Maximal Overlap Discrete Wavelet Transform

e abbreviation is MODW'T (pronounced ‘mod WT")

e transforms very similar to the MODWT have been studied in
the literature under the following names:

— undecimated DWT (or nondecimated DWT)
— stationary DW'T

— translation invariant DW'T

— time invariant DW'T

— redundant DW'T

e also related to notions of ‘wavelet frames’ and ‘cycle spinning’

e basic idea: use values removed from DW'T by downsampling
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Quick Comparison of the MODWT to the DWT

e unlike the DWT, MODWT is not orthonormal (in fact MODW'T
is highly redundant)

e unlike the DW'T, MODWT is defined naturally for all samples

sizes (i.e., N need not be a multiple of a power of two)

e similar to the DWT, can form multiresolution analyses (MRAs)
using MODWT', but with certain additional desirable features;
¢.g., unlike the DWT, MODWT-based MRA has details and
smooths that shift along with X (if X has detail D;, then

7"X has detail 7 mﬁ])
e similar to the DWT, an analysis of variance (ANOVA) can be
based on MODWT wavelet coefhicients

e unlike the DWT, MODWT discrete wavelet power spectrum
same for X and its circular shifts 7" X
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Definition of MODWT Wavelet & Scaling Filters: I

e recall that we can obtain DW'T wavelet and scaling coefficients
directly from X by filtering and downsampling:

X — Hi(%) — W; and X — Gj(%) — V;

127 127

e transfer functions H;(-) and G () are associated with impluse
response sequences {1151} and {g;;} via the usual relationships

{hj1} < H;(-) and {g;;} «— G;(-),
and both filters have width L; = (27 —1)(L —1)+1

e define MODWT filters {Ej,l} and {g;;} by renormalizing the
DWT filters:

~

hjo=h; /2% and g, = gj,/2/

gl =
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Definition of MODWT Wavelet & Scaling Filters: II

e widths L; of MODWT and DW'T filters are the same
e whereas DW'T filters have unit energy, MODWT filters satisfy

Li—1 Li—1 1
12 ~2 -
D M= 5u=5
[=0 [=0
olet H ;(+) and G ;(+) be the corresponding transfer functions:

~ 1 — 1
H;(f) = WH]'(]C) and G(f) = ﬁGj(f)

so that
{hj} «— H;(-) and {g;;} «— G;(*)
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Definition of MODWT Coefficients: 1

o level ) MODWT wavelet and scaling coefficients are defined to
be output obtaining by filtering X with {h;;} and {g;;}:

X — Hij(%) — W, and X — G;(£&) — V;,

e compare the above to its DW'T equivalent:

X — Hj(% . W, and X — G.,(& > V.
) —w, &) — v,

e DWT and MODWT have different normalizations for filters,
and there is no downsampling by 2/ in the MODW'T

e level Jy MODWT consists of Jy + 1 vectors, namely,
WLWQ,...,WJO and \N[JO’
each of which has length N
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Definition of MODWT Coefhicients: 11

o MODWT of level Jjy has (Jg+ 1) coefficients, whereas DW'T
has N coefficients for any given Jj

e whereas DW'T of level Jy requires IV to be integer multiple of
270 MODWT of level Jo is well-defined for any sample size N

e when NV is divisible by 2‘]0, we can write

Lj_l Lj—l
Wj7t - Z hjalXQJ(t+1)—1—l mod NV & Wjﬂf - Z hj,lXt—l mod V>
[=0 [=0

and we have the relationship

/2757 : - Jy/2
W= 21/ Wj’2j<t+1>_1 &, likewise, Vi, 4 =2 o/

~

Jo,270(t+1)—1
(here /ij’t & ‘71]07,5 denote the tth elements of \7\/7]- &V 7o)
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Properties of the MODWT

e as was true with the DW'T', we can use the MODWTT to obtain

— a scale-based additive decomposition (MRA) and
— a scale-based energy decomposition (ANOVA)

e in addition, the MODWT can be computed efliciently via a
pyramid algorithm
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MODWT Multiresolution Analysis: 1

e starting from the definition

J N—1
Wit = Z i 1Xt—1 mod N, have W]t— Z he 71Xt —1 mod N
=0 1=0

where {;L;,l} is {fivzjjl} periodized to length N

e can express the above in matrix notation as W]- = VNVJ-X, where
W; is the N x N matrix given by

ey hS N hS ... B9 Fo fo
7,0 J, N J,N =2 J,N 3 03 02 gl
O O. ho ho ... h° © ©
J,l J,O J, J,N—=2 J4 "75,3 J,2
i’LO. ho / / ... hO . hO  pO
~=<7)7 N 3 ]7N 4 ]7N ~.]71 ~.]7O ]~,N—1
O O O O
_h]7N_ hj7N_2 j7N—3 jaN—4 o ]72 ]71 ]70
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MODWT Multiresolution Analysis: 11

e recalling the DW'T relationship D; = W]-TW]-, define jth level
MODWT detail as 15 = WTW

e similar development leads to definition for jth level MODW'T
smooth as §; = VTV

e will now show that level Jo MODWT-based MRA is given by
Jo
X = Z 75]' + g Jos
7=1
which is analogous to the DWT-based MRA

WMTSA: 169, 171 V-9



MODWT Multiresolution Analysis: III

e since 15]- = VNVJTW ., let’s look at VNV-T:

~

o
th

hO
]7

~

O
7,0

O
752

O
7,1
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2,1
70
7,0
o
h 7,N—1

70
J,3
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7,2

70 10
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L T2

O O
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A Tgh
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~ ~

],LO
7,N—3 ],N2 ],Nl
hO
7,N—4 ],NS ],NQ

o 0

h], h 7,N—4 j,N 3
o 7 70

h 7,N—1 j,O Nj,l
o 0 0

h h 7,N—1 1,0

e since %T has a similar pattern, elements of Dj & Sj are thus

N—1
~ .
Dt = Z hS W
[=0
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MODWT Multiresolution Analysis: IV

o 15]- and §] both formed by cyclic cross-correlations, and hence
— 15]- formed by filtering {/Wj,t} with {f‘j }k (%)}
— §; tormed by filtering {V] ¢} with {G*(ﬁﬂ

e in turn, {W] i+ & {VJ t} formed by filtering {Xt} — {X}
with {15} {H;(#)} & {35} — {Gj(§)}

e hence
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MODWT Multiresolution Analysis: V

e since the DFT of a sum is the sum of the individual DFT',
~ C 7 2 ~ 2
(D + 80y — {(IH &)+ 1G5 (5)1) X}

e when 7 > 2, can reduce term in parentheses

—2
Hj(#)” + |G (%) = \H(Qj_l%)\QH!G(Q +H\G
[=0

2
:(WQJ”W-HGQYWrﬁiIW 2P
[=0
=3 (1@ R)P 10 HP) 16

— ‘G] 1(N)|2
since |H(f)|? +|G(f)]? = H(f) + G(f) =
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MODWT Multiresolution Analysis: VI

o implies {Dj; + 8j4} > {IGj_1 (%)X}
e compare the above to {Sjjt} — {|G (7 )\QXk} and evoke

the uniqueness of the DFT to get S;_1 =D, + S for 7 > 2
e hence 51 :752+§2 :§2+§3—|‘§3 = ..., leading to
Jo Jo
Sy =Y Dj+8y, and hence X =) D; + Sy,
j=2 =1

if we use Exer. [172]: X =8, + D; forall N & L
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MODWT Multiresolution Analysis: VII

o if we form DWT-based MRAs for X and its circular shifts
T"X, m=1,...,N —1, we can obtain D; by appropriately
averaging all N DWT-based details (‘cycle spinning’)

84 7_184
Treteees ihdkhdd —1

D, hddbadid hdddhdd . 1Dy
—1

D3 M 7T TR T D

D, %H*l‘rruﬂu Jwrm"unul T_1D2
Dl J‘%!-*‘%‘TTL ﬁ!iﬁi%‘TTlL T—l’Dl

1 -
77X 0 LmﬂlfL X
—1L | | | | | |

O 5 10 15 0 o5 10 15
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MODWT Multiresolution Analysis: VIII

e left-hand plots show D.

YR

while right-hand plots show average

of 77D, in MRA for 7"'X, m =0,1,...,15
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MODWT Analysis of Variance: 1

e for any Jy > 1 & N > 1, will now show that
Jo
IXI* =D WP+ V)17
j=1
leading to an analysis of the sample variance of X:

2 2
0% = NZHW | _HVJOH

which is analogous to the DW'T-based analysis of variance

WMTSA: 169-171 V-16



MODWT Analysis of Variance: 11

e as before, let { A} be the DFT of { Xt} so that
Wisd — {Hj(®A} & (Vi — {G({) %)

o Parseval’s theorem says:
A7 (12 2 N7 |2 2
IW[|" = Z Hi ()1 & V) = Z G ()1

e since \H( )\2—|—\G (%)\2 \G (%)\ j > 2, addmgylelds

1N 1
A7 |12 "/ .||2 2 2
W2+ V1 = < 3 (1P +1G&)1) 14
k=0
1N—l
~ 2 \/ 2
= = D 1GFIPIA = V5
k=0
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MODWT Analysis of Variance: III

o using | Vj_1| = [W;|>+ ||V;
~ 9 xr 112

Vil = W2 +

— [[Wal” +

Jo

2for j =2.3,...,Jy yields
Vol|*

A7 112 N7 |2

Wi+ [| V3]

v VAR \/ 2
=D WP+ 11Vl

J=2

e desired result
Jo

2 W12 \/ 2
IX02 =D W2+ 1V g1,

J=1

now follows if we can show that || X||2 = ||[W||>+||V1]|%, and

this is the subject of Exer. [171a]

WMTSA: 169-171 V-18



MODWT Pyramid Algorithm: I

e goal: compute Wj & \ij using \ij_l rather than X
e can obtain all 3 by filtering X directly:
— to get V;, use {Gj(%) = Gj_l(%)G(Qj_l%)}
— to get \~7V . use {Hﬁ%) = Gj_l(%)H(Qj_l%)}
—to get V,;_1, use {Gj_l(%)}
e can get {//']- & Wj using 6(29'_1%) & f[(Qj_l%) on \ij—l
o Exer. [91): if {Iy} «—— H([), the inverse DFT of H(2/71f) is

{ho, 0,...,0, h1, 0,...,0, ..., hp_o, 0,...,0, hy_1}

\
TV TV VO

27—1 1 zeros 27—1 1 zeros 21—1_1 zeros
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MODWT Pyramid Algorithm: II

e letting ‘70,t = Xy, implies that, for all § > 1.

L—1 L—1
Wi = Z hlvj—u—zj—lz mod N & Vit = Z glvj—l,t—zf—ll mod N
=0 =0

e algorithm requires NV logs(N) multiplications, which is the same
as needed by fast Fourier transform algorithm

e inverse pyramid algorithm is given by

L—1 L—1
‘/j—lat — Z thj,tJij_ll mod N T Z gl‘/jj,t—ij_ll mod N
[=0 [=0

(proof of this statement is the subject of Exer. [175])
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MODWT Pyramid Algorithm: III

e pyramid algorithm summarized in following flow diagram:

~

G — v, — G

/ N

~

A% W, e

e item [1] of Comments and Extensions to Sec. 5.5 has pseudo
code for MODWTT pyramid algorithm
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MODWT Pyramid Algorithm: IV

e similar to DW'T, can describe transform from \N/'j_l to \7\/7]- &
VijasW; =BV, 1 &V, =A;V,;_1, where now B; & A,
are N xX N matrices

e rows of ij contain inverse DFT of {f] (27 —1
e rows of ./Zl/j contain inverse DFT of {é (271
e example of gj with j =2, N =12& L =4

g 0 000 0 hy 0 Ay 0 Ay O
0 hyg 000
2 hi 0 hg O O

)}
)}

2= 2=

0 0 hg 0 hy 0 hy
0 0 0 hg O hy O

o

0 0 00h3 0 hy Ohy 0 hy O
00 000 hy O hg O hy 0 hg

-
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MODWT Pyramid Algorithm: V

o Exer. [175]: like DWT, can express Wj & \ij — \ij_l as
- o o~
Vj—l = BJ W] + .A] V]
e starting with {70 = X, Jp recursions yield
X = BTW, + ATBIW, + AT ATBTW, + .
A\ ~ 7 A\ ~ 4

~— ~
Dy Dy D3
PV 11 29T, A 1 A1 <7
_|_:41 Co AJ0—18JOWJQ+:41 T AJ@—IAJOVJQ
Dy, S1,

® since 5]- = W]TW] and S Jy = ]7%{7 J,» we evidently have

Wj :Ejjj_l---jl and 17}0 Z./Z(JO.ZJO_l'--.Zl
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Example of Jy=4 LA(8) MODWT

e oxygen isotope records X from Antarctic ice core

—44.2 [

—5H3.8 | | |

1900 1950 2000

year

1800 1850
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Relationship Between MODWT and DWT

e hottom plot shows W from DWT after circular shift 73 to
align coefficients properly in time (more about 7 later)

e top plot shows W4 from MODWT and subsamples that, upon
rescaling, yield Wy via Wy 4 = 4W4,16(t +1)—1

ar
0 M@W&wﬂﬁ% 7—53W4
—3 L

121 ‘
0 | I o L | ‘ | T—3W4
19 ‘

L L L L I L L L L I L L L L L L L L J
1800 1850 1900 1950 2000
year
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Example of Jy = 4 LA(8) MODWT MRA

e oxygen isotope records X from Antarctic ice core

—44.2 [

—53.8
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Example of Variance Decomposition

e decomposition of sample variance from MODW'T

N—1 4
=S (= X) = S W2 |V -
XN ’f NI
t=0 j=1

e LA(8)-based example for oxygen isotope records

— 0.5 year changes: % Wi|I? = 0.145 (= 4.5% of 6%()
— 1.0 years changes: % Wol|2 = 0.500 (= 15.6%)
— 2.0 years changes: % W2 = 0.751 (= 23.4%)
— 4.0 years changes: % W, |12 = 0.839 (= 26.2%)
— 8.0 years averages: %H{QHQ ~ X7 = 0.969 (= 30.2%)

— sample variance: oy = 3.204

V-27



Summary of Key Points about the MODWT

e similar to the DW'T, the MODWT offers

— a scale-based multiresolution analysis
— a scale-based analysis of the sample variance
— a pyramid algorithm for computing the transform efliciently

e unlike the DW'T, the MODWT is

— defined for all sample sizes (no ‘power of 2’ restrictions)

— unaffected by circular shifts to X in that coefficients, details
and smooths shift along with X (example coming later)

— highly redundant in that a level Jy transform consists of
(Jo+ 1)N values rather than just N

e as we shall see, the MODWT can eliminate ‘alignment’ arti-
facts, but its redundancies are problematic for some uses
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