◦j,2 · · · h̃◦j,N−4 h̃◦j,N−3 h̃◦j,N−2
h̃◦j,N−2 h̃◦j,N−1 h̃◦j,0 h̃◦j,1 · · · h̃◦j,N−5 h̃◦j,N−4 h̃◦j,N−3

... ... ... ... · · · ... ... ...
h̃◦j,2 h̃◦j,3 h̃◦j,4 h̃◦j,5 · · · h̃◦j,N−1 h̃◦j,0 h̃◦j,1
h̃◦j,1 h̃◦j,2 h̃◦j,3 h̃◦j,4 · · · h̃◦j,N−2 h̃◦j,N−1 h̃◦j,0





• since eVT
j has a similar pattern, elements of eDj & eSj are thus

eDj,t =
N−1X

l=0

h̃◦j,lfWj,t+l mod N & eSj,t =
N−1X

l=0

g̃◦j,leVj,t+l mod N
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MODWT Multiresolution Analysis: IV

• eDj and eSj both formed by cyclic cross-correlations, and hence

− eDj formed by filtering {fWj,t} with { eH∗
j ( k

N )}
− eSj formed by filtering {eVj,t} with { eG∗j(

k
N )}

• in turn, {fWj,t} & {eVj,t} formed by filtering {Xt} ←→ {Xk}
with {h̃◦j,l} ←→ { eHj(

k
N )} & {g̃◦j,l} ←→ { eGj(

k
N )}

• hence

{ eDj,t} ←→ { eH∗
j ( k

N ) eHj(
k
N )Xk} = {| eHj(

k
N )|2Xk}

{ eSj,t} ←→ { eG∗j(
k
N ) eGj(

k
N )Xk} = {| eGj(

k
N )|2Xk}
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MODWT Multiresolution Analysis: V

• since the DFT of a sum is the sum of the individual DFTs,

{ eDj,t + eSj,t} ←→ {
≥
| eHj(

k
N )|2 + | eGj(

k
N )|2

¥
Xk}

• when j ≥ 2, can reduce term in parentheses:

| eHj(
k
N )|2 + | eGj(

k
N )|2 = | eH(2j−1 k

N )|2
j−2Y

l=0

| eG(2l k
N )|2 +

j−1Y

l=0

| eG(2l k
N )|2

=
≥
| eH(2j−1 k

N )|2 + | eG(2j−1 k
N )|2

¥ j−2Y

l=0

| eG(2l k
N )|2

= 1
2

≥
|H(2j−1 k

N )|2 + |G(2j−1 k
N )|2

¥
| eGj−1(

k
N )|2

= | eGj−1(
k
N )|2

since |H(f)|2 + |G(f)|2 = H(f) + G(f) = 2
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MODWT Multiresolution Analysis: VI

• implies { eDj,t + eSj,t} ←→ {| eGj−1(
k
N )|2Xk}

• compare the above to { eSj,t} ←→ {| eGj(
k
N )|2Xk} and evoke

the uniqueness of the DFT to get eSj−1 = eDj + eSj for j ≥ 2

• hence eS1 = eD2 + eS2 = eD2 + eD3 + eS3 = · · · , leading to

eS1 =
J0X

j=2

eDj + eSJ0
and hence X =

J0X

j=1

eDj + eSJ0

if we use Exer. [172]: X = eS1 + eD1 for all N & L

WMTSA: 172 V–13



MODWT Multiresolution Analysis: VII

• if we form DWT-based MRAs for X and its circular shifts
T mX, m = 1, . . . , N − 1, we can obtain eDj by appropriately
averaging all N DWT-based details (‘cycle spinning’)
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MODWT Multiresolution Analysis: VIII

• left-hand plots show eDj, while right-hand plots show average
of T −mDj in MRA for T mX, m = 0, 1, . . . , 15
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MODWT Analysis of Variance: I

• for any J0 ≥ 1 & N ≥ 1, will now show that

kXk2 =
J0X

j=1

kfWjk2 + keVJ0
k2,

leading to an analysis of the sample variance of X:

σ̂2
X =

1

N

J0X

j=1

kfWjk2 +
1

N
keVJ0

k2 −X
2
,

which is analogous to the DWT-based analysis of variance

WMTSA: 169–171 V–16



MODWT Analysis of Variance: II

• as before, let {Xk} be the DFT of {Xt} so that

{fWj,t} ←→ { eHj(
k
N )Xk} & {eVj,t} ←→ { eGj(

k
N )Xk}

• Parseval’s theorem says:

kfWjk2 =
1

N

N−1X

k=0

| eHj(
k
N )|2|Xk|2 & keVjk2 =

1

N

N−1X

k=0

| eGj(
k
N )|2|Xk|2

• since | eHj(
k
N )|2+ | eGj(

k
N )|2 = | eGj−1(

k
N )|2, j ≥ 2, adding yields

kfWjk2 + keVjk2 =
1

N

N−1X

k=0

≥
| eHj(

k
N )|2 + | eGj(

k
N )|2

¥
|Xk|2

=
1

N

N−1X

k=0

| eGj−1(
k
N )|2|Xk|2 = keVj−1k2
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MODWT Analysis of Variance: III

• using keVj−1k2 = kfWjk2 + keVjk2 for j = 2, 3, . . . , J0 yields

keV1k2 = kfW2k2 + keV2k2

= kfW2k2 + kfW3k2 + keV3k2
...

=
J0X

j=2

kfWjk2 + keVJ0
k2

• desired result

kXk2 =
J0X

j=1

kfWjk2 + keVJ0
k2,

now follows if we can show that kXk2 = kfW1k2 +keV1k2, and
this is the subject of Exer. [171a]
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MODWT Pyramid Algorithm: I

• goal: compute fWj & eVj using eVj−1 rather than X

• can obtain all 3 by filtering X directly:

− to get eVj, use { eGj(
k
N ) = eGj−1(

k
N ) eG(2j−1 k

N )}
− to get fWj, use { eHj(

k
N ) = eGj−1(

k
N ) eH(2j−1 k

N )}
− to get eVj−1, use { eGj−1(

k
N )}

• can get eVj & fWj using eG(2j−1 k
N ) & eH(2j−1 k

N ) on eVj−1

• Exer. [91]: if {h̃l} ←→ eH(f), the inverse DFT of eH(2j−1f) is

{h̃0, 0, . . . , 0,| {z }
2j−1−1 zeros

h̃1, 0, . . . , 0,| {z }
2j−1−1 zeros

. . . , h̃L−2, 0, . . . , 0,| {z }
2j−1−1 zeros

h̃L−1}
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MODWT Pyramid Algorithm: II

• letting eV0,t ≡ Xt, implies that, for all j ≥ 1,

fWj,t =
L−1X

l=0

h̃l
eVj−1,t−2j−1l mod N & eVj,t =

L−1X

l=0

g̃l
eVj−1,t−2j−1l mod N

• algorithm requires N log2(N) multiplications, which is the same
as needed by fast Fourier transform algorithm

• inverse pyramid algorithm is given by

eVj−1,t =
L−1X

l=0

h̃l
fWj,t+2j−1l mod N +

L−1X

l=0

g̃l
eVj,t+2j−1l mod N

(proof of this statement is the subject of Exer. [175])
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MODWT Pyramid Algorithm: III

• pyramid algorithm summarized in following flow diagram:

eG(2j−1 k
N ) −→ eVj −→

eG∗(2j−1 k
N )

% &
eVj−1 + −→ eVj−1

& %
eH(2j−1 k

N ) −→ fWj −→
eH∗(2j−1 k

N )

• item [1] of Comments and Extensions to Sec. 5.5 has pseudo
code for MODWT pyramid algorithm
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MODWT Pyramid Algorithm: IV

• similar to DWT, can describe transform from eVj−1 to fWj &
eVj as fWj = eBj

eVj−1 & eVj = eAj
eVj−1, where now eBj & eAj

are N ×N matrices

• rows of eBj contain inverse DFT of { eH(2j−1 k
N )}

• rows of eAj contain inverse DFT of { eG(2j−1 k
N )}

• example of eBj with j = 2, N = 12 & L = 4:

eB2 ≡





h̃0 0 0 0 0 0 h̃3 0 h̃2 0 h̃1 0
0 h̃0 0 0 0 0 0 h̃3 0 h̃2 0 h̃1
h̃1 0 h̃0 0 0 0 0 0 h̃3 0 h̃2 0
... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 h̃3 0 h̃2 0 h̃1 0 h̃0 0
0 0 0 0 0 h̃3 0 h̃2 0 h̃1 0 h̃0




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MODWT Pyramid Algorithm: V

• Exer. [175]: like DWT, can express fWj & eVj −→ eVj−1 as

eVj−1 = eBT
j

fWj + eAT
j

eVj

• starting with eV0 = X, J0 recursions yield

X = eBT
1

fW1| {z }
eD1

+ eAT
1

eBT
2

fW2| {z }
eD2

+ eAT
1

eAT
2

eBT
3

fW3| {z }
eD3

+ · · ·

+ eAT
1 · · · eAT

J0−1
eBT
J0

fWJ0| {z }
eDJ0

+ eAT
1 · · · eAT

J0−1
eAT
J0

eVJ0| {z }
eSJ0

• since eDj ≡ fWT
j

fWj and eSJ0
≡ eVT

J0
eVJ0

, we evidently have

fWj = eBj
eAj−1 · · · eA1 and eVJ0

= eAJ0
eAJ0−1 · · · eA1
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Example of J0 = 4 LA(8) MODWT

• oxygen isotope records X from Antarctic ice core

 

 

     
 

T −45 eV4
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Relationship Between MODWT and DWT

• bottom plot shows W4 from DWT after circular shift T −3 to
align coefficients properly in time (more about T later)

• top plot shows fW4 from MODWT and subsamples that, upon
rescaling, yield W4 via W4,t = 4fW4,16(t+1)−1

T −53fW4

T −3W4

3
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Example of J0 = 4 LA(8) MODWT MRA

• oxygen isotope records X from Antarctic ice core
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Example of Variance Decomposition

• decomposition of sample variance from MODWT

σ̂2
X ≡ 1

N

N−1X

t=0

°
Xt −X

¢2
=

4X

j=1

1

N
kfWjk2 +

1

N
keV4k2 −X

2

• LA(8)-based example for oxygen isotope records

− 0.5 year changes: 1
NkfW1k2

.
= 0.145 (

.
= 4.5% of σ̂2

X)

− 1.0 years changes: 1
NkfW2k2

.
= 0.500 (

.
= 15.6%)

− 2.0 years changes: 1
NkfW3k2

.
= 0.751 (

.
= 23.4%)

− 4.0 years changes: 1
NkfW4k2

.
= 0.839 (

.
= 26.2%)

− 8.0 years averages: 1
NkeV4k2 −X

2 .
= 0.969 (

.
= 30.2%)

− sample variance: σ̂2
X

.
= 3.204
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Summary of Key Points about the MODWT

• similar to the DWT, the MODWT offers

− a scale-based multiresolution analysis

− a scale-based analysis of the sample variance

− a pyramid algorithm for computing the transform efficiently

• unlike the DWT, the MODWT is

− defined for all sample sizes (no ‘power of 2’ restrictions)

− unaffected by circular shifts to X in that coefficients, details
and smooths shift along with X (example coming later)

− highly redundant in that a level J0 transform consists of
(J0 + 1)N values rather than just N

• as we shall see, the MODWT can eliminate ‘alignment’ arti-
facts, but its redundancies are problematic for some uses
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