Defining the Discrete Wavelet Transform (DWT)

e can formulate DW'T via elegant ‘pyramid’ algorithm
e defines VW for non-Haar wavelets (consistent with Haar)
e computes W = WX using O(N) multiplications

— ‘brute force’ method uses O(N?) multiplications

— faster than celebrated algorithm for fast Fourier transform!
(this uses O(N - logs(N)) multiplications)

e can study algorithm using linear filters & matrix manipulations

e will look at both approaches since they are complementary

WMTSA: 68 IV-1



The Wavelet Filter: 1

e precise definition of DWT begins with notion of wavelet filter
elet {h;:1=0,...,L — 1} be a real-valued filter

— L called filter width
— both Ag and hj_1 must be nonzero

— L must be even (2,4,6,8,...) for technical reasons
— will assume Ay =0for l < 0 and [ > L

WMTSA: 68 IV-2



The Wavelet Filter: 11

e {h;} called a wavelet filter if it has these 3 properties

1. summation to zero:

2. unit energy:
L—1
Y hi=1
[=0
3. orthogonality to even shifts: for all nonzero integers n, have

L—1
> hhyo, =0
[=0

e 2 and 3 together are called the orthonormality property

WMTSA: 69 IV-3



The Wavelet Filter: 111

e define transfer and squared gain functions for wavelet filter:
L—1

H(f) = me™™ and H(f) = [H(f)I
[=0
e claim: orthonormality property equivalent to

H(f)+H(f + %) =2 forall f
e to show equivalence, first assume above holds

e consider autocorrelation of {h;}:

o {h} +— H(-) implies that {hx h;} +— ]H()\Q = H(-)

WMTSA: 69-70 V-4



The Wavelet Filter: IV

o inverse DE'T says hx h; = fi/12/2 H(f/)ei%f,j df’
e Eixer. [23b] says that, if {a;} <— A(-), then
{agn} «— [Ah) + A4 + )]

e application of this result here says that

{h*hgn}H%{H(f)Jr’H %Jr

)

o H(f)+H(f+ ) = 2 for all f says that 7—[(%) + H (5 +

e leads to orthonormality condition because

o 1/2 1
> hlhl+2n_h*h2n_/ eI gf = N

|[=—00 —1/2

l\')l —
[\Dl&h

WMTSA: 70 IV-5
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The Wavelet Filter: VI

o hence H(f)+ H(f + %) = 2 implies orthonormality

e Exer. |70]: orthonormality implies
H(f)+H(f +3) =2 forall f

e this establishes the equivalence between above and

.9,
I, n=0
) hzhl+2n{0 n 0

[=—00

WMTSA: 70 IV-6



The Wavelet Filter: VII

e summation to zero and unit energy relatively easy to achieve
(analogous to conditions imposed on wavelet functions (-))

e orthogonality to even shifts is key property

e orthogonality hardest to satisfy, and is reason L must be even

— consider filter {hq, h, ho} of width L = 3
— width 3 requires hg # 0 and ho # 0
— orthogonality to a shift of 2 requires hgho = 0 — impossible!

WMTSA: 69 V-7



Haar Wavelet Filter

e simplest wavelet filter is Haar (L = 2): hg = ﬁ & hy = _ﬁ

e note that hg + h; = 0 and h% + h% = 1, as required

e orthogonality to even shitts also readily apparent

e
hihj_o —==ssssssssssssss g — ()

WMTSA: 69 IV-8



D(4) Wavelet Filter: 1

e next simplest wavelet filter is D(4), for which L = 4:

13 _ —344/3 3443  —1—y/3
ho = 1,27 hy = /2 hg = 1,27 g = 1/2

— ‘D’ stands for Daubechies

— L = 4 width member of her ‘extremal phase’ wavelets

e computations show » , h; =0& ) hl2 = 1, as required

e orthogonality to even shifts apparent except for £2 case:

WMTSA: 59 IV-9



D(4) Wavelet Filter: 11

e (): what is rationale for D(4) filter?

e consider Xt<1> = Xt — Xp_1 =agXt + a1 Xy_1q,
where {ag = 1,a; = —1} defines 1st difference filter:

{ Xt} —

{17 _1}

— {x\

— Haar wavelet filter is normalized 1st difference filter

— Xt<1) is difference between two ‘1 point averages’

e consider filter cascade with two 1st difference filters:

(X} — [{1, -1} — [{1, =1} — {(x1P}

e equivalent filter defines 2nd difference filter:

{ Xt} —

{1,-2,1}

— (X

WMTSA: 60-61
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D(4) Wavelet Filter: II1

e renormalizing and shitting 2nd difference filter yields high-pass

filter considered earlier:
5, t=0

at:<—%, t=—1or1l

\

0, otherwise

(mentioned as being highly discretized Mexican hat wavelet)

e consider ‘2 point weighted average’ followed by 2nd difference:

{Xt} — — {17 —2, 1} — {}/t}

e D(4) wavelet filter based on equivalent filter for above:

{Xt} — {h07 h17 h27 hg}

WMTSA: 60-61 IV-11
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D(4) Wavelet Filter: IV

e using conditions

1. summation to zero: hg+ h1+ ho + hy =0
2. unit energy: h% + h% + h% + h% =1
3. orthogonality to even shifts: hgho + h1hy =0

can solve for feasible values of a and b (Exer. [4.1])

e one solution is a = 1;—\)/23 = 0.48 and b = _}:/%/3 = 0.13

(other solutions yield essentially the same filter)
e interpret D(4) filtered output as changes in weighted averages

— ‘change’ now measured by 2nd difference (1st for Haar)
— average is now 2 point weighted average (1 point for Haar)
— can argue that effective scale of weighted average is one

WMTSA: 60-61 IV-12



A Selection of Other Wavelet Filters: 1

e lots of other wavelet filters exist — here are three we’ll see later

e D(6) wavelet filter (top) and C(6) wavelet filter (bottom)

I hlhl_g N#W sum = (
hihj_y -sees®gesssssssss sum = ()
hi_4 *«"ﬁllfw

hihi—o ﬂflgmnnmr sum = (

hihy_y s=sssssssssssses sum = ()

WMTSA: 108-109, 123 IV-13



A Selection of Other Wavelet Filters: 11

e LA(8) wavelet filter (‘LA stands for ‘least asymmetric’)

hlhg_g *"‘%“““** sum = (
hl—Q N-—‘—lj—l—.lw

hihp_y eestesameemmees qum = ()
hl—4 M—llf-jw

hihj_g ==eessessssmmmes qum = ()
hi—g *‘“‘"“TL["*

e all 3 wavelet filters resemble Mexican hat (somewhat)
e can interpret each filter as cascade consisting of

— weighted average of effective width of 1

— higher order differences

e filter outputs can be interpreted as changes in weighted averages

WMTSA: 108-109 IV-14



First Level Wavelet Coefficients: 1

e given wavelet filter {h;} of width L & time series of length
N =27 goal is to define matrix W for computing W = WX

e periodize {h;} to length N to form hg, h, ..., h_,
o circularly filter X using {h7} to yield output
N—1
Z h?Xt—lmodNa t=0,...,N—1
[=0
e starting with ¢ = 1, take every other value of output to define
N—1
Wl,t = Z h?XQtJrl—lmodNa t = 07'”7% — 1
[=0

{W1.+} formed by downsampling filter output by a factor of 2

WMTSA: 70 IV-15



First Level Wavelet Coefficients: 11

o example of formation of {W7 ;}

T—
hy X15-1 mod 161%""""“ 2. = Lhﬁ-*i’ﬂi'a-”
X15—l mod 16 l‘U‘HJiVWL \L 2

Wy, Setlet

e note: ‘} 2’ denotes ‘downsample by two’ (take every 2nd value)

WMTSA: 70 IV-16



First Level Wavelet Coefficients: 111

o {Wj ;} are unit scale wavelet coefficients
— J in W, + indicates a particular group of wavelet coefficients
—j=1,2,...,J (upper limit tied to sample size N = QJ)
— will refer to index 5 as the level

— thus W 1 1s associated with level j =1
— W1 + also associated with scale 1

— level j is associated with scale 271 (more on this later)
o {Wj;} forms first N/2 elements of W = WX
o first NV/2 elements of W form subvector W
o Wi ¢ is tth element of W
e also have W1 = WX, with W being first N/2 rows of W

WMTSA: 70 IV-17



Upper Half of DWT Matrix: I

e setting ¢ = 0 in definition for W7 ; yields
N—1

Wio =Y hX1_jmed N
(=0
= ho X1 +hXo+hyXn_1+ -+ hy_ X3+ hy_Xo
= h{Xo+ hgX1 + h(])\;_lXQ + h(])\;_QXg + o+ ho XN

o recall W1 o = (Wpe, X), where WOT. is first row of W & of Wy

e comparison with above says that

T O 7.0 1.0 o O 70 7.0 1.0
Wae = |7, 0, Wiy 1 Wiy o, - b3, b, hg, hs)

WMTSA: 71 IV-18



Upper Half of DWT Matrix: 11

e similar examination of W7 1, ... WL N shows following pattern
— circularly shitt Wpe by 2 to get 2nd row of W:
WIL = (1, S, 15, B By g - 12, )
— form W;q by circularly shifting W;_14 by 2, ending with

T
WE = (W1 by B RSB, S, 1S, B
2

e if . < N (usually the case), then
o  |hy, 0ZIL<L—-1
i = {

0, otherwise

WMTSA: 71 IV-19



Example: Upper Half of Haar DW'T Matrix

e consider Haar wavelet filter (L = 2): hg = ﬁ & hy = _ﬁ

e when N = 16, upper half of W (i.e., W) looks like

hihg O 000 00O OO O0OO0O0O0O0 0]
0 0 hyhg O 0 0 0O O O 0 0O 0 0 O O
00 0 0 hhyOOOOOOO0OO0OO0O
000 0 0 0AhyOOO0OO0O0 0 0 O
00 0 0000 O0AhAhhOOOOO0O
0000000 O0O0O0h hOOO0O0
00 00 O0O0O0O0O0O0O0O0Ahh OO
000 0000000000 0 hthy

e rows obviously orthogonal to each other

IV-20



Example: Upper Half of D(4) DWT Matrix

e when L =4 & N =16, W (i.e., upper half of W) looks like
(hihg 0O 0 0 0 0 O 0 0 hs ho |
hg ho hy hg 0 0 0 0O 0 0

0 hg ho hy hg 0 0 0
0 0 O hg ho hy hg 0 0 0
0 0 O hg ho hy hg O O
0 0 0 0 O hg hy hy hg O O
0 0 0 0 0 0 0 hgho hy hg O 0

000 00000000 0 0 hghghy hy]

e rows orthogonal because hgho 4+ h1hg =0
e note: (Wye, X) yields Wio=h1Xo+hoX1+ h3 X4+ hoXi5

e unlike other coefficients from above, this ‘boundary’ coefficient
depends on circular treatment of X (a curse, not a feature!)

0 0 O 0
0 0 0 0
0 0 0 0
0 0
0

o O O O O
o O O
o O O
o O O O
o O O O O
o O o O

WMTSA: 81 IV-21



Orthonormality of Upper Half of DWT Matrix: I

e if L < N, orthonormality of rows of WW; follows readily from
orthonormality of {h;}

e as example of L > N case (comes into play at higher levels),
consider NV =4 and L = 6:

h8:h0—|—h4; h(f:h1+h5; hSZhQ; h§:h3
e WV is:
[h(l) h8 hg hg] B [hl + hs ho+ hy h3 ho
hg h; hcf h8 N ha ho hi+4+ hs ho+ ha
e inner product of two rows is
hihs + hshs + hoho 4+ hohy + hihs 4+ hshs + hoho + hohy
= 2(hohg + h1hs 4+ hohg + hshs) = 0

because {h;} is orthogonal to {h; 9} (an even shift)

WMTSA: 71 IV-22



Orthonormality of Upper Half of DWT Matrix: II

e will now show that, for all L and even IV,

N—1

Wit= ) hiXor1_jmed N+ O, equivalently, Wi = WX
[=0

forms half an orthonormal transform; i.e.,

W1W1T = [%

e need to show that rows of YW have unit energy and are pairwise
orthogonal

WMTSA: 72 IV-23



Orthonormality of Upper Half of DWT Matrix: III

e recall what first row of WW; looks like:
T 0O 70 7.0 o o
Wie = |1, 1, Ay 1. iy _o, -, B3]

o last % — 1 rows formed by circularly shift above by 2, 4, ...

e orthonormality follows if we can show
Nilh%o —pean = M=
n'*n+l mod N = [ 0, if{=24,...,N—2.
n=>0
o fixer. [33] says {h7} <— {H<%>}
e implies {h° x h?} — {\H(%)\Z = H(%)}

WMTSA: 72 IV-24



Orthonormality of Upper Half of DWT Matrix: IV

e inverse DF'T relationship says that

H

| N |
ho*hgl _ N 7‘[(%) i2m(20)k /N
k=0
= -
:% H(L)eitTlh/N Z muw +3)
k=0 k=
N
2

{H(%)‘FH(N—FQ)} 6247rl/€/N
0

=
i

e orthonormality property for {h;} says 7—[(%) + H(% + %) = 2

WMTSA: 72 IV-25



Orthonormality of Upper Half of DWT Matrix: V

e thus have
N

-1

2 = 1, ifl=0:

RO % hC, — 2 6247rlk/N: 7 )
2 N];) 0, ifl=1,2....,5 -1

where the last part follows from an application of

)

N
2 N/2
2 : with » — 6247rl/N7 0 ZN/2 _ 2l _

o W1 is thus half of the desired orthonormal DW'T matrix
e (): how can we construct the other half of W7

WMTSA: 72 IV-26



The Scaling Filter: 1

e create scaling (or ‘father wavelet’) filter {g;} by reversing {h;}
and then changing sign of coefficients with even indices

(h) {h} reversed {1}
Haor 1 I

D(4) **Ti LI“ i}
D(B) | - 1
o) o - -
LA(8) J-JL.! e s

e 2 filters related by g; = (—1 )H hr_1-1 & hp = (— )QL 1—1

WMTSA: 75 IV-27



The Scaling Filter: 11

e {g;} is ‘quadrature mirror’ filter corresponding to {h;}
e properties 2 and 3 of {h;} are shared by {g;}:

2. unit energy:
L—1
2
> 9 =1
[=0

3. orthogonality to even shifts: for all nonzero integers n, have

L—1
Z 9191+2n = 0
[=0

e scaling & wavelet filters both satisty orthonormality property

WMTSA: 76 IV-28



First Level Scaling Coefficients: 1

e orthonormality property of {h;} was all we needed to prove that
W is half of an orthonormal transform (never used ) ; h; = 0)

e going back and replacing h; with g; everywhere yields another
half of an orthonormal transform

e periodize {g;} to length N to form gj, g7, ..., 9% _1
e circularly filter X using {g;'} and downsample to define

N—-1

= N
VlatzzgloXQtJrl—lmodN7 t207°'-77_1
[=0

WMTSA: 77 IV-29



First Level Scaling Coefficients: II

o example of formation of {V] +}

g e s

ng15—l mod 16~ & = oo nrRRERRes Z = LHMMH"
X15-1 mod 16 l‘l‘ﬁ‘mﬂf
12
5o 2L

o {V1+} are scaling coefficients for level j = 1

e place these N/2 coefficients in vector called V4

WMTSA: 77 IV-30



First Level Scaling Coeflicients: III

e define V; in a manner analogous to Wj so that Vi = V1 X
e when L =4 and N = 16, V; looks like

91900 00000 O0O0O0O0O0 0 g3g
936291900 0000000000 0
0 0g3g291900 0 0000000 0
00 00g3g29190 0000000
00 0000g3g2919 000000
00000O00O0O0gggr900 000
00 0000O0O0O0O0Gggagg 00
00 00000O0O0O0O0O0gs39 g g0

e V| obeys same orthonormality property as Wy:
similar to W1W1 = [, have V1V1 = Iy
2 2

WMTSA: 77

IV-31




Orthonormality of V; and Wy: 1

e (): how does V; help us?
e claim: rows of V| and W are pairwise orthogonal

e readily apparent in Haar case:

gihy %WW sum = 0
—

WMTSA: 77-78 IV-32



Orthonormality of V; and Wy: 11

e let’s check that orthogonality holds for D(4) case also:

gih)j_9 =eatssssszasesas gum = ()

P
gihy 1%«-—-—-«-« sum = 0
s e

e before proving claim, need to introduce matrices for circularly
shifting vectors

IV-33



Matrices for Circularly Shifting Vectors

o define 7 and 7! to be N x N matrices that circularly shift
X = |Xp, X1, ... ,XN_l]T either right or left one unit:

T_IX — [le X27 X37 <. 7XN_2’ XN_l’ XO]T

e for N = 4, here are what these matrices look like:

000 1] 0100]
(1000 1 _|0010
7_0100 T {0001
0010 1000

o note that 77 1 =1 N
o define T2 =TT, T 2=T" 1T tetc
o for all integers j & k, have TIT% =TIk with 70 = Iy

WMTSA: 52 IV-34



Orthonormality of V; and Wy: 111

o [T 2tVO.]T and [TQtWO.]T are tth rows of V; & Wy
oforOgtgg—landogt’gg—l, need to show that

<T2tVOoa TQt/WOQ> =0

o letting n =t/ — ¢, have, forn:(),...,%— 1,
/ B /
<T2tVOoa T2t W()0> — Vg:T 2tT2t Woe
N—1
1T 2
— VOOT nWO' — Z gloh?—FQn mod N
[=0

e example forn =1, L =4 and N = 16:
Vi =Tg1 90 000000000000 g3 go]
T Woe = [h3 ho hy g 0000000000 0 0]

WMTSA: 77-78 IV-35



Frequency Domain Properties of Scaling Filter

e needs some facts about frequency domain properties of {g;}

e define transfer and squared gain functions for {g;}

L—1
G(f) = ge ™ & G(f) =G

[=0
e Exer. [76al: G(f) = e_i%f(L_l)H(% — f), s0
G(f) = le#TTEVRIHEG - P =H(G - 1)
e evenness of H(-) yields G(f) = H(f — %)
e unit periodicity of H(-) yields G(f) = H(f + %)
o H(f)+H(f+ %) = 2 implies
H(f)+G(f) =2 and also G(f) +G(f +3) =2

WMTSA: 76 IV-36



Orthonormality of V; and Wy: IV

e to establish orthogonality of V; and Wy, need to show

N—1 N
nghf+2nmodN=go*h§n:0 for n:O,...,§—1,
[=0

where {g° x h7'} is cross-correlation of {g7'} & {h7'}
e since {g7'} +— {G( )} and {h7} <— {H( )}, have

{g°*hi} «— {G* () H(¥)}

WMTSA: 77-78 IV-37



Orthonormality of V; and Wi: V

e Eixer. |78]: use inverse DF'T of {G*(%)H (%)} to argue that
1 i
O O 4 N
9xhS, =+ O |G ERIHE) + Gk + HHE +§)] ek
k=0

and then argue that
G H(F) + G + HH(F +3) =0,
which establishes orthonormality
e thus Wy & V; are jointly orthonormal:
wivi = ywl = Oy in addition to i =ww! = Iy,

where Oy 1s an % X % matrix, all of whose elements are zeros

2

WMTSA: 77-78 IV-38



Orthonormality of V; and Wy: VI

e implies that

1s an /N X N orthonormal matrix since

Pl = | S| W]

[l wivl] Iy Oy _
R ERNAYY Oy Iy N

o if N =2 (not of too much interest!), in fact Py = W

o if N > 2 7Py is an intermediate step: V; spans same subspace
as lower half of VW and will be further manipulated

WMTSA: 77-78 IV-39



Three Comments

e if N even (i.e., don't need N = 2J ), then P; is well-defined
and can be of interest by itself

o rather than defining g; = (—1)"*1h;_{_;, could use alternative
definition g; = (—1)*1hy_; (definitions are same for Haar)

—9-(L-2)-- 9 would be nonzero rather than gq, ..., 971
— structure of V| would then not parallel that of W,
— useful for wavelet filters with infinite widths

e scaling and wavelet filters are often called ‘father’ and ‘mother’
wavelet filters, but Strichartz (1994) notes that this terminology

"... shows a scandalous misunderstanding of human repro-
duction; in fact, the generation of wavelets more closely
resembles the reproductive life style of amoebas.’

WMTSA: 79-80 IV-40



Interpretation of Scaling Coefficients: 1

o consider Haar scaling filter (L = 2): g = g1 = —

2
e when N = 16, matrix Vi looks like

91900 00 00000000000
0 0ggg00O00000O0O0O0GO0O
0000gg0O00000O0O0O0O0
00000O0ggOOO0O0O0O0O0 0
0000000UO0ggO00O0000
0000000O00O0O0Gggoooo
0000000O00O0O0O0O0Ggag0O0
0000000000000 0g g

e since V1 = VX, each V] 1 is proportional to a 2 point average:
Vio=qXo+ goX1 = \/2X0 + \/2X1 x X1(2) and so forth

IV-41



Interpretation of Scaling Coefficients: 11

e reconsider shapes of {g;} seen so far:

11

Haar

D(4) 11
D) ! L.
C6)  wlT
LA(S) welTens

e for L > 2, can regard V7 ; as proportional to weighted average

e can argue that effective width of {g;} is 2 in each case; thus
scale associated with Vi ; 1s 2, whereas scale is 1 for W7

IV-42



Frequency Domain Properties of {h;} and {¢;}

e since Wi and V contain (downsampled) output from filters
let’s look at their squared gain functions

e example: H(-) and G(-) for Haar & D(4) filters

)

Haar

D(4)

0.00.1 02 03 04050001 02 03 0405
f f

e {h;} is high-pass filter with nominal pass-band [1/4,1/2]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]

WMTSA: 73 IV-43



What Kind of Process is {Vj;}7: I

o letting { Xt} «— { AL} & fr. = k/N, use inverse DFT to get

X 227rfkt 1 Z Xk@izﬂfkt,
k=0

where the change in the limits of summation is OK because
{x:.} and {e"2™/kt} are both periodic with a period of N

o since {g} «— G(f) = |G(N)]e?" V) where |G(f)] ~ 2
for | f] € [—%,%] and |G(f)| =~ 0 for |f| € (%,%]7 can argue

L—1 &
) 9(C o7 frl
Zngt Lmod ¥~ % Z Xt i) i i

WMTSA: 83-84 IV-44



What Kind of Process is {V7;}7: II

e with downsampling,
N

1
Vi, ~ % Z Xkew(g)<fk)ei27fk(2t+1)7 0<t< % —1

k=—241

N
4
— Z 1 X 629 fk) Z27Tfk >< 6227T<2fk>
N
N/
2
1
DD
f=—2

X7 0<t < N 1
+1

if we let N/ = 2, X, = \}ZXkew (f1)ei27 i and fr. = 2fk

WMTSA: 83-84 IV-45



What Kind of Process is {V7;}7: III

e let’s study the above result:

2
. /
Vigm Y AP o<t< N —1
k=—N41

o X’ is associated with fk = 2f1. = %\]}C Nk/2 ]<€/'/

osmce——+1<k< have §<fk§

e whereas result of ﬁltermg {X:} with {g;} is a ‘half-band’ (low-

pass) process involving approximately just f. € [— 111 111] down-

sampled process {V] ;} is ‘full-band’ involving f;. € [—%, %]

WMTSA: 83-84 IV-46



What Kind of Process is {1V} ;}7: 1

e in a similar manner, because h; ~ high pass, can argue that

N N
i, V2 - - o(H)

N ' o fot
E Xy mod N~ N E: + E | Ae Uk)ei2m ]
(=0 k=—41 k=0

e with downsampling,

N/
2
/
Wiy =~ Xt 0 <t < N'—1,
k=—N'41
) (H) 1 2
where now X/ = -+ x  yel? (fet2)ei2m f;
k V2 Tkt

WMTSA: 84-85 IV-47



What Kind of Process is {IV]}7: 1I

e note that |A7| o X, | = || because { A} is periodic
2 2

e since Xy isreal-valued, |X_| = |A}| and hence \X,::\ X |Xﬂ_k\
2

e as before, Xé is associated with f]/_C = 2f1.

— Jk

e conclusion: the coefficient for W7 + at f/fC is related to the coetf-
ficient for X; at % — fr

DO —

kT

o X'y
Nk

is associated with fy
2

e in particular, coefficients for f]; e |0, %] are related to those for

fir. € [%, %], but in a reversed direction

e whereas filtering { X} with {h;} yields a ‘half-band’ (high-
pass) process, the downsampled process {W7 4} is ‘full-band’

WMTSA: 84-85 IV-48



Example: {V];} and {IV];} as Full-Band Processes

o {V1t} and {Wy;} formed using Haar DW'T

il . 0 l mHTTn.t._J 0 [ ( { { { { ; |
0 HHHHH] I Q_h*Xt il Wiy
o % 0 (L)TTTTHHM Il oL { ARREN
f 2! f %

e plots are of magnitude squared DFTs for { X;} etc.

WMTSA: 86 IV-49



Example of Decomposing X into W and V: 1

e oxygen isotope records X from Antarctic ice core

—62

_75 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 1 J
3.5

0+ " by | Lo ||”| || . II|I IRRNRAIE ||II Al || |||||| ||| ||||| ||II“|I| oy ‘||||| | ol ‘ I '“]'1
_35 L 1 1 1 l 1 1 L L l L L L L l L L L J
—42

—49 X

s | ) N B B R

1800 1850 1900 1950 2000
year
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Example of Decomposing X into W; and Vq: 11

e oxygen isotope record series X has /N = 352 observations

e spacing between observations is At = 0.5 years

e used Haar DW'T, obtaining 176 scaling and wavelet coefficients
e scaling coeflicients V1 related to averages on scale of 2At

e wavelet coefficients Wy related to changes on scale of At

e coefficients V7 3 and W7 4 plotted against mid-point of years
associated with Xop and Xos 11

e note: variability in wavelet coefficients increasing with time
(thought to be due to diffusion)

e data courtesy of Lars Karlof, Norwegian Polar Institute, Polar
Environmental Centre, Tromsg, Norway
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Reconstructing X from W; and V;

e in matrix notation, form wavelet & scaling coeflicients via

Wi WX | | W B
[W]_[WX]_[W]X_HX

e recall that 731T P1 = I because P is orthonormal
o since P{P;X = X, premultiplying both sides by P{ yields

PLIG = Vv [V

Vi Vi

] =W W+ V]V =X

oD = Wip W/ is the first level detail

eS| = VlT V1 is the first level ‘smooth’
e X = D; 4 &7 in this notation

WMTSA: 80-81 IV-52



Construction of First Level Detail: 1

e consider Dy = W?Wl for L=4& N > L:

hi hs O -+ 0 0]

ho ho O --- 0 0 i Wi g ]

0 hy hg --- 0 0 W171

0 hg hg --- 0 0 W1’2
D=1+ + & - & o

0 0 0 --- hy hg

0 0 0 --- hg ho %W/H

ha 0 0 --- 0 hy| L LN/2-1

L ho 0 0 - 0 ho |

note: WlTisNx%&Wlis%xl
e Dy is not result of filtering Wy 4’s with {hg, hy, ho, h3}

WMTSA: 81 IV-53



Construction of First Level Detail: 11

e augment Wy to N X N and Wy to N x 1:

_ i 0
hohi ho ha 0 0 --- 0 0 0 .
0 hohihohy 0 - 0 0 0 )
0 0 hohyhohg--- 0 0 0 Wi
0 0 0 hghihy-—- 0 0 0 )
Di= | : + + & & i e Wi o
00 00 0 0 - hyhohg
s 000 0 0 0« hghyho| |y
hohs 0 0 0 0 0 ho hy 17%/2—2
hihy hy O 0 0 0 0 hy Wi x

e can now regard the above as equivalent to use of a filter

WMTSA: 81 IV-54




Construction of First Level Detail: 111

o formally, define upsampled (by 2) version of Wy 4’s:

WT_ 0, t=0,2,...,N —2;

e example of upsampling:

Wi LELIC 2 LI L R & WlT,t

e note: 12" denotes ‘upsample by 2’ (put 0’s before values)

WMTSA: 81 IV-55



Construction of First Level Detail: IV
® can now write
N—1
D= h})WEHZmOdN, t=01,....N—1
[=0
e doesn’t look exactly like filtering, which would look like

N—-1

ory/ T o : . T
Z h; Wl,t—l od A0 1€, direction of Wl,t not reversed
[=0

e form that Dy ; takes is what engineers call ‘cross-correlation’
o if {h;} +— H(-), cross-correlating {h;} & {VVlT +} 18 equivalent
to filtering {MflT .+ using filter with transfer function H™(-)

e Dy formed by circularly filtering {I/VlT .t with filter {H *(%)}

WMTSA: 82-83 IV-56



Synthesis (Reconstruction) of X

e can also write the tth element of first level smooth &7 as

e since {g;} +— G(-), cross-correlating {g;} & {Vth} is the
same as circularly filtering {Vth} using the filter {G*(%)}

e since X = 81 - Dl, can write
N—1

Zhl t+lmodN—|—Zgl 1,6+l mod N’
[=0

which is the ﬁltering version of X = Wip Wi + Vir Vi

WMTSA: 83 IV-57



Example of Synthesizing X from D; and &§;

e Haar-based decomposition for oxygen isotope records X

—42

—49

—56
3.5

0

—3.9
—42

—49

—56

B S,
l l L L l J
SR VTR RO P A 1 Mh.ﬂ,wwﬁ,w WM ‘f"MMMf”""\ “’M*M MW D,
L L L L l L L L L l L L L L l L L L L J
- X
A A A A | A A | A A | A A A A J
1800 1850 1900 1950 2000

year
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First Level Variance Decomposition: 1

o recall that ‘energy’ in X is its squared norm ||X||?
e because Py is orthonormal, have 771 P1 = I and hence
IPX))* = (PiX)'PX =X'"P{ P X =X'X = |X]|
1X[]7 = (PIX) PiIX=X"PPX= = |1 X]
e can conclude that ||X||? = ||[W1]||* + || V1]|* because

W
P X = [ V11] and hence H771X| — HW1H2 + HV1H2

e leads to a decomposition of the sample variance for X:
N—1 ) |

X, —X) = = X|]* -
> (i) = gl

~2

2
O-X X

1
N
1 5 1 9
— W VL2 =
NH 1] +N|| 1l
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First Level Variance Decomposition: 11

e breaks up o5 into two pieces:
1. %”Wl |2, attributable to changes in averages over scale 1

2. %HVlHQ -~ 727 attributable to averages over scale 2

e Haar-based example for oxygen isotope records

— first piece: %HWlHZ = (0.295
— second piece: %HleQ ~ X7 = 2.909
— sample variance: (3%( = 3.204

— changes on scale of At = 0.5 years account for 9% of 5’%(
(standardized scale of 1 corresponds to physical scale of At)
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Summary of First Level of Basic Algorithm

o transforms { Xy :t =0,..., N — 1} into 2 types of coefficients
o N/2 wavelet coefficients {W7 4} associated with:

— W, a vector consisting of first N/2 elements of W
— changes on scale 1 and nominal frequencies - 1< <

— first level detail Dy
— Wy, an % X N matrix consisting of first % rows of VW

o N/2 scaling coefficients {V] 4} associated with:

— V1, a vector of length N/2

— averages on scale 2 and nominal frequencies 0 < f < I

NN

— first level smooth &4

— V1, an % x N matrix spanning same subspace as last N/2

rows of VW

WMTSA: 86-87 IV-61



Level One Analysis and Synthesis of X

e can express analysis/synthesis of X as a flow diagram

¢2> Vi ﬁ G*(}@) > S
/! N\

H(E) — W - H*(

=
IS
&

WMTSA: 80, 83 IV-62



Constructing Remaining DWT Coefficients: 1

e have regarded time series X; as ‘one point’ averages X¢(1) over

— physical scale of At (sampling interval between observations)

— standardized scale of 1
e first level of basic algorithm transforms X of length N into

— N/2 wavelet coefficients W1 o< changes on a scale of 1

— N/2 scaling coefficients V1 o< averages of X; on a scale of 2

e in essence basic algorithm takes length N series X related to
scale 1 averages and produces

— length N/2 series W associated with the same scale
— length N/2 series V7 related to averages on double the scale

WMTSA: Section 4.5 IV-63



Constructing Remaining DWT Coefficients: 11

e (): what if we now treat V in the same manner as X7
e basic algorithm will transform length N/2 series V7 into

— length N /4 series Wy associated with the same scale (2)

— length N/4 series Vo related to averages on twice the scale
e by definition, Wy contains the level 2 wavelet coeflicients
e (): what if we treat Vo in the same way?”
e basic algorithm will transform length N/4 series Vo into

— length N/8 series W3 associated with the same scale (4)

— length N/8 series V3 related to averages on twice the scale

e by definition, W3 contains the level 3 wavelet coeflicients

WMTSA: Sections 4.5 and 4.6 IV-64



Constructing Remaining DW'T Coeflicients: III

e continuing in this manner defines remaining subvectors of W

(recall that W = WX is the vector of DW'T coefficients)

e at each level j, outputs W, and V; from the basic algorithm
are each half the length of the input V;_4

e length of V; given by N / 2J
o since N = 27 , length of V 7is 1, at which point we must stop

e J applications of the basic algorithm define the subvectors W,
Wy, ..., W7 V;of DWT coefficient vector W

e overall scheme is known as the ‘pyramid’ algorithm

e item |1| of Comments and Extensions to Sec. 4.6 has pseudo
code for DW'T pyramid algorithm

WMTSA: Section 4.6, 100-101 IV-65



Scales Associated with DWT Coeflicients

o jth level of algorithm transforms scale 2/ ! averages into

— differences of averages on scale 2] _1, Le., W, the wavelet
coeflicients

— averages on scale 2 x 2771 =97 je. V;, the scaling coeffi-
clents

olet 7; = 2)~1 he standardized scale associated with W,
—for j=1,...,J, takes on values 1,2,4,...,N/4, N/2
— physical (actual) scale given by 7; At

olet \; = 27 be standardized scale associated with \Z

— takes on values 2,4,8,... , N/2, N
— physical scale given by A; At

WMTSA: 85 IV-66



Matrix Description of Pyramid Algorithm: I

N N
e define % X 5T

i.e., rows contain {h;} periodized to length N/ 2J—1
o for N/2J =8 and N/2/~1 = 16 when L = 4, have

hihg 0O 00O O O 0 0 0
hy ho hy hg 0 0 0 0 0 O
0 hg ho hy hg O 0 0 0
0 0 O hg ho hy hg O O
0 O hg ho hy hg O 0
0 0 O O hg ho hy hg O 0 O
0 00 0 0 0 hAg ho hy hg O 0O
000 0 0 0 0 0 0 hshy hy hy

matrix Bj 11 same way as % X N matrix Wi;

o O O O

0
0
0

o O O O O
o O O O
o O O
o O O O O

0
0
0
0

e matrix gets us jth level wavelet coefficients via W; = 5,V ;_4

WMTSA: 94 IV-67



Matrix Description of Pyramid Algorithm: 1I

N . N : E N - :
e define 5 X 57-1 matrix A] in same way as 5 X N matrix Vy;

i.e., rows contain {g;} periodized to length N/ 27 —1
o for N/2/ = 8 and N/2/~1 = 16 when L = 4, have
91900 0000000 O

93929190 0 0 0 0 0 0
00939291900 0 0 0
00 093929190 0 0
00 g3 92 91 90

0
00 0 0 0 g392 91 90
000000 0wg39291 90 0 O

000000000000 g39 91 90]

o O O O
o O O O

o O O
o O O

e matrix gets us jth level scaling coefficients via V; = A;V,;_4

WMTSA: 94 IV-68



Matrix Description of Pyramid Algorithm: III

e if we define Vg = X and let 7 = 1, then
W, =5,;V,;_1 reduces to Wi =B1Vy=5X=WX
because Bi has the same definition as W
e likewise, when 7 =1,
V,;=A;V;_j reduces to Vi = A1V = 41 X=X

because Ay has the same definition as Vy

WMTSA: 94 IV-69



Formation of Submatrices of W: 1

e using V; = A;V,_j repeatedly and V1 = A1 X, can write
W]‘ — ijj—l
= BjAj_le_Q
= BjA;_1A; oV ,_3
= BjA; 1 Ao - 41X = W;X,
where W; is N % N submatrix of W responsible for W

2]
e likewise, can get 1 X NN submatrix V; responsible for V ;
V= AV
= AJAT1V =2

= AjA;_1 AoV j_3
= A;A;_1A;j_o--- A1 X=V;X

e V7 is the last row of W, & all its elements are equal to 1/4/N

WMTSA: 94 IV-70



Formation of Submatrices of VW: 11

e have now constructed all of DW'T matrix:

W1 i B |
Wo B> Ay

Ws B3 Ax Ay

Wy By A3 A2 A

W=1: | = :

Wil | BiAi- A
Wy BjAj_1---A
Vil [AJA -1 AL

WMTSA: 94 IV-71



Examples of VV and its Partitioning: 1

e N = 16 case for Haar DW'T matrix W

QW Sl unnnnnnnnnnn
N [
D wmnn Tewmnnnannn ()| mmrennnn "Tenan 2
3 emennn Cwevesnan ] jeesessesane 7

Wi S b I RCLITITICE
P NSRS | | PA—— T
G R K O ket R A T
g Bl e R V)
0 5 10 15 0 5 10 15

t t

e above agrees with qualitative description given previously
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Examples of VV and its Partitioning: II

e N = 16 case for D(4) DWT matrix W

o PESLINSRSRR 1) IS S
) PSSP | ) PR . S
Wi ) P, S 1] PRS—L.L LTS
57| PSSP SRR ] S L E T — Ws
6 lannnnnnnnn e 14| ppuueat® o, ),
e [ R VA
0 5 10 15 0 5 10 15
t t

e note: elements of last row equal to 1/4/N = 1/4, as claimed

IV-73



Matrix Description of Multiresolution Analysis: I

e just as we could reconstruct X from Wy and Vy using
XZW?Wl—I—VlTvl,
8o can we reconstruct V;_1 from W and V; using
Vi1 =BjW;+ AV,
(recall the correspondences Vg = X, By = W; and A = V)
e we can thus write
X = BIwW; + Alv,
= Bl W1 + Aj (By Wy + Aj Vo)
= B{ W1+ A{ By Wa + A{ A3 V5
= B?Wl -+ A{BgWQ + .A?.ACQF(B?TW3 + AgV3)
— BIW, + AT BIW,y + AT AL BE W, + AT AT ALV,

WMTSA: 95 IV-74



Matrix Description of Multiresolution Analysis: II

e studying the bottom line
X = B{ Wy + Al BIW, + AL AT BI W5 + AT AL ALV,
says jth level detail should be D; = AlTAér EE A]T 1B]TW]-

o likewise, letting jth level smooth be §; = AlTAQT x -AJTV]-
yields, for 1 < k < J,
k J
X = ZD]- + ;. and, in particular, X = Z D;+Sy
J=1 J=1
e above are multiresolution analyses (MRAs) for levels k and J;

i.e., additive decomposition (first of two basic decompositions
derivable from DW'T)

WMTSA: 95 IV-75



Matrix Description of Energy Decomposition: 1

e just as we can recover the energy in X from Wy & V7 using
IX|° = IW[* + [ Val”,
s0 can we recover the energy in 'V, _1 from W & V; using
Vi1l = W17+ [1V1I°
(recall the correspondence Vi = X)

e we can thus write

IX|* = (|W; §+ V1H22 2
= ||W1 2+ W2||2+HV2H : :
= [[W1||" + [[Wa||" + [|[W3]|= + || V3]

WMTSA: 95 IV-76



Matrix Description of Energy Decomposition: 11

e generalizing from the bottom line
2 2 2 2 2
IXJ7 = (W7 + [[Wal[” + [[W3]" + [ V3]

indicates that, for 1 < k < J, we can write

k
IXI[7 =D WP+ 1 Vil?
1=1
and, in particular,
J
X1 = STWS I+ V)P
j=1

e above are energy decompositions for levels k£ and J
(second of two basic decompositions derivable from DWT)

WMTSA: 95 V-7



e J repetitions of pyramid algorithm for X of length N = 2J
yields ‘complete’ DWT, i.e., W = WX

e can choose to stop at Jy < J repetitions, yielding a ‘partial’

DWTT of level Jp:

.VJO 182

WMTSA: 104

VJO i

X NN, yleldmg

B
By A4

BiA; 1

BJOAJO—]. "
‘AJ()‘AJQ—I o

Coefﬁcients for scale Ay, = 270

IV-78

Partial DWT: 1

- Aj

A

Wy

W

_VJo_



Partial DWT': 11

e only requires N to be integer multiple of 20
e partial DW'T more common than complete DWT
e choice of Jj is application dependent

e multiresolution analysis for partial DW'T:
Jo

X = Z Dj + S Jo
J=1
S J, represents averages on scale A j, = 270 (includes X)

e analysis of variance for partial DW'T:
Jo

2 2
0% = NZ W] _HVJOH
1=1

WMTSA: 104 IV-79



Example of Jy =4 Partial Haar DWT

e oxygen isotope records X from Antarctic ice core

WMTSA: 104

—44.2
——53%3

W/WWMMWM

1800 1850 1900 1950 2000
year
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Example of MRA from Jjy =4 Partial Haar DWT

e oxygen isotope records X from Antarctic ice core

: m /—% Sy
. \WJ\JWLPW\JUM D,
I D;
e D,
] D
—44.21 |
—49.0 - X
—53.8 i L L L N L B M
1800 1850 1900 1950 2000
year

WMTSA: 104 IV-81



Example of Variance Decomposition

e decomposition of sample variance from Jy = 4 partial DW'T

4 ! ! )
} : W 2 vV, |2 X
NH j” +NH 4” o

J=1

e Haar-based example for oxygen isotope records

— 0.5 year changes:
— 1.0 years changes:
— 2.0 years changes:

— 4.0 years changes:

— 8.0 years averages:

— sample variance:

WMTSA: 104

FIIW11? = 0.295 (= 9.2% of 6% )
T |[Wo||? = 0.464 (= 14.5%)
T |Ws||? = 0.652 (= 20.4%)
W42 = 0.846 (= 26.4%)
LIVy))2 = X7 = 0.947 (= 29.5%)
55 = 3.204
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Filtering Description of Pyramid Algorithm

e flow diagrams for analyses of X at level 1 and of V;_j at level
7 are quite similar:

G(X > V A >V
(N) 12 1 G(Nj—l) 12 V;
/! /!
X Vi
¢ ¢
k N H(-k s W
H(L) Y W, (7 EAE

e in the above N; = N/ 2J (also recall Vg = X by definition)

WMTSA: 80, 94 IV-83



Equivalent Wavelet Filter for Level j =3

e consider flow diagram for extracting W from X:

X — G(&) >

G(3)

\
4

12

k .

e can be regarded as filter cascade, but must adjust for ‘] 2’

e equivalent filter for cascade can be represented by

— Impulse response sequence {hg,l}

— transfer function H3(f) = G(f)G(2f)H(4f), where,
as usual, {hg 1} <— H3(")

e in above, ‘2f" and ‘4f” adjust for downsampling (Exer. [91])

e with the equivalent filter, flow diagram becomes

X —

WMTSA: 95-96

Hj(%

)
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Equivalent Scaling Filter for Level j = 3

e similar results hold for transforming X into Vj:

X G(& G(& . G(E » V
— (N) ? (Nl) 12 (NQ) 12 3

e equivalent filter for cascade can be represented by

— Impulse response sequence {93,1 }

— transfer function G3(f) = G(f)G(2f)G(4f), where,
once again, {gg’l} +— G3(+)

e with the equivalent filter, flow diagram becomes

X — Gs(x) ?% V3

WMTSA: 96-97 IV-85



Equivalent Wavelet & Scaling Filters for Level j

e results generalize in an obvious way to other levels 7
e jth level equivalent wavelet filter can be represented by
— Impulse response sequence {hjjl} <~ H;()
. i —2
— transfer function H,;(f) = H (2’ L) H‘l]:o G(2'f)
e jth level equivalent scaling filter can be represented by
— impulse response sequence {gj,l} «— G,(-)
: —1
— transfer function G(f) = H{:O G(2'f)
e convenient to define Hy(f) = H(f) and G1(f) = G(f)

e flow diagrams become

X — |Hi(& s W, and X —» G(&
i) W, i) —

<

WMTSA: 95-97 IV-86



Relating Filtering and Matrix Descriptions

e because Wj — WjX and because

X — Hj(£%) o W,

can argue that

— rows of WW; must contain values dictated by {h;} after pe-
riodization to length N

— adjacent rows are circularly shifted by 27 units
e from V,; = V;X & related flow diagram, can also argue that

— rows of V; must contain values dictated by {g;;} after peri-
odization to length N

— adjacent rows are circularly shifted by 27 units

WMTSA: 95-97 IV-87



{hu}

{ho}
{hs,}
{hai}
{oi}

{92}
{931}
{941}

o L;= 2J is width of {hj} and {g;}

Haar Equivalent Wavelet & Scaling Filters
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I
(o} et

D(4) Equivalent Wavelet & Scaling Filters

{hs} W-TTT-_‘P,_.._

{hél,l} WFFTTTTTT-.i““F.--m-n-

{g} ™

{941} et e

L=4
Ly = 10
Ly =22
Ly = 46
[, =

Ly = 10
Ly =22
Ly = 46

e L; dictated by general formula L; = (27 —1)(L —1)+1,
but can argue that effective width is 2/ (same as Haar L)

WMTSA: 98
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D(6) Equivalent Wavelet & Scaling Filters

{hu} ”"aTa

{has} o

{hy ) e e e

{h4,l} qlnnnnlnlm-n.n.ﬁ-“““..!#ﬂhh..i““mmmm

{gu)) et T e eecsermmasemmasremaresananans

L=6
Lo =16
L3 =36
Ly =76
L =

Lo =16
L3 =36
Ly =76

e {hy 1} resembles discretized version of Mexican hat wavelet
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C(6) Equivalent Wavelet & Scaling Filters

I L=6
{ha} *'"iiLI-“"' Ly =16
T L E— L3 = 36

T . . N— Li=76
{ai} i L =

(o} e Ly =16
(g3} ememmmnr T e L3 =36
{ga1}  eemeemseensemsnmsnmmsmmemmnngeeet T T Ly =76

e {g; 1} yields ‘triangularly” weighted average (effective width 27)

WMTSA: 125 IV-91



LA(8) Equivalent Wavelet & Scaling Filters

{h} L =38
(g} —seeeen L rmes L, =22
{hs.} *'““"“““"'-nn'ﬁ-rg:-‘“""”““"“' L3 =50

-i““.lFTTTTTT*!.- L ‘ L et SuunttENEER NN RN NN NN AR RRRRR RN L 4 = 1 06

{a} = L=
{92.} S N Lo =22
{93,1} *“““"""-'ﬂm“--'““““'““““' L3 =50

{ i l} W-wﬁﬁTTTTTTTTTTTTH--WM L, = 106

o {h;} resembles discretized version of Mexican hat wavelet,
again with an effective width of 2/

WMTSA: 98 IV-92



Squared Gain Functions for Filters

e squared gain functions give us frequency domain properties:
Hi(f) = [Hj(HI* and Gi(f) = |G;(f)
e example: squared gain functions for LA(8) Jy = 4 partial DW'T

AN G
VANE ()
i /\\l | M)
3 L//;|\\r\ | | H2<)
=

0 | |// | | | Hl()
0 % § % i ® 3 1B 3

J

WMTSA: 99 IV-93



Summary of Key Points about the DWT: 1

e DWT W is orthonormal, i.e., satisfies WIW = T N

e construction of W starts with a wavelet filter {h;} of even
length L that by definition

1. sums to zero; i.e., > ;h; = 0;
2. has unit energy; i.e., > th = 1; and
3. is orthogonal to its even shifts; i.e., > hyhj op =0

e 2 and 3 together called orthonormality property
o wavelet filter defines a scaling filter via g; = (=1)Tthy 4

e scaling filter satisfies the orthonormality property, but sums to
v/2 and is also orthogonal to {h;}; i.e., > ; gihji9, =0

e while {h;} is a high-pass filter, {g;} is a low-pass filter

WMTSA: 150-156 IV-94



Summary of Key Points about the DWT: 11

e {h;} and {g;} work in tandem to split time series X into

— wavelet coefficients W (related to changes in averages on a
unit scale) and

— scaling coefficients V7 (related to averages on a scale of 2)
e {h;} and {g;} are then applied to V1, yielding

— wavelet coefficients Wy (related to changes in averages on a
scale of 2) and
— scaling coefficients Vq (related to averages on a scale of 4)
e continuing beyond these first 2 levels, scaling coefficients V;_;

at level 7 — 1 are transformed into wavelet and scaling coeffi-
cients W and V; of scales 7; = 2)=1 and Aj=2)

WMTSA: 150-156 IV-95



Summary of Key Points about the DWT: 111

e after Jy repetitions, this ‘pyramid’ algorithm transforms time
series X whose length NV is an integer multiple of 270 into DWT

coeflicients Wy, WQ, oy Wyoand V i (sizes of vectors are

0
%, %) . QJ}TO and 2 STy for a total of N coefficients in all)

e DW'T coefficients lead to two basic decompositions

e first decomposition is additive and is known as a multiresolution
analysis (MRA), in which X is reexpressed as

Jo
X = Z Dj +S Jos
7=1
where D; is a time series reflecting variations in X on scale 7,
while § 7, 1s a series reflecting its A 7, averages

WMTSA: 150-156 IV-96



Summary of Key Points about the DWT: IV

e second decomposition reexpresses the energy (squared norm)
of X on a scale by scale basis, i.e.,

Jo

2 2 2
IX12 =D WP+ 1V 1%,
j=1

leading to an analysis of the sample variance of X:
| N—-1 )
.9 ~—
X =% > (X - X)
t=0
Jo

1 9 1 9 —)
- 2 Wl IV -
]:

WMTSA: 150-156 IV-97



