Defining the Discrete Wavelet Transform (DWT)

- can formulate DWT via elegant 'pyramid' algorithm
- defines W for non-Haar wavelets (consistent with Haar)
- computes $\mathbf{W} = \mathcal{W}\mathbf{X}$ using O(N) multiplications
 - 'brute force' method uses $O(N^2)$ multiplications
 - faster than celebrated algorithm for fast Fourier transform! (this uses $O(N \cdot \log_2(N))$ multiplications)
- can study algorithm using linear filters & matrix manipulations
- will look at both approaches since they are complementary

WMTSA: 68 IV-1

The Wavelet Filter: I

- precise definition of DWT begins with notion of wavelet filter
- let $\{h_l: l=0,\ldots,L-1\}$ be a real-valued filter
 - L called filter width
 - both h_0 and h_{L-1} must be nonzero
 - L must be even $(2, 4, 6, 8, \ldots)$ for technical reasons
 - will assume $h_l \equiv 0$ for l < 0 and $l \geq L$

WMTSA: 68 IV-2

The Wavelet Filter: II

- $\{h_l\}$ called a wavelet filter if it has these 3 properties
 - 1. summation to zero:

$$\sum_{l=0}^{L-1} h_l = 0$$

2. unit energy:

$$\sum_{l=0}^{L-1} h_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} h_l h_{l+2n} = 0$$

• 2 and 3 together are called the orthonormality property

The Wavelet Filter: III

• define transfer and squared gain functions for wavelet filter:

$$H(f) \equiv \sum_{l=0}^{L-1} h_l e^{-i2\pi f l}$$
 and $\mathcal{H}(f) \equiv |H(f)|^2$

• claim: orthonormality property equivalent to

$$\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$$
 for all f

- to show equivalence, first assume above holds
- consider autocorrelation of $\{h_l\}$:

$$h \star h_j \equiv \sum_{l=-\infty}^{\infty} h_l h_{l+j} \quad j = \dots, -1, 0, 1, \dots$$

• $\{h_l\} \longleftrightarrow H(\cdot)$ implies that $\{h \star h_j\} \longleftrightarrow |H(\cdot)|^2 = \mathcal{H}(\cdot)$

The Wavelet Filter: IV

- inverse DFT says $h \star h_j = \int_{-1/2}^{1/2} \mathcal{H}(f') e^{i2\pi f' j} df'$
- Exer. [23b] says that, if $\{a_j\} \longleftrightarrow A(\cdot)$, then

$$\{a_{2n}\}\longleftrightarrow \frac{1}{2}\left[A(\frac{f}{2}) + A(\frac{f}{2} + \frac{1}{2})\right]$$

• application of this result here says that

$$\{h \star h_{2n}\} \longleftrightarrow \frac{1}{2} \left[\mathcal{H}(\frac{f}{2}) + \mathcal{H}(\frac{f}{2} + \frac{1}{2}) \right]$$

- $\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$ for all f says that $\mathcal{H}(\frac{f}{2}) + \mathcal{H}(\frac{f}{2} + \frac{1}{2}) = 2$
- leads to orthonormality condition because

$$\sum_{l=-\infty}^{\infty} h_l h_{l+2n} = h \star h_{2n} = \int_{-1/2}^{1/2} e^{i2\pi f n} \, df = \begin{cases} 1, & n=0\\ 0, & n \neq 0 \end{cases}$$

The Wavelet Filter: VI

- hence $\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$ implies orthonormality
- Exer. [70]: orthonormality implies

$$\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$$
 for all f

• this establishes the equivalence between above and

$$\sum_{l=-\infty}^{\infty} h_l h_{l+2n} = \begin{cases} 1, & n=0\\ 0, & n \neq 0 \end{cases}$$

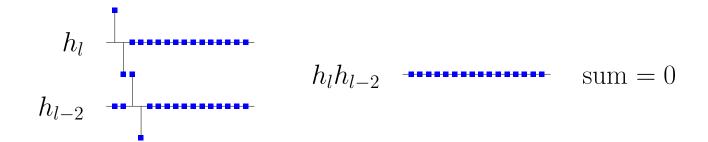
The Wavelet Filter: VII

- summation to zero and unit energy relatively easy to achieve (analogous to conditions imposed on wavelet functions $\psi(\cdot)$)
- orthogonality to even shifts is key property
- \bullet orthogonality hardest to satisfy, and is reason L must be even
 - consider filter $\{h_0, h_1, h_2\}$ of width L=3
 - width 3 requires $h_0 \neq 0$ and $h_2 \neq 0$
 - orthogonality to a shift of 2 requires $h_0h_2 = 0$ impossible!

WMTSA: 69 IV-7

Haar Wavelet Filter

- simplest wavelet filter is Haar (L=2): $h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}}$
- note that $h_0 + h_1 = 0$ and $h_0^2 + h_1^2 = 1$, as required
- orthogonality to even shifts also readily apparent



WMTSA: 69 IV-8

D(4) Wavelet Filter: I

• next simplest wavelet filter is D(4), for which L=4:

$$h_0 = \frac{1-\sqrt{3}}{4\sqrt{2}}, \quad h_1 = \frac{-3+\sqrt{3}}{4\sqrt{2}}, \quad h_2 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \quad h_3 = \frac{-1-\sqrt{3}}{4\sqrt{2}}$$

- 'D' stands for Daubechies
- -L=4 width member of her 'extremal phase' wavelets
- computations show $\sum_{l} h_{l} = 0 \& \sum_{l} h_{l}^{2} = 1$, as required
- orthogonality to even shifts apparent except for ± 2 case:

$$h_{l} = 0$$

$$h_{l-2} = 0$$

WMTSA: 59 IV-9

D(4) Wavelet Filter: II

- \bullet Q: what is rationale for D(4) filter?
- consider $X_t^{(1)} \equiv X_t X_{t-1} = a_0 X_t + a_1 X_{t-1}$, where $\{a_0 = 1, a_1 = -1\}$ defines 1st difference filter:

$$\{X_t\} \longrightarrow \boxed{\{1,-1\}} \longrightarrow \{X_t^{(1)}\}$$

- Haar wavelet filter is normalized 1st difference filter
- $-X_t^{(1)}$ is difference between two '1 point averages'
- consider filter cascade with two 1st difference filters:

$$\{X_t\} \longrightarrow \overline{\{1,-1\}} \longrightarrow \overline{\{1,-1\}} \longrightarrow \{X_t^{(2)}\}$$

• equivalent filter defines 2nd difference filter:

$$\{X_t\} \longrightarrow \overline{\{1,-2,1\}} \longrightarrow \{X_t^{(2)}\}$$

D(4) Wavelet Filter: III

• renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:

$$a_t = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$$

(mentioned as being highly discretized Mexican hat wavelet)

• consider '2 point weighted average' followed by 2nd difference:

$$\{X_t\} \longrightarrow \overline{\{a,b\}} \longrightarrow \overline{\{1,-2,1\}} \longrightarrow \{Y_t\}$$

• D(4) wavelet filter based on equivalent filter for above:

$$\{X_t\} \longrightarrow \overline{\{h_0, h_1, h_2, h_3\}} \longrightarrow \{Y_t\}$$

WMTSA: 60–61

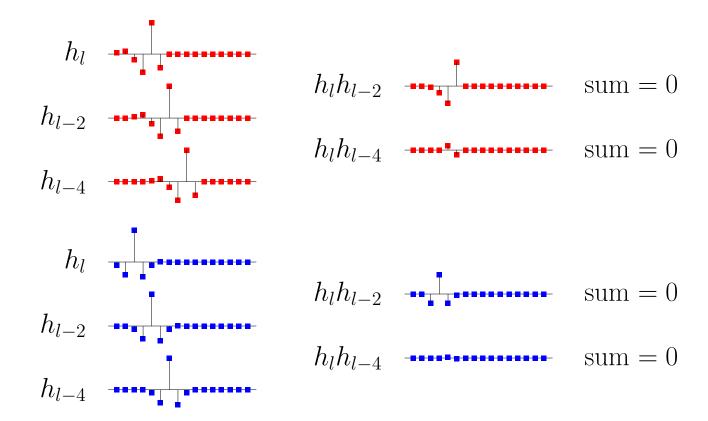
D(4) Wavelet Filter: IV

- using conditions
 - 1. summation to zero: $h_0 + h_1 + h_2 + h_3 = 0$
 - 2. unit energy: $h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1$
 - 3. orthogonality to even shifts: $h_0h_2 + h_1h_3 = 0$ can solve for feasible values of a and b (Exer. [4.1])
- one solution is $a = \frac{1+\sqrt{3}}{4\sqrt{2}} \doteq 0.48$ and $b = \frac{-1+\sqrt{3}}{4\sqrt{2}} \doteq 0.13$ (other solutions yield essentially the same filter)
- interpret D(4) filtered output as changes in weighted averages
 - 'change' now measured by 2nd difference (1st for Haar)
 - average is now 2 point weighted average (1 point for Haar)
 - can argue that effective scale of weighted average is one

WMTSA: 60-61 IV-12

A Selection of Other Wavelet Filters: I

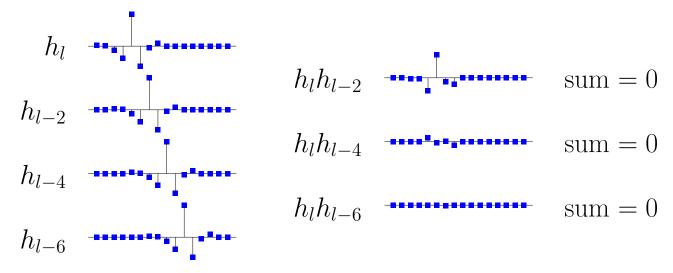
- lots of other wavelet filters exist here are three we'll see later
- D(6) wavelet filter (top) and C(6) wavelet filter (bottom)



WMTSA: 108–109, 123 IV–13

A Selection of Other Wavelet Filters: II

• LA(8) wavelet filter ('LA' stands for 'least asymmetric')



- all 3 wavelet filters resemble Mexican hat (somewhat)
- can interpret each filter as cascade consisting of
 - weighted average of effective width of 1
 - higher order differences
- filter outputs can be interpreted as changes in weighted averages

WMTSA: 108-109

First Level Wavelet Coefficients: I

- given wavelet filter $\{h_l\}$ of width L & time series of length $N=2^J$, goal is to define matrix \mathcal{W} for computing $\mathbf{W}=\mathcal{W}\mathbf{X}$
- periodize $\{h_l\}$ to length N to form $h_0^{\circ}, h_1^{\circ}, \dots, h_{N-1}^{\circ}$
- circularly filter **X** using $\{h_l^{\circ}\}$ to yield output

$$\sum_{l=0}^{N-1} h_l^{\circ} X_{t-l \bmod N}, \quad t = 0, \dots, N-1$$

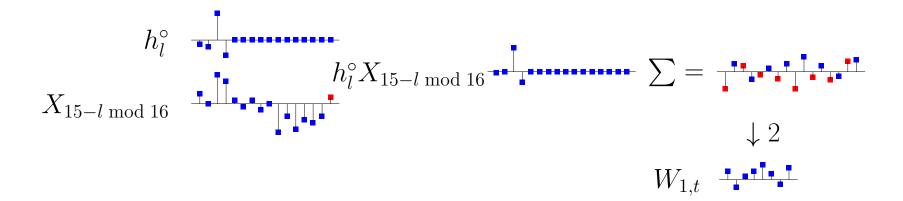
• starting with t = 1, take every other value of output to define

$$W_{1,t} \equiv \sum_{l=0}^{N-1} h_l^{\circ} X_{2t+1-l \bmod N}, \quad t = 0, \dots, \frac{N}{2} - 1;$$

 $\{W_{1,t}\}$ formed by downsampling filter output by a factor of 2

First Level Wavelet Coefficients: II

• example of formation of $\{W_{1,t}\}$



• note: '\$\dig 2'\$ denotes 'downsample by two' (take every 2nd value)

First Level Wavelet Coefficients: III

- $\{W_{1,t}\}$ are unit scale wavelet coefficients
 - -j in $W_{i,t}$ indicates a particular group of wavelet coefficients
 - $-j=1,2,\ldots,J$ (upper limit tied to sample size $N=2^J$)
 - will refer to index j as the level
 - thus $W_{1,t}$ is associated with level j=1
 - $-W_{1,t}$ also associated with scale 1
 - level j is associated with scale 2^{j-1} (more on this later)
- $\{W_{1,t}\}$ forms first N/2 elements of $\mathbf{W} = \mathcal{W}\mathbf{X}$
- first N/2 elements of **W** form subvector \mathbf{W}_1
- $W_{1,t}$ is tth element of \mathbf{W}_1
- also have $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$, with \mathcal{W}_1 being first N/2 rows of \mathcal{W}

Upper Half of DWT Matrix: I

• setting t = 0 in definition for $W_{1,t}$ yields

$$W_{1,0} = \sum_{l=0}^{N-1} h_l^{\circ} X_{1-l \bmod N}$$

$$= h_0^{\circ} X_1 + h_1^{\circ} X_0 + h_2^{\circ} X_{N-1} + \dots + h_{N-2}^{\circ} X_3 + h_{N-1}^{\circ} X_2$$

$$= h_1^{\circ} X_0 + h_0^{\circ} X_1 + h_{N-1}^{\circ} X_2 + h_{N-2}^{\circ} X_3 + \dots + h_2^{\circ} X_{N-1}$$

- recall $W_{1,0} = \langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$, where $\mathcal{W}_{0\bullet}^T$ is first row of \mathcal{W} & of \mathcal{W}_1
- comparison with above says that

$$\mathcal{W}_{0\bullet}^{T} = \left[h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{5}^{\circ}, h_{4}^{\circ}, h_{3}^{\circ}, h_{2}^{\circ} \right]$$

Upper Half of DWT Matrix: II

- similar examination of $W_{1,1}, \ldots W_{1,\frac{N}{2}}$ shows following pattern
 - circularly shift $\mathcal{W}_{0\bullet}$ by 2 to get 2nd row of \mathcal{W} :

$$\mathcal{W}_{1\bullet}^{T} = [h_3^{\circ}, h_2^{\circ}, h_1^{\circ}, h_0^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_5^{\circ}, h_4^{\circ}]$$

- form $\mathcal{W}_{j\bullet}$ by circularly shifting $\mathcal{W}_{j-1\bullet}$ by 2, ending with

$$\mathcal{W}_{\frac{N}{2}-1\bullet}^{T} = \left[h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{5}^{\circ}, h_{4}^{\circ}, h_{3}^{\circ}, h_{2}^{\circ}, h_{1}^{\circ}, h_{0}^{\circ}\right]$$

• if $L \leq N$ (usually the case), then

$$h_l^{\circ} \equiv \begin{cases} h_l, & 0 \le l \le L - 1\\ 0, & \text{otherwise} \end{cases}$$

Example: Upper Half of Haar DWT Matrix

- consider Haar wavelet filter (L=2): $h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}}$
- when N=16, upper half of \mathcal{W} (i.e., \mathcal{W}_1) looks like

• rows obviously orthogonal to each other

Example: Upper Half of D(4) DWT Matrix

• when L=4 & N=16, \mathcal{W}_1 (i.e., upper half of \mathcal{W}) looks like

- rows orthogonal because $h_0h_2 + h_1h_3 = 0$
- note: $\langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$ yields $W_{1,0} = h_1 X_0 + h_0 X_1 + h_3 X_{14} + h_2 X_{15}$
- \bullet unlike other coefficients from above, this 'boundary' coefficient depends on circular treatment of \mathbf{X} (a curse, not a feature!)

WMTSA: 81 IV-21

Orthonormality of Upper Half of DWT Matrix: I

- if $L \leq N$, orthonormality of rows of \mathcal{W}_1 follows readily from orthonormality of $\{h_l\}$
- as example of L > N case (comes into play at higher levels), consider N = 4 and L = 6:

$$h_0^{\circ} = h_0 + h_4$$
; $h_1^{\circ} = h_1 + h_5$; $h_2^{\circ} = h_2$; $h_3^{\circ} = h_3$

• \mathcal{W}_1 is:

$$\begin{bmatrix} h_1^{\circ} & h_0^{\circ} & h_3^{\circ} & h_2^{\circ} \\ h_3^{\circ} & h_2^{\circ} & h_1^{\circ} & h_0^{\circ} \end{bmatrix} = \begin{bmatrix} h_1 + h_5 & h_0 + h_4 & h_3 & h_2 \\ h_3 & h_2 & h_1 + h_5 & h_0 + h_4 \end{bmatrix}$$

• inner product of two rows is

$$h_1h_3 + h_3h_5 + h_0h_2 + h_2h_4 + h_1h_3 + h_3h_5 + h_0h_2 + h_2h_4$$

= $2(h_0h_2 + h_1h_3 + h_2h_4 + h_3h_5) = 0$

because $\{h_l\}$ is orthogonal to $\{h_{l+2}\}$ (an even shift)

Orthonormality of Upper Half of DWT Matrix: II

• will now show that, for all L and even N,

$$W_{1,t} = \sum_{l=0}^{N-1} h_l^{\circ} X_{2t+1-l \bmod N}$$
, or, equivalently, $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$

forms *half* an orthonormal transform; i.e.,

$$\mathcal{W}_1 \mathcal{W}_1^T = I_{rac{N}{2}}$$

• need to show that rows of \mathcal{W}_1 have unit energy and are pairwise orthogonal

Orthonormality of Upper Half of DWT Matrix: III

• recall what first row of \mathcal{W}_1 looks like:

$$\mathcal{W}_{0\bullet}^T = \left[h_1^{\circ}, h_0^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_2^{\circ}\right]$$

- last $\frac{N}{2} 1$ rows formed by circularly shift above by 2, 4, ...
- orthonormality follows if we can show

$$\sum_{n=0}^{N-1} h_n^{\circ} h_{n+l \bmod N}^{\circ} \equiv h^{\circ} \star h_l^{\circ} = \begin{cases} 1, & \text{if } l = 0; \\ 0, & \text{if } l = 2, 4, \dots, N-2. \end{cases}$$

- Exer. [33] says $\{h_l^{\circ}\} \longleftrightarrow \{H(\frac{k}{N})\}$
- implies $\{h^{\circ} \star h_l^{\circ}\} \longleftrightarrow \{|H(\frac{k}{N})|^2 = \mathcal{H}(\frac{k}{N})\}$

Orthonormality of Upper Half of DWT Matrix: IV

• inverse DFT relationship says that

$$\begin{split} h^{\circ} \star h_{2l}^{\circ} &= \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{H}(\frac{k}{N}) e^{i2\pi(2l)k/N} \\ &= \frac{1}{N} \left(\sum_{k=0}^{\frac{N}{2}-1} \mathcal{H}(\frac{k}{N}) e^{i4\pi lk/N} + \sum_{k=0}^{\frac{N}{2}-1} \mathcal{H}(\frac{k}{N} + \frac{1}{2}) e^{i4\pi l(\frac{k}{N} + \frac{1}{2})} \right) \\ &= \frac{1}{N} \sum_{k=0}^{\frac{N}{2}-1} \left[\mathcal{H}(\frac{k}{N}) + \mathcal{H}(\frac{k}{N} + \frac{1}{2}) \right] e^{i4\pi lk/N} \end{split}$$

• orthonormality property for $\{h_l\}$ says $\mathcal{H}(\frac{k}{N}) + \mathcal{H}(\frac{k}{N} + \frac{1}{2}) = 2$

Orthonormality of Upper Half of DWT Matrix: V

• thus have

$$h^{\circ} \star h_{2l}^{\circ} = \frac{2}{N} \sum_{k=0}^{\frac{N}{2}-1} e^{i4\pi lk/N} = \begin{cases} 1, & \text{if } l = 0; \\ 0, & \text{if } l = 1, 2, \dots, \frac{N}{2} - 1, \end{cases}$$

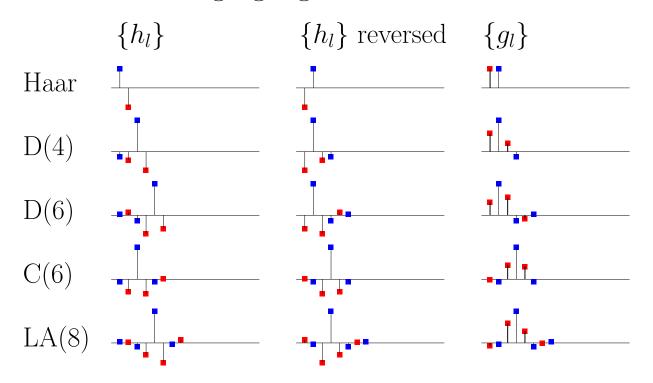
where the last part follows from an application of

$$\sum_{k=0}^{\frac{N}{2}-1} z^k = \frac{1-z^{N/2}}{1-z} \text{ with } z = e^{i4\pi l/N}, \text{ so } z^{N/2} = e^{i2\pi l} = 1$$

- $\bullet \mathcal{W}_1$ is thus half of the desired orthonormal DWT matrix
- Q: how can we construct the other half of \mathcal{W} ?

The Scaling Filter: I

• create scaling (or 'father wavelet') filter $\{g_l\}$ by reversing $\{h_l\}$ and then changing sign of coefficients with even indices



• 2 filters related by $g_l \equiv (-1)^{l+1} h_{L-1-l} \& h_l = (-1)^l g_{L-1-l}$

The Scaling Filter: II

- $\{g_l\}$ is 'quadrature mirror' filter corresponding to $\{h_l\}$
- properties 2 and 3 of $\{h_l\}$ are shared by $\{g_l\}$:
 - 2. unit energy:

$$\sum_{l=0}^{L-1} g_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} g_l g_{l+2n} = 0$$

• scaling & wavelet filters both satisfy orthonormality property

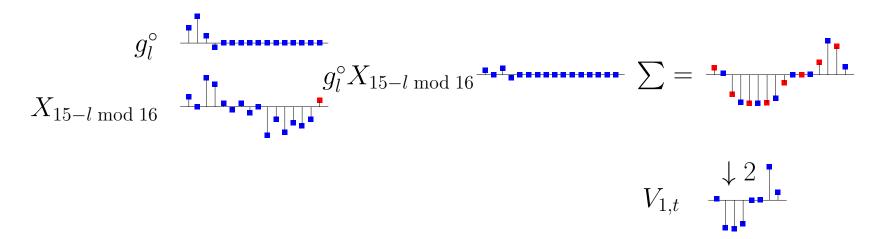
First Level Scaling Coefficients: I

- orthonormality property of $\{h_l\}$ was all we needed to prove that \mathcal{W}_1 is half of an orthonormal transform (never used $\sum_l h_l = 0$)
- going back and replacing h_l with g_l everywhere yields another half of an orthonormal transform
- periodize $\{g_l\}$ to length N to form $g_0^{\circ}, g_1^{\circ}, \dots, g_{N-1}^{\circ}$
- circularly filter **X** using $\{g_l^{\circ}\}$ and downsample to define

$$V_{1,t} \equiv \sum_{l=0}^{N-1} g_l^{\circ} X_{2t+1-l \bmod N}, \quad t = 0, \dots, \frac{N}{2} - 1$$

First Level Scaling Coefficients: II

• example of formation of $\{V_{1,t}\}$



- $\{V_{1,t}\}$ are scaling coefficients for level j=1
- place these N/2 coefficients in vector called \mathbf{V}_1

First Level Scaling Coefficients: III

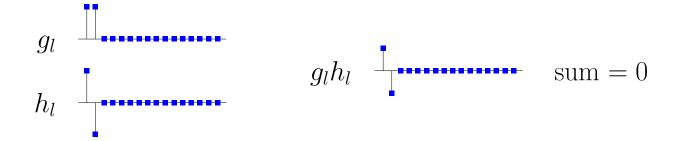
- define \mathcal{V}_1 in a manner analogous to \mathcal{W}_1 so that $\mathbf{V}_1 = \mathcal{V}_1 \mathbf{X}$
- when L=4 and N=16, \mathcal{V}_1 looks like

• \mathcal{V}_1 obeys same orthonormality property as \mathcal{W}_1 :

similar to
$$\mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$$
, have $\mathcal{V}_1 \mathcal{V}_1^T = I_{\frac{N}{2}}$

Orthonormality of V_1 and W_1 : I

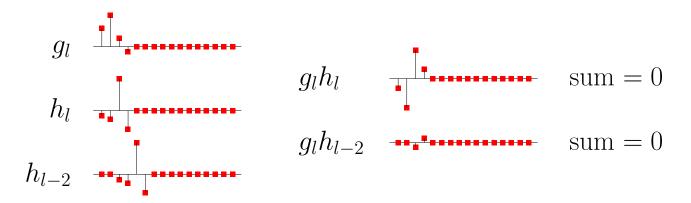
- Q: how does \mathcal{V}_1 help us?
- ullet claim: rows of \mathcal{V}_1 and \mathcal{W}_1 are pairwise orthogonal
- readily apparent in Haar case:



WMTSA: 77–78

Orthonormality of V_1 and W_1 : II

• let's check that orthogonality holds for D(4) case also:



• before proving claim, need to introduce matrices for circularly shifting vectors

Matrices for Circularly Shifting Vectors

• define \mathcal{T} and \mathcal{T}^{-1} to be $N \times N$ matrices that circularly shift $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ either right or left one unit:

$$\mathcal{T}\mathbf{X} = [X_{N-1}, X_0, X_1, \dots, X_{N-3}, X_{N-2}]^T$$

$$\mathcal{T}^{-1}\mathbf{X} = [X_1, X_2, X_3, \dots, X_{N-2}, X_{N-1}, X_0]^T$$

• for N=4, here are what these matrices look like:

$$\mathcal{T} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \& \quad \mathcal{T}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- note that $\mathcal{T}\mathcal{T}^{-1} = I_N$
- define $\mathcal{T}^2 = \mathcal{T}\mathcal{T}$, $\mathcal{T}^{-2} = \mathcal{T}^{-1}\mathcal{T}^{-1}$ etc.
- for all integers j & k, have $\mathcal{T}^j \mathcal{T}^k = \mathcal{T}^{j+k}$, with $\mathcal{T}^0 \equiv I_N$

Orthonormality of V_1 and W_1 : III

- $[\mathcal{T}^{2t}\mathcal{V}_{0\bullet}]^T$ and $[\mathcal{T}^{2t}\mathcal{W}_{0\bullet}]^T$ are tth rows of $\mathcal{V}_1 \& \mathcal{W}_1$
- for $0 \le t \le \frac{N}{2} 1$ and $0 \le t' \le \frac{N}{2} 1$, need to show that

$$\langle \mathcal{T}^{2t} \mathcal{V}_{0\bullet}, \mathcal{T}^{2t'} \mathcal{W}_{0\bullet} \rangle = 0$$

• letting n = t' - t, have, for $n = 0, \dots, \frac{N}{2} - 1$,

$$\langle \mathcal{T}^{2t} \mathcal{V}_{0\bullet}, \mathcal{T}^{2t'} \mathcal{W}_{0\bullet} \rangle = \mathcal{V}_{0\bullet}^T \mathcal{T}^{-2t} \mathcal{T}^{2t'} \mathcal{W}_{0\bullet}$$

$$= \mathcal{V}_{0\bullet}^T \mathcal{T}^{2n} \mathcal{W}_{0\bullet} = \sum_{l=0}^{N-1} g_l^{\circ} h_{l+2n \bmod N}^{\circ}$$

• example for n = 1, L = 4 and N = 16:

WMTSA: 77–78

Frequency Domain Properties of Scaling Filter

- needs some facts about frequency domain properties of $\{g_l\}$
- define transfer and squared gain functions for $\{g_l\}$

$$G(f) \equiv \sum_{l=0}^{L-1} g_l e^{-i2\pi f l} \& \mathcal{G}(f) \equiv |G(f)|^2$$

- Exer. [76a]: $G(f) = e^{-i2\pi f(L-1)}H(\frac{1}{2}-f)$, so $\mathcal{G}(f) = |e^{-i2\pi f(L-1)}|^2|H(\frac{1}{2}-f)|^2 = \mathcal{H}(\frac{1}{2}-f)$
- evenness of $\mathcal{H}(\cdot)$ yields $\mathcal{G}(f) = \mathcal{H}(f \frac{1}{2})$
- unit periodicity of $\mathcal{H}(\cdot)$ yields $\mathcal{G}(f) = \mathcal{H}(f + \frac{1}{2})$
- $\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$ implies $\mathcal{H}(f) + \mathcal{G}(f) = 2$ and also $\mathcal{G}(f) + \mathcal{G}(f + \frac{1}{2}) = 2$

Orthonormality of V_1 and W_1 : IV

• to establish orthogonality of \mathcal{V}_1 and \mathcal{W}_1 , need to show

$$\sum_{l=0}^{N-1} g_l^{\circ} h_{l+2n \bmod N}^{\circ} = g^{\circ} \star h_{2n}^{\circ} = 0 \text{ for } n = 0, \dots, \frac{N}{2} - 1,$$

where $\{g^{\circ} \star h_l^{\circ}\}$ is cross-correlation of $\{g_l^{\circ}\}$ & $\{h_l^{\circ}\}$

• since $\{g_l^{\circ}\} \longleftrightarrow \{G(\frac{k}{N})\}$ and $\{h_l^{\circ}\} \longleftrightarrow \{H(\frac{k}{N})\}$, have $\{g^{\circ} \star h_l^{\circ}\} \longleftrightarrow \{G^*(\frac{k}{N})H(\frac{k}{N})\}$

WMTSA: 77–78 IV–37

Orthonormality of V_1 and W_1 : V

• Exer. [78]: use inverse DFT of $\{G^*(\frac{k}{N})H(\frac{k}{N})\}$ to argue that

$$g^{\circ} \star h_{2n}^{\circ} = \frac{1}{N} \sum_{k=0}^{\frac{N}{2}-1} \left[G^{*}(\frac{k}{N}) H(\frac{k}{N}) + G^{*}(\frac{k}{N} + \frac{1}{2}) H(\frac{k}{N} + \frac{1}{2}) \right] e^{i4\pi nk/N}$$

and then argue that

$$G^*(\frac{k}{N})H(\frac{k}{N}) + G^*(\frac{k}{N} + \frac{1}{2})H(\frac{k}{N} + \frac{1}{2}) = 0,$$

which establishes orthonormality

• thus $W_1 \& V_1$ are jointly orthonormal:

$$\mathcal{W}_1 \mathcal{V}_1^T = \mathcal{V}_1 \mathcal{W}_1^T = 0_{\frac{N}{2}}$$
 in addition to $\mathcal{V}_1 \mathcal{V}_1^T = \mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$,

where $0_{\frac{N}{2}}$ is an $\frac{N}{2} \times \frac{N}{2}$ matrix, all of whose elements are zeros

IV-38

WMTSA: 77–78

Orthonormality of V_1 and W_1 : VI

• implies that

$$\mathcal{P}_1 \equiv \left[egin{array}{c} \mathcal{W}_1 \ \mathcal{V}_1 \end{array}
ight]$$

is an $N \times N$ orthonormal matrix since

$$\mathcal{P}_{1}\mathcal{P}_{1}^{T} = \begin{bmatrix} \mathcal{W}_{1} \\ \mathcal{V}_{1} \end{bmatrix} \begin{bmatrix} \mathcal{W}_{1}^{T}, \mathcal{V}_{1}^{T} \end{bmatrix}$$

$$= \begin{bmatrix} \mathcal{W}_{1}\mathcal{W}_{1}^{T} & \mathcal{W}_{1}\mathcal{V}_{1}^{T} \\ \mathcal{V}_{1}\mathcal{W}_{1}^{T} & \mathcal{V}_{1}\mathcal{V}_{1}^{T} \end{bmatrix} = \begin{bmatrix} I_{N} & 0_{N} \\ 0_{N} & I_{N} \\ 0_{N} & 2 \end{bmatrix} = I_{N}$$

- if N=2 (not of too much interest!), in fact $\mathcal{P}_1=\mathcal{W}$
- if N > 2, \mathcal{P}_1 is an intermediate step: \mathcal{V}_1 spans same subspace as lower half of \mathcal{W} and will be further manipulated

WMTSA: 77–78 IV–39

Three Comments

- if N even (i.e., don't need $N=2^J$), then \mathcal{P}_1 is well-defined and can be of interest by itself
- rather than defining $g_l = (-1)^{l+1} h_{L-1-l}$, could use alternative definition $g_l = (-1)^{l+1} h_{1-l}$ (definitions are same for Haar)
 - $-g_{-(L-2)}, \ldots, g_1$ would be nonzero rather than g_0, \ldots, g_{L-1}
 - structure of \mathcal{V}_1 would then not parallel that of \mathcal{W}_1
 - useful for wavelet filters with infinite widths
- scaling and wavelet filters are often called 'father' and 'mother' wavelet filters, but Strichartz (1994) notes that this terminology
 - '... shows a scandalous misunderstanding of human reproduction; in fact, the generation of wavelets more closely resembles the reproductive life style of amoebas.'

WMTSA: 79–80 IV–40

Interpretation of Scaling Coefficients: I

- consider Haar scaling filter (L=2): $g_0=g_1=\frac{1}{\sqrt{2}}$
- when N = 16, matrix \mathcal{V}_1 looks like

• since $V_1 = \mathcal{V}_1 X$, each $V_{1,t}$ is proportional to a 2 point average:

$$V_{1,0} = g_1 X_0 + g_0 X_1 = \frac{1}{\sqrt{2}} X_0 + \frac{1}{\sqrt{2}} X_1 \propto \overline{X}_1(2)$$
 and so forth

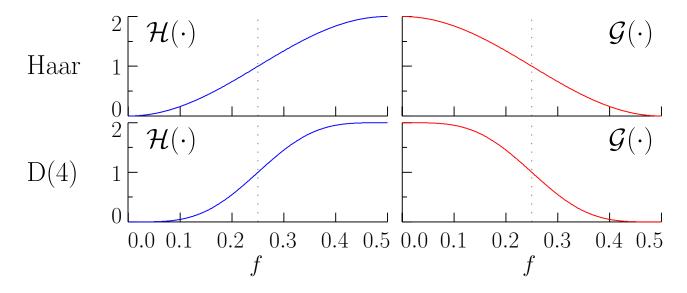
Interpretation of Scaling Coefficients: II

• reconsider shapes of $\{g_l\}$ seen so far:

- for L > 2, can regard $V_{1,t}$ as proportional to weighted average
- can argue that effective width of $\{g_l\}$ is 2 in each case; thus scale associated with $V_{1,t}$ is 2, whereas scale is 1 for $W_{1,t}$

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's look at their squared gain functions
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(4) filters



- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- $\{g_l\}$ is low-pass filter with nominal pass-band [0, 1/4]

WMTSA: 73 IV-43

What Kind of Process is $\{V_{1,t}\}$?: I

• letting $\{X_t\} \longleftrightarrow \{\mathcal{X}_k\} \& f_k = k/N$, use inverse DFT to get

$$X_{t} = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{X}_{k} e^{i2\pi f_{k}t} = \frac{1}{N} \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} \mathcal{X}_{k} e^{i2\pi f_{k}t},$$

where the change in the limits of summation is OK because $\{\mathcal{X}_k\}$ and $\{e^{i2\pi f_k t}\}$ are both periodic with a period of N

• since $\{g_l\} \longleftrightarrow G(f) = |G(f)|e^{i\theta^{(G)}(f)}$, where $|G(f)| \approx \sqrt{2}$ for $|f| \in [-\frac{1}{4}, \frac{1}{4}]$ and $|G(f)| \approx 0$ for $|f| \in (\frac{1}{4}, \frac{1}{2}]$, can argue

$$\sum_{l=0}^{L-1} g_l X_{t-l \bmod N} \approx \frac{\sqrt{2}}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \mathcal{X}_k e^{i\theta^{(G)}(f_k)} e^{i2\pi f_k t}$$

WMTSA: 83–84

What Kind of Process is $\{V_{1,t}\}$?: II

• with downsampling,

$$V_{1,t} \approx \frac{\sqrt{2}}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \mathcal{X}_k e^{i\theta^{(G)}(f_k)} e^{i2\pi f_k(2t+1)}, \quad 0 \le t \le \frac{N}{2} - 1$$

$$= \frac{2}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \frac{1}{\sqrt{2}} \mathcal{X}_k e^{i\theta^{(G)}(f_k)} e^{i2\pi f_k} \times e^{i2\pi(2f_k)t}$$

$$\equiv \frac{1}{N'} \sum_{k=-\frac{N'}{2}+1}^{\frac{N'}{2}} \mathcal{X}'_k e^{i2\pi f'_k t}, \quad 0 \le t \le N' - 1$$

if we let $N' \equiv \frac{N}{2}$, $\mathcal{X}'_k \equiv \frac{1}{\sqrt{2}} \mathcal{X}_k e^{i\theta^{(G)}(f_k)} e^{i2\pi f_k}$ and $f'_k \equiv 2f_k$

WMTSA: 83–84 IV–45

What Kind of Process is $\{V_{1,t}\}$?: III

• let's study the above result:

$$V_{1,t} \approx \frac{1}{N'} \sum_{k=-\frac{N'}{2}+1}^{\frac{N'}{2}} \mathcal{X}'_k e^{i2\pi f'_k t}, \quad 0 \le t \le N'-1$$

- \mathcal{X}'_k is associated with $f'_k = 2f_k = \frac{2k}{N} = \frac{k}{N/2} = \frac{k}{N'}$
- since $-\frac{N'}{2} + 1 \le k \le \frac{N'}{2}$, have $-\frac{1}{2} < f'_k \le \frac{1}{2}$
- whereas result of filtering $\{X_t\}$ with $\{g_l\}$ is a 'half-band' (low-pass) process involving approximately just $f_k \in [-\frac{1}{4}, \frac{1}{4}]$ down-sampled process $\{V_{1,t}\}$ is 'full-band' involving $f'_k \in [-\frac{1}{2}, \frac{1}{2}]$

WMTSA: 83-84 IV-46

What Kind of Process is $\{W_{1,t}\}$?: I

• in a similar manner, because $h_l \approx$ high pass, can argue that

$$\sum_{l=0}^{L-1} h_l X_{t-l \bmod N} \approx \frac{\sqrt{2}}{N} \left(\sum_{k=-\frac{N}{2}+1}^{-\frac{N}{4}} + \sum_{k=\frac{N}{4}+1}^{\frac{N}{2}} \right) \mathcal{X}_k e^{i\theta^{(H)}(f_k)} e^{i2\pi f_k t}$$

• with downsampling,

$$W_{1,t} \approx \frac{1}{N'} \sum_{k=-\frac{N'}{2}+1}^{\frac{N'}{2}} \mathcal{X}'_k e^{i2\pi f'_k t}, \quad 0 \le t \le N'-1,$$

where now
$$\mathcal{X}'_{k} = -\frac{1}{\sqrt{2}}\mathcal{X}_{k+\frac{N}{2}}e^{i\theta^{(H)}(f_{k}+\frac{1}{2})}e^{i2\pi f_{k}}$$

WMTSA: 84-85 IV-47

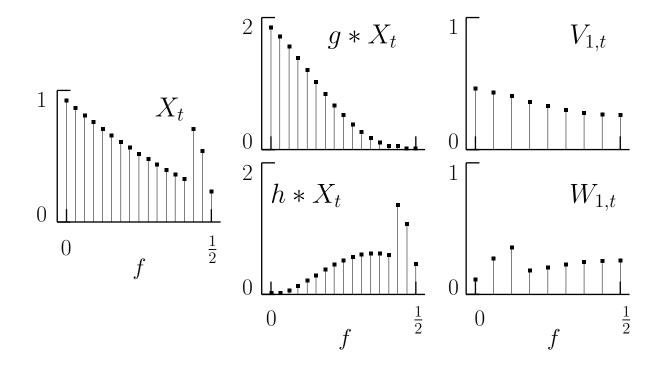
What Kind of Process is $\{W_{1,t}\}$?: II

- note that $|\mathcal{X}_k'| \propto |\mathcal{X}_{k+\frac{N}{2}}| = |\mathcal{X}_{k-\frac{N}{2}}|$ because $\{\mathcal{X}_k\}$ is periodic
- since X_t is real-valued, $|\mathcal{X}_{-k}| = |\mathcal{X}_k|$ and hence $|\mathcal{X}_k'| \propto |\mathcal{X}_{\frac{N}{2}-k}|$
- as before, \mathcal{X}'_k is associated with $f'_k = 2f_k$
- $\mathcal{X}_{\frac{N}{2}-k}$ is associated with $f_{\frac{N}{2}-k} = \frac{1}{2} f_k$
- conclusion: the coefficient for $W_{1,t}$ at f'_k is related to the coefficient for X_t at $\frac{1}{2} f_k$
- in particular, coefficients for $f'_k \in [0, \frac{1}{2}]$ are related to those for $f_k \in [\frac{1}{4}, \frac{1}{2}]$, but in a reversed direction
- whereas filtering $\{X_t\}$ with $\{h_l\}$ yields a 'half-band' (high-pass) process, the downsampled process $\{W_{1,t}\}$ is 'full-band'

WMTSA: 84-85 IV-48

Example: $\{V_{1,t}\}$ and $\{W_{1,t}\}$ as Full-Band Processes

• $\{V_{1,t}\}$ and $\{W_{1,t}\}$ formed using Haar DWT

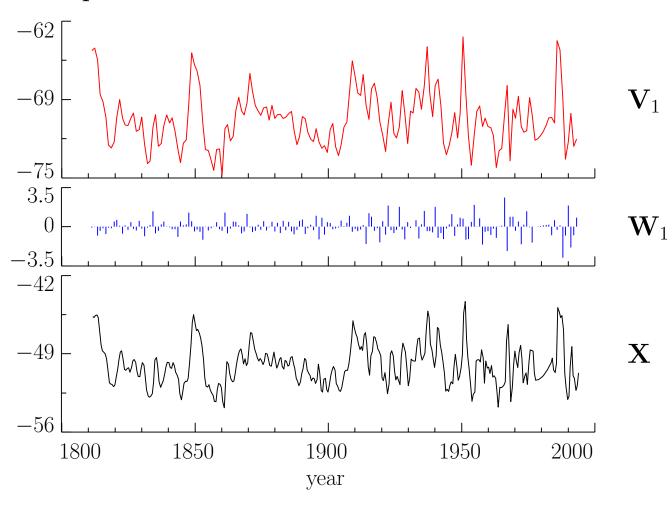


• plots are of magnitude squared DFTs for $\{X_t\}$ etc.

WMTSA: 86 IV-49

Example of Decomposing X into W_1 and V_1 : I

• oxygen isotope records **X** from Antarctic ice core



Example of Decomposing X into W_1 and V_1 : II

- oxygen isotope record series **X** has N = 352 observations
- spacing between observations is $\Delta t \doteq 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients V_1 related to averages on scale of $2\Delta t$
- wavelet coefficients \mathbf{W}_1 related to changes on scale of Δt
- coefficients $V_{1,t}$ and $W_{1,t}$ plotted against mid-point of years associated with X_{2t} and X_{2t+1}
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway

Reconstructing X from W_1 and V_1

• in matrix notation, form wavelet & scaling coefficients via

$$\left[egin{array}{c} \mathbf{W}_1 \\ \mathbf{V}_1 \end{array}
ight] = \left[egin{array}{c} \mathcal{W}_1 \mathbf{X} \\ \mathcal{V}_1 \mathbf{X} \end{array}
ight] = \left[egin{array}{c} \mathcal{W}_1 \\ \mathcal{V}_1 \end{array}
ight] \mathbf{X} = \mathcal{P}_1 \mathbf{X}$$

- recall that $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ because \mathcal{P}_1 is orthonormal
- since $\mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}$, premultiplying both sides by \mathcal{P}_1^T yields

$$\mathcal{P}_1^T \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1^T \ \mathcal{V}_1^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1 = \mathbf{X}$$

- $\mathcal{D}_1 \equiv \mathcal{W}_1^T \mathbf{W}_1$ is the first level detail
- $S_1 \equiv V_1^T \mathbf{V}_1$ is the first level 'smooth'
- $\mathbf{X} = \mathcal{D}_1 + \mathcal{S}_1$ in this notation

WMTSA: 80–81

Construction of First Level Detail: I

• consider $\mathcal{D}_1 = \mathcal{W}_1^T \mathbf{W}_1$ for L = 4 & N > L:

$$\mathcal{D}_{1} = \begin{bmatrix} h_{1} & h_{3} & 0 & \cdots & 0 & 0 \\ h_{0} & h_{2} & 0 & \cdots & 0 & 0 \\ 0 & h_{1} & h_{3} & \cdots & 0 & 0 \\ 0 & h_{0} & h_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & h_{1} & h_{3} \\ 0 & 0 & 0 & \cdots & h_{0} & h_{2} \\ h_{3} & 0 & 0 & \cdots & 0 & h_{1} \\ h_{2} & 0 & 0 & \cdots & 0 & h_{0} \end{bmatrix} \begin{bmatrix} W_{1,0} \\ W_{1,1} \\ W_{1,2} \\ \vdots \\ W_{1,N/2-2} \\ W_{1,N/2-1} \end{bmatrix}$$

note: \mathcal{W}_1^T is $N \times \frac{N}{2} \& \mathbf{W}_1$ is $\frac{N}{2} \times 1$

• \mathcal{D}_1 is not result of filtering $W_{1,t}$'s with $\{h_0, h_1, h_2, h_3\}$

WMTSA: 81 IV-53

Construction of First Level Detail: II

• augment \mathcal{W}_1 to $N \times N$ and \mathbf{W}_1 to $N \times 1$:

• can now regard the above as equivalent to use of a filter

WMTSA: 81 IV-54

Construction of First Level Detail: III

• formally, define upsampled (by 2) version of $W_{1,t}$'s:

$$W_{1,t}^{\uparrow} \equiv \begin{cases} 0, & t = 0, 2, \dots, N-2; \\ W_{1,(t-1)/2} = W_{(t-1)/2}, & t = 1, 3, \dots, N-1 \end{cases}$$

• example of upsampling:

$$W_{1,t}$$
 $\uparrow 2$ $\uparrow V_{1,t}$

• note: '\dagger 2' denotes 'upsample by 2' (put 0's before values)

WMTSA: 81 IV-55

Construction of First Level Detail: IV

• can now write

$$\mathcal{D}_{1,t} = \sum_{l=0}^{N-1} h_l^{\circ} W_{1,t+l \bmod N}^{\uparrow}, \quad t = 0, 1, \dots, N-1$$

• doesn't look exactly like filtering, which would look like

$$\sum_{l=0}^{N-1} h_l^{\circ} W_{1,t-l \bmod N}^{\uparrow}; \text{ i.e., direction of } W_{1,t}^{\uparrow} \text{ not reversed}$$

- ullet form that $\mathcal{D}_{1,t}$ takes is what engineers call 'cross-correlation'
- if $\{h_l\} \longleftrightarrow H(\cdot)$, cross-correlating $\{h_l\} \& \{W_{1,t}^{\uparrow}\}$ is equivalent to filtering $\{W_{1,t}^{\uparrow}\}$ using filter with transfer function $H^*(\cdot)$
- \mathcal{D}_1 formed by circularly filtering $\{W_{1,t}^{\uparrow}\}$ with filter $\{H^*(\frac{k}{N})\}$

WMTSA: 82–83 IV–56

Synthesis (Reconstruction) of X

ullet can also write the tth element of first level smooth \mathcal{S}_1 as

$$S_{1,t} = \sum_{l=0}^{L-1} g_l V_{1,t+l \bmod N}^{\uparrow}, \quad t = 0, 1, \dots, N-1$$

- since $\{g_l\} \longleftrightarrow G(\cdot)$, cross-correlating $\{g_l\} \& \{V_{1,t}^{\uparrow}\}$ is the same as circularly filtering $\{V_{1,t}^{\uparrow}\}$ using the filter $\{G^*(\frac{k}{N})\}$
- since $\mathbf{X} = \mathcal{S}_1 + \mathcal{D}_1$, can write

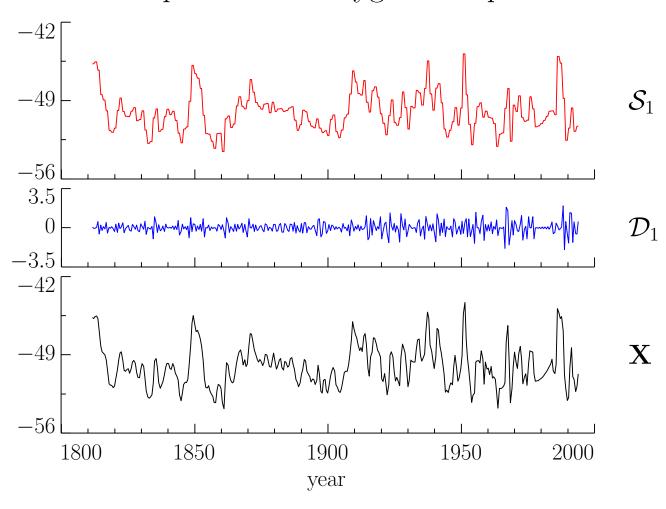
$$X_{t} = \sum_{l=0}^{N-1} h_{l}^{\circ} W_{1,t+l \bmod N}^{\uparrow} + \sum_{l=0}^{N-1} g_{l}^{\circ} V_{1,t+l \bmod N}^{\uparrow},$$

which is the filtering version of $\mathbf{X} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1$

WMTSA: 83 IV-57

Example of Synthesizing X from \mathcal{D}_1 and \mathcal{S}_1

• Haar-based decomposition for oxygen isotope records X



First Level Variance Decomposition: I

- recall that 'energy' in \mathbf{X} is its squared norm $\|\mathbf{X}\|^2$
- because \mathcal{P}_1 is orthonormal, have $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ and hence $\|\mathcal{P}_1 \mathbf{X}\|^2 = (\mathcal{P}_1 \mathbf{X})^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2$
- can conclude that $\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$ because

$$\mathcal{P}_1 \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix}$$
 and hence $\|\mathcal{P}_1 \mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$

 \bullet leads to a decomposition of the sample variance for \mathbf{X} :

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} ||\mathbf{X}||^2 - \overline{X}^2$$
$$= \frac{1}{N} ||\mathbf{W}_1||^2 + \frac{1}{N} ||\mathbf{V}_1||^2 - \overline{X}^2$$

First Level Variance Decomposition: II

- breaks up $\hat{\sigma}_X^2$ into two pieces:
 - 1. $\frac{1}{N} \|\mathbf{W}_1\|^2$, attributable to changes in averages over scale 1
 - 2. $\frac{1}{N} ||\mathbf{V}_1||^2 \overline{X}^2$, attributable to averages over scale 2
- Haar-based example for oxygen isotope records
 - first piece: $\frac{1}{N} ||\mathbf{W}_1||^2 \doteq 0.295$
 - second piece: $\frac{1}{N} \|\mathbf{V}_1\|^2 \overline{X}^2 \doteq 2.909$
 - sample variance: $\hat{\sigma}_X^2 \doteq 3.204$
 - changes on scale of $\Delta t \doteq 0.5$ years account for 9% of $\hat{\sigma}_X^2$ (standardized scale of 1 corresponds to physical scale of Δt)

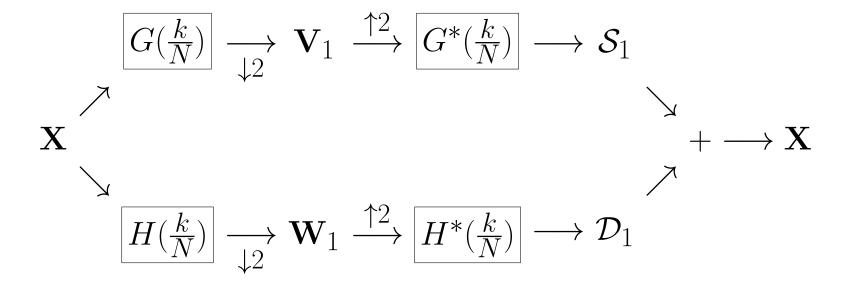
Summary of First Level of Basic Algorithm

- transforms $\{X_t: t=0,\ldots,N-1\}$ into 2 types of coefficients
- N/2 wavelet coefficients $\{W_{1,t}\}$ associated with:
 - \mathbf{W}_1 , a vector consisting of first N/2 elements of \mathbf{W}
 - changes on scale 1 and nominal frequencies $\frac{1}{4} \le f \le \frac{1}{2}$
 - first level detail \mathcal{D}_1
 - $-\mathcal{W}_1$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- N/2 scaling coefficients $\{V_{1,t}\}$ associated with:
 - \mathbf{V}_1 , a vector of length N/2
 - averages on scale 2 and nominal frequencies $0 \le f \le \frac{1}{4}$
 - first level smooth \mathcal{S}_1
 - $-\mathcal{V}_1$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last N/2 rows of \mathcal{W}

WMTSA: 86–87 IV–61

Level One Analysis and Synthesis of X

• can express analysis/synthesis of **X** as a flow diagram



WMTSA: 80, 83 IV-62

Constructing Remaining DWT Coefficients: I

- have regarded time series X_t as 'one point' averages $\overline{X}_t(1)$ over
 - physical scale of Δt (sampling interval between observations)
 - standardized scale of 1
- first level of basic algorithm transforms X of length N into
 - N/2 wavelet coefficients $\mathbf{W}_1 \propto \text{changes on a scale of } 1$
 - N/2 scaling coefficients $V_1 \propto$ averages of X_t on a scale of 2
- in essence basic algorithm takes length N series \mathbf{X} related to scale 1 averages and produces
 - length N/2 series \mathbf{W}_1 associated with the same scale
 - length N/2 series V_1 related to averages on double the scale

WMTSA: Section 4.5

Constructing Remaining DWT Coefficients: II

- Q: what if we now treat V_1 in the same manner as X?
- basic algorithm will transform length N/2 series \mathbf{V}_1 into
 - length N/4 series \mathbf{W}_2 associated with the same scale (2)
 - length N/4 series \mathbf{V}_2 related to averages on twice the scale
- by definition, \mathbf{W}_2 contains the level 2 wavelet coefficients
- Q: what if we treat V_2 in the same way?
- basic algorithm will transform length N/4 series \mathbf{V}_2 into
 - length N/8 series \mathbf{W}_3 associated with the same scale (4)
 - length N/8 series V_3 related to averages on twice the scale
- by definition, \mathbf{W}_3 contains the level 3 wavelet coefficients

WMTSA: Sections 4.5 and 4.6

Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \mathbf{W} (recall that $\mathbf{W} = \mathcal{W}\mathbf{X}$ is the vector of DWT coefficients)
- at each level j, outputs \mathbf{W}_j and \mathbf{V}_j from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}
- length of \mathbf{V}_j given by $N/2^j$
- since $N=2^J$, length of \mathbf{V}_J is 1, at which point we must stop
- J applications of the basic algorithm define the subvectors \mathbf{W}_1 , $\mathbf{W}_2, \ldots, \mathbf{W}_J, \mathbf{V}_J$ of DWT coefficient vector \mathbf{W}
- overall scheme is known as the 'pyramid' algorithm
- item [1] of Comments and Extensions to Sec. 4.6 has pseudo code for DWT pyramid algorithm

WMTSA: Section 4.6, 100–101

Scales Associated with DWT Coefficients

- jth level of algorithm transforms scale 2^{j-1} averages into
 - differences of averages on scale 2^{j-1} , i.e., \mathbf{W}_j , the wavelet coefficients
 - averages on scale $2 \times 2^{j-1} = 2^j$, i.e., \mathbf{V}_j , the scaling coefficients
- let $\tau_j \equiv 2^{j-1}$ be standardized scale associated with \mathbf{W}_j
 - for j = 1, ..., J, takes on values 1, 2, 4, ..., N/4, N/2
 - physical (actual) scale given by $\tau_j \Delta t$
- let $\lambda_j \equiv 2^j$ be standardized scale associated with \mathbf{V}_j
 - takes on values $2, 4, 8, \ldots, N/2, N$
 - physical scale given by $\lambda_j \Delta t$

WMTSA: 85 IV-66

Matrix Description of Pyramid Algorithm: I

- define $\frac{N}{2^j} \times \frac{N}{2^{j-1}}$ matrix \mathcal{B}_j in same way as $\frac{N}{2} \times N$ matrix \mathcal{W}_1 ; i.e., rows contain $\{h_l\}$ periodized to length $N/2^{j-1}$
- for $N/2^j = 8$ and $N/2^{j-1} = 16$ when L = 4, have

• matrix gets us jth level wavelet coefficients via $\mathbf{W}_j = \mathcal{B}_j \mathbf{V}_{j-1}$

Matrix Description of Pyramid Algorithm: II

- define $\frac{N}{2^j} \times \frac{N}{2^{j-1}}$ matrix \mathcal{A}_j in same way as $\frac{N}{2} \times N$ matrix \mathcal{V}_1 ; i.e., rows contain $\{g_l\}$ periodized to length $N/2^{j-1}$ for $N/2^j = 8$ and $N/2^{j-1} = 16$ when L = 4, have

• matrix gets us jth level scaling coefficients via $\mathbf{V}_{i} = \mathcal{A}_{i} \mathbf{V}_{i-1}$

Matrix Description of Pyramid Algorithm: III

• if we define $V_0 = X$ and let j = 1, then

$$\mathbf{W}_j = \mathcal{B}_j \mathbf{V}_{j-1}$$
 reduces to $\mathbf{W}_1 = \mathcal{B}_1 \mathbf{V}_0 = \mathcal{B}_1 \mathbf{X} = \mathcal{W}_1 \mathbf{X}$
because \mathcal{B}_1 has the same definition as \mathcal{W}_1

• likewise, when j = 1,

$$\mathbf{V}_j = \mathcal{A}_j \mathbf{V}_{j-1}$$
 reduces to $\mathbf{V}_1 = \mathcal{A}_1 \mathbf{V}_0 = \mathcal{A}_1 \mathbf{X} = \mathcal{V}_1 \mathbf{X}$
because \mathcal{A}_1 has the same definition as \mathcal{V}_1

Formation of Submatrices of \mathcal{W} : I

• using $\mathbf{V}_j = \mathcal{A}_j \mathbf{V}_{j-1}$ repeatedly and $\mathbf{V}_1 = \mathcal{A}_1 \mathbf{X}$, can write

$$\mathbf{W}_{j} = \mathcal{B}_{j} \mathbf{V}_{j-1}$$

$$= \mathcal{B}_{j} \mathcal{A}_{j-1} \mathbf{V}_{j-2}$$

$$= \mathcal{B}_{j} \mathcal{A}_{j-1} \mathcal{A}_{j-2} \mathbf{V}_{j-3}$$

$$= \mathcal{B}_{j} \mathcal{A}_{j-1} \mathcal{A}_{j-2} \cdots \mathcal{A}_{1} \mathbf{X} \equiv \mathcal{W}_{j} \mathbf{X},$$

where W_j is $\frac{N}{2j} \times N$ submatrix of W responsible for \mathbf{W}_j

• likewise, can get $1 \times N$ submatrix \mathcal{V}_J responsible for \mathbf{V}_J

$$\mathbf{V}_{J} = \mathcal{A}_{J} \mathbf{V}_{J-1}$$

$$= \mathcal{A}_{J} \mathcal{A}_{J-1} \mathbf{V}_{J-2}$$

$$= \mathcal{A}_{J} \mathcal{A}_{J-1} \mathcal{A}_{J-2} \mathbf{V}_{J-3}$$

$$= \mathcal{A}_{J} \mathcal{A}_{J-1} \mathcal{A}_{J-2} \cdots \mathcal{A}_{1} \mathbf{X} \equiv \mathcal{V}_{J} \mathbf{X}$$

• \mathcal{V}_J is the last row of \mathcal{W} , & all its elements are equal to $1/\sqrt{N}$

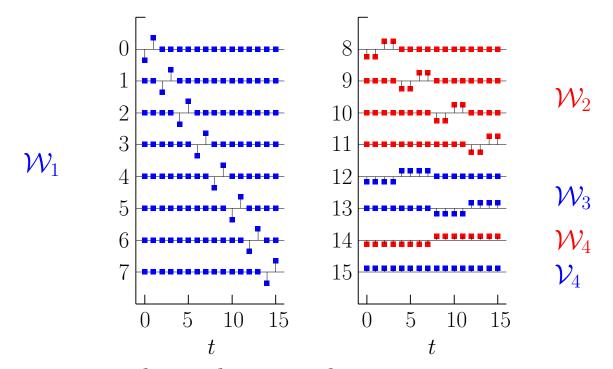
Formation of Submatrices of W: II

• have now constructed all of DWT matrix:

$$\mathcal{W} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \mathcal{W}_3 \\ \mathcal{W}_4 \\ \vdots \\ \mathcal{W}_J \\ \mathcal{V}_J \end{bmatrix} = \begin{bmatrix} \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \mathcal{B}_3 \mathcal{A}_2 \mathcal{A}_1 \\ \mathcal{B}_4 \mathcal{A}_3 \mathcal{A}_2 \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1 \\ \mathcal{A}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1 \end{bmatrix}$$

Examples of W and its Partitioning: I

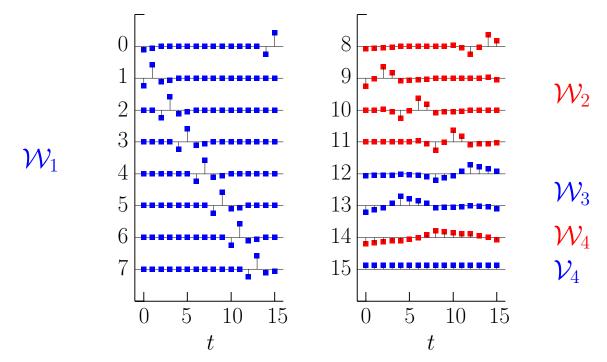
• N = 16 case for Haar DWT matrix \mathcal{W}



• above agrees with qualitative description given previously

Examples of W and its Partitioning: II

• N = 16 case for D(4) DWT matrix \mathcal{W}



• note: elements of last row equal to $1/\sqrt{N} = 1/4$, as claimed

Matrix Description of Multiresolution Analysis: I

• just as we could reconstruct X from W_1 and V_1 using

$$\mathbf{X} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1,$$

so can we reconstruct V_{j-1} from W_j and V_j using

$$\mathbf{V}_{j-1} = \mathcal{B}_j^T \mathbf{W}_j + \mathcal{A}_j^T \mathbf{V}_j$$

(recall the correspondences $\mathbf{V}_0 = \mathbf{X}$, $\mathcal{B}_1 = \mathcal{W}_1$ and $\mathcal{A}_1 = \mathcal{V}_1$)

• we can thus write

$$\mathbf{X} = \mathcal{B}_{1}^{T} \mathbf{W}_{1} + \mathcal{A}_{1}^{T} \mathbf{V}_{1}$$

$$= \mathcal{B}_{1}^{T} \mathbf{W}_{1} + \mathcal{A}_{1}^{T} (\mathcal{B}_{2}^{T} \mathbf{W}_{2} + \mathcal{A}_{2}^{T} \mathbf{V}_{2})$$

$$= \mathcal{B}_{1}^{T} \mathbf{W}_{1} + \mathcal{A}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2} + \mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathbf{V}_{2}$$

$$= \mathcal{B}_{1}^{T} \mathbf{W}_{1} + \mathcal{A}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2} + \mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} (\mathcal{B}_{3}^{T} \mathbf{W}_{3} + \mathcal{A}_{3}^{T} \mathbf{V}_{3})$$

$$= \mathcal{B}_{1}^{T} \mathbf{W}_{1} + \mathcal{A}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2} + \mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathcal{B}_{3}^{T} \mathbf{W}_{3} + \mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathcal{A}_{3}^{T} \mathbf{V}_{3}$$

Matrix Description of Multiresolution Analysis: II

• studying the bottom line

$$\mathbf{X} = \mathcal{B}_1^T \mathbf{W}_1 + \mathcal{A}_1^T \mathcal{B}_2^T \mathbf{W}_2 + \mathcal{A}_1^T \mathcal{A}_2^T \mathcal{B}_3^T \mathbf{W}_3 + \mathcal{A}_1^T \mathcal{A}_2^T \mathcal{A}_3^T \mathbf{V}_3$$
says *j*th level detail should be $\mathcal{D}_j \equiv \mathcal{A}_1^T \mathcal{A}_2^T \cdots \mathcal{A}_{j-1}^T \mathcal{B}_j^T \mathbf{W}_j$

• likewise, letting jth level smooth be $S_j \equiv A_1^T A_2^T \cdots A_j^T \mathbf{V}_j$ yields, for $1 \leq k \leq J$,

$$\mathbf{X} = \sum_{j=1}^{k} \mathcal{D}_j + \mathcal{S}_k$$
 and, in particular, $\mathbf{X} = \sum_{j=1}^{J} \mathcal{D}_j + \mathcal{S}_J$

• above are multiresolution analyses (MRAs) for levels k and J; i.e., additive decomposition (first of two basic decompositions derivable from DWT)

Matrix Description of Energy Decomposition: I

• just as we can recover the energy in \mathbf{X} from $\mathbf{W}_1 \& \mathbf{V}_1$ using

$$\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2,$$

so can we recover the energy in V_{j-1} from $W_j \& V_j$ using

$$\|\mathbf{V}_{j-1}\|^2 = \|\mathbf{W}_j\|^2 + \|\mathbf{V}_j\|^2$$

(recall the correspondence $\mathbf{V}_0 = \mathbf{X}$)

• we can thus write

$$\|\mathbf{X}\|^{2} = \|\mathbf{W}_{1}\|^{2} + \|\mathbf{V}_{1}\|^{2}$$

$$= \|\mathbf{W}_{1}\|^{2} + \|\mathbf{W}_{2}\|^{2} + \|\mathbf{V}_{2}\|^{2}$$

$$= \|\mathbf{W}_{1}\|^{2} + \|\mathbf{W}_{2}\|^{2} + \|\mathbf{W}_{3}\|^{2} + \|\mathbf{V}_{3}\|^{2}$$

Matrix Description of Energy Decomposition: II

• generalizing from the bottom line

$$\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{W}_2\|^2 + \|\mathbf{W}_3\|^2 + \|\mathbf{V}_3\|^2$$

indicates that, for $1 \leq k \leq J$, we can write

$$\|\mathbf{X}\|^2 = \sum_{j=1}^k \|\mathbf{W}_j\|^2 + \|\mathbf{V}_k\|^2$$

and, in particular,

$$\|\mathbf{X}\|^2 = \sum_{j=1}^J \|\mathbf{W}_j\|^2 + \|\mathbf{V}_J\|^2$$

• above are energy decompositions for levels k and J (second of two basic decompositions derivable from DWT)

Partial DWT: I

- J repetitions of pyramid algorithm for \mathbf{X} of length $N=2^J$ yields 'complete' DWT, i.e., $\mathbf{W}=\mathcal{W}\mathbf{X}$
- can choose to stop at $J_0 < J$ repetitions, yielding a 'partial' DWT of level J_0 :

$$\begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \vdots \\ \mathcal{W}_j \\ \mathcal{W}_{J_0} \\ \mathcal{V}_{J_0} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_{J_0} \mathcal{A}_{J_0-1} \cdots \mathcal{A}_1 \\ \mathcal{A}_{J_0} \mathcal{A}_{J_0-1} \cdots \mathcal{A}_1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_j \\ \vdots \\ \mathbf{W}_{J_0} \\ \mathbf{V}_{J_0} \end{bmatrix}$$

• \mathcal{V}_{J_0} is $\frac{N}{2^{J_0}} \times N$, yielding $\frac{N}{2^{J_0}}$ coefficients for scale $\lambda_{J_0} = 2^{J_0}$

Partial DWT: II

- only requires N to be integer multiple of 2^{J_0}
- partial DWT more common than complete DWT
- choice of J_0 is application dependent
- multiresolution analysis for partial DWT:

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$$

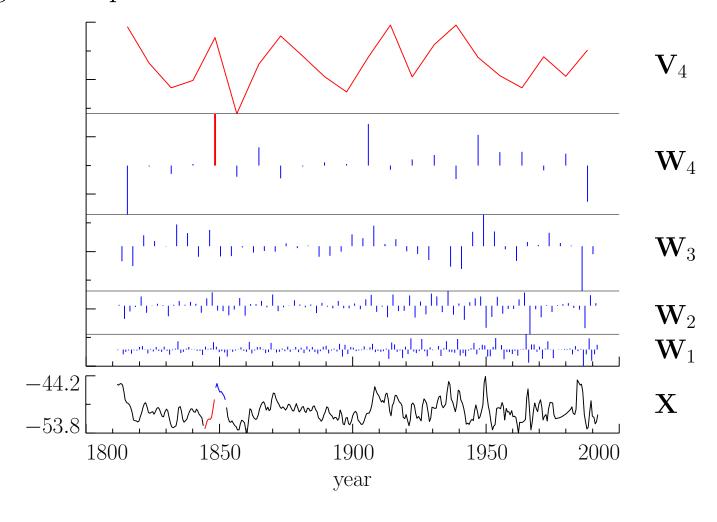
 \mathcal{S}_{J_0} represents averages on scale $\lambda_{J_0} = 2^{J_0}$ (includes \overline{X})

• analysis of variance for partial DWT:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \frac{1}{N} \|\mathbf{V}_{J_0}\|^2 - \overline{X}^2$$

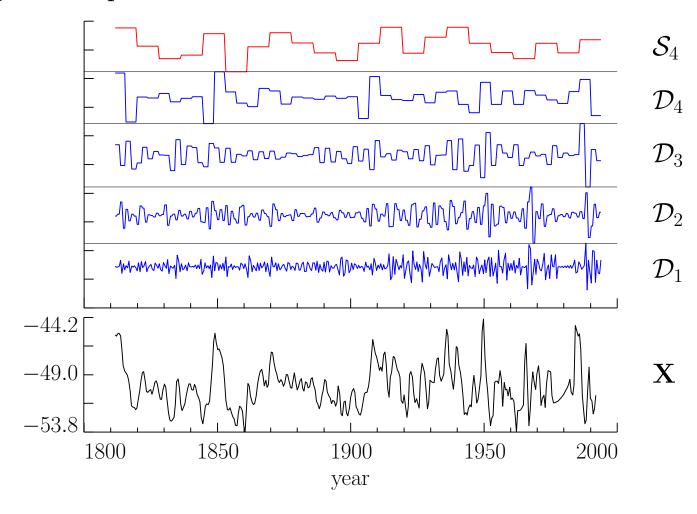
Example of $J_0 = 4$ Partial Haar DWT

• oxygen isotope records **X** from Antarctic ice core



Example of MRA from $J_0 = 4$ Partial Haar DWT

• oxygen isotope records **X** from Antarctic ice core



Example of Variance Decomposition

• decomposition of sample variance from $J_0 = 4$ partial DWT

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \sum_{j=1}^4 \frac{1}{N} ||\mathbf{W}_j||^2 + \frac{1}{N} ||\mathbf{V}_4||^2 - \overline{X}^2$$

• Haar-based example for oxygen isotope records

- 0.5 year changes:
$$\frac{1}{N} ||\mathbf{W}_1||^2 \doteq 0.295 \ (\doteq 9.2\% \text{ of } \hat{\sigma}_X^2)$$

- 1.0 years changes:
$$\frac{1}{N} ||\mathbf{W}_2||^2 \doteq 0.464 \ (\doteq 14.5\%)$$

- 2.0 years changes:
$$\frac{1}{N} ||\mathbf{W}_3||^2 \doteq 0.652 \ (\doteq 20.4\%)$$

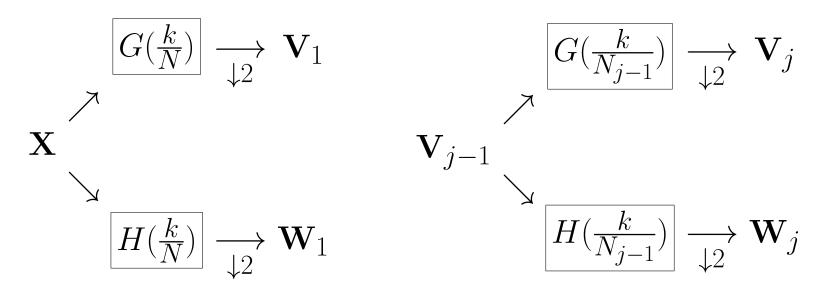
- 4.0 years changes:
$$\frac{1}{N} ||\mathbf{W}_4||^2 \doteq 0.846 \ (\doteq 26.4\%)$$

- 8.0 years averages:
$$\frac{1}{N} ||\mathbf{V}_4||^2 - \overline{X}^2 \doteq 0.947 \ (\doteq 29.5\%)$$

- sample variance:
$$\hat{\sigma}_X^2 \doteq 3.204$$

Filtering Description of Pyramid Algorithm

• flow diagrams for analyses of \mathbf{X} at level 1 and of \mathbf{V}_{j-1} at level j are quite similar:



• in the above $N_j \equiv N/2^j$ (also recall $\mathbf{V}_0 = \mathbf{X}$ by definition)

WMTSA: 80, 94 IV-83

Equivalent Wavelet Filter for Level j = 3

• consider flow diagram for extracting \mathbf{W}_3 from \mathbf{X} :

$$\mathbf{X} \longrightarrow \left[G(\frac{k}{N}) \right] \xrightarrow{\downarrow 2} \left[G(\frac{k}{N_1}) \right] \xrightarrow{\downarrow 2} \left[H(\frac{k}{N_2}) \right] \xrightarrow{\downarrow 2} \mathbf{W}_3$$

- can be regarded as filter cascade, but must adjust for $\downarrow 2$
- equivalent filter for cascade can be represented by
 - impulse response sequence $\{h_{3,l}\}$
 - transfer function $H_3(f) \equiv G(f)G(2f)H(4f)$, where, as usual, $\{h_{3,l}\} \longleftrightarrow H_3(\cdot)$
- in above, '2f' and '4f' adjust for downsampling (Exer. [91])
- with the equivalent filter, flow diagram becomes

$$\mathbf{X} \longrightarrow H_3(\frac{k}{N}) \xrightarrow{\downarrow 8} \mathbf{W}_3$$

WMTSA: 95-96

Equivalent Scaling Filter for Level j = 3

• similar results hold for transforming X into V_3 :

$$\mathbf{X} \longrightarrow \left[G(\frac{k}{N}) \right] \xrightarrow{\downarrow 2} \left[G(\frac{k}{N_1}) \right] \xrightarrow{\downarrow 2} \left[G(\frac{k}{N_2}) \right] \xrightarrow{\downarrow 2} \mathbf{V}_3$$

- equivalent filter for cascade can be represented by
 - impulse response sequence $\{g_{3,l}\}$
 - transfer function $G_3(f) \equiv G(f)G(2f)G(4f)$, where, once again, $\{g_{3,l}\} \longleftrightarrow G_3(\cdot)$
- with the equivalent filter, flow diagram becomes

$$\mathbf{X} \longrightarrow \left[G_3(\frac{k}{N})\right] \xrightarrow{\downarrow 8} \mathbf{V}_3$$

WMTSA: 96–97 IV–85

Equivalent Wavelet & Scaling Filters for Level j

- results generalize in an obvious way to other levels j
- jth level equivalent wavelet filter can be represented by
 - impulse response sequence $\{h_{j,l}\}\longleftrightarrow H_j(\cdot)$
 - transfer function $H_j(f) \equiv H(2^{j-1}f) \prod_{l=0}^{j-2} G(2^l f)$
- jth level equivalent scaling filter can be represented by
 - impulse response sequence $\{g_{j,l}\}\longleftrightarrow G_j(\cdot)$
 - transfer function $G_j(f) \equiv \prod_{l=0}^{j-1} G(2^l f)$
- convenient to define $H_1(f) = H(f)$ and $G_1(f) = G(f)$
- flow diagrams become

$$\mathbf{X} \longrightarrow \left[H_j(\frac{k}{N})\right] \xrightarrow{\downarrow 2^j} \mathbf{W}_j \text{ and } \mathbf{X} \longrightarrow \left[G_j(\frac{k}{N})\right] \xrightarrow{\downarrow 2^j} \mathbf{V}_j$$

WMTSA: 95–97 IV–86

Relating Filtering and Matrix Descriptions

• because $\mathbf{W}_j = \mathcal{W}_j \mathbf{X}$ and because

$$\mathbf{X} \longrightarrow \left[H_j(\frac{k}{N})\right] \xrightarrow{\downarrow 2^j} \mathbf{W}_j$$

can argue that

- rows of W_j must contain values dictated by $\{h_{j,l}\}$ after periodization to length N
- adjacent rows are circularly shifted by 2^{j} units
- from $\mathbf{V}_j = \mathcal{V}_j \mathbf{X}$ & related flow diagram, can also argue that
 - rows of \mathcal{V}_j must contain values dictated by $\{g_{j,l}\}$ after periodization to length N
 - adjacent rows are circularly shifted by 2^{j} units

WMTSA: 95–97 IV–87

Haar Equivalent Wavelet & Scaling Filters

$$\{h_l\}$$
 $L = 2$
 $\{h_{2,l}\}$ $L_2 = 4$
 $\{h_{3,l}\}$ $L_3 = 8$
 $\{h_{4,l}\}$ $L_4 = 16$
 $\{g_l\}$ $L_2 = 4$
 $\{g_{2,l}\}$ $L_2 = 4$
 $\{g_{3,l}\}$ $L_3 = 8$
 $\{g_{4,l}\}$ $L_4 = 16$

• $L_j = 2^j$ is width of $\{h_{j,l}\}$ and $\{g_{j,l}\}$

D(4) Equivalent Wavelet & Scaling Filters

$$\{h_l\}$$
 $L = 4$
 $\{h_{2,l}\}$ $L_2 = 10$
 $\{h_{3,l}\}$ $L_3 = 22$
 $\{h_{4,l}\}$ $L_4 = 46$
 $\{g_l\}$ $L_2 = 10$
 $\{g_{3,l}\}$ $L_2 = 10$
 $\{g_{4,l}\}$ $L_4 = 46$

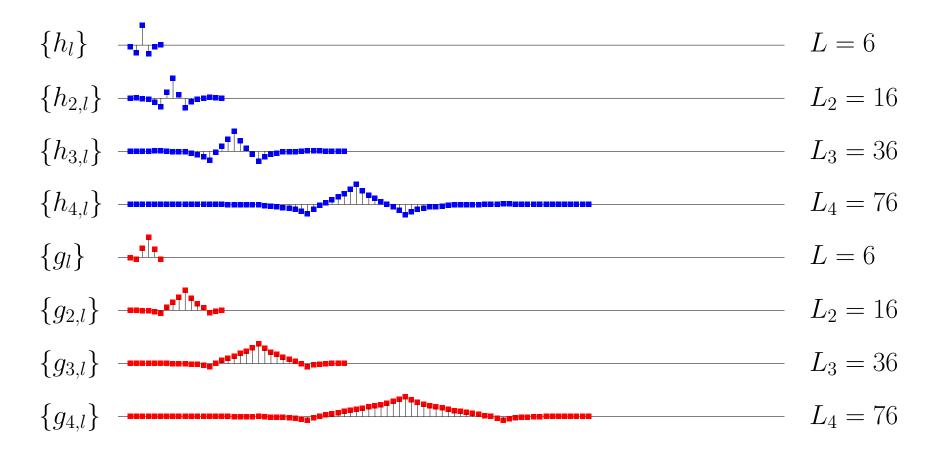
• L_j dictated by general formula $L_j = (2^j - 1)(L - 1) + 1$, but can argue that *effective* width is 2^j (same as Haar L_j)

D(6) Equivalent Wavelet & Scaling Filters

$$\{h_{l}\}$$
 — $L=6$
 $\{h_{2,l}\}$ — $L_{2}=16$
 $\{h_{3,l}\}$ — $L_{3}=36$
 $\{h_{4,l}\}$ — $L_{4}=76$
 $\{g_{l}\}$ — $L_{2}=16$
 $\{g_{3,l}\}$ — $L_{2}=16$
 $\{g_{4,l}\}$ — $L_{2}=16$
 $\{g_{4,l}\}$ — $L_{3}=36$
 $\{g_{4,l}\}$ — $L_{4}=76$

• $\{h_{4,l}\}$ resembles discretized version of Mexican hat wavelet

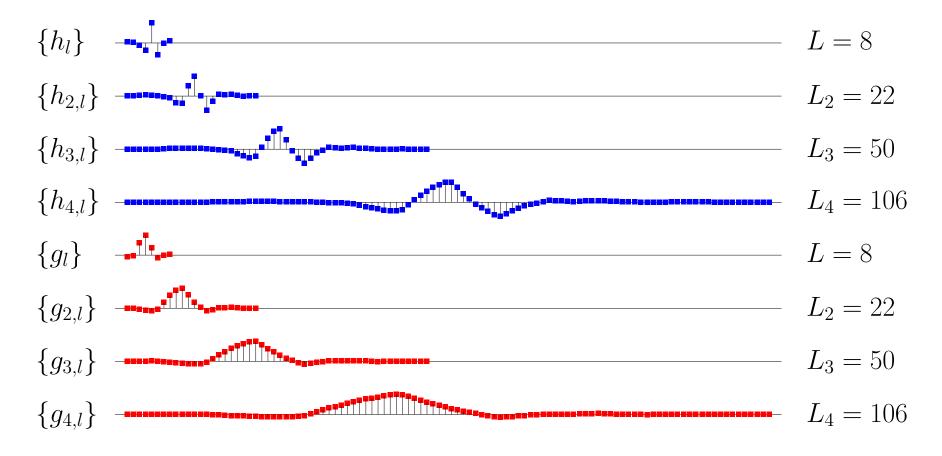
C(6) Equivalent Wavelet & Scaling Filters



• $\{g_{j,l}\}$ yields 'triangularly' weighted average (effective width 2^{j})

WMTSA: 125 IV-91

LA(8) Equivalent Wavelet & Scaling Filters



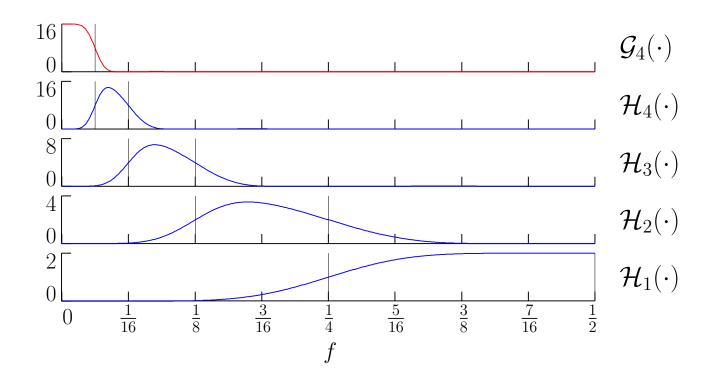
• $\{h_{j,l}\}$ resembles discretized version of Mexican hat wavelet, again with an effective width of 2^j

Squared Gain Functions for Filters

• squared gain functions give us frequency domain properties:

$$\mathcal{H}_j(f) \equiv |H_j(f)|^2$$
 and $\mathcal{G}_j(f) \equiv |G_j(f)|^2$

• example: squared gain functions for LA(8) $J_0 = 4$ partial DWT



Summary of Key Points about the DWT: I

- DWT \mathcal{W} is orthonormal, i.e., satisfies $\mathcal{W}^T\mathcal{W} = I_N$
- ullet construction of ${\mathcal W}$ starts with a wavelet filter $\{h_l\}$ of even length L that by definition
 - 1. sums to zero; i.e., $\sum_{l} h_{l} = 0$;
 - 2. has unit energy; i.e., $\sum_{l} h_{l}^{2} = 1$; and
 - 3. is orthogonal to its even shifts; i.e., $\sum_{l} h_{l} h_{l+2n} = 0$
- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum_l g_l h_{l+2n} = 0$
- ullet while $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter

WMTSA: 150–156

Summary of Key Points about the DWT: II

- $\{h_l\}$ and $\{g_l\}$ work in tandem to split time series **X** into
 - wavelet coefficients \mathbf{W}_1 (related to changes in averages on a unit scale) and
 - scaling coefficients V_1 (related to averages on a scale of 2)
- $\{h_l\}$ and $\{g_l\}$ are then applied to \mathbf{V}_1 , yielding
 - wavelet coefficients \mathbf{W}_2 (related to changes in averages on a scale of 2) and
 - scaling coefficients V_2 (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients \mathbf{V}_{j-1} at level j-1 are transformed into wavelet and scaling coefficients \mathbf{W}_j and \mathbf{V}_j of scales $\tau_j = 2^{j-1}$ and $\lambda_j = 2^j$

WMTSA: 150–156 IV–95

Summary of Key Points about the DWT: III

- after J_0 repetitions, this 'pyramid' algorithm transforms time series \mathbf{X} whose length N is an integer multiple of 2^{J_0} into DWT coefficients $\mathbf{W}_1, \mathbf{W}_2, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0} (sizes of vectors are $\frac{N}{2}, \frac{N}{4}, \ldots, \frac{N}{2^{J_0}}$ and $\frac{N}{2^{J_0}}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
- \bullet first decomposition is additive and is known as a multiresolution analysis (MRA), in which ${\bf X}$ is reexpressed as

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0},$$

where \mathcal{D}_j is a time series reflecting variations in **X** on scale τ_j , while \mathcal{S}_{J_0} is a series reflecting its λ_{J_0} averages

WMTSA: 150–156

Summary of Key Points about the DWT: IV

• second decomposition reexpresses the energy (squared norm) of \mathbf{X} on a scale by scale basis, i.e.,

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \|\mathbf{V}_{J_0}\|^2,$$

leading to an analysis of the sample variance of \mathbf{X} :

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2$$

$$= \frac{1}{N} \sum_{j=1}^{J_0} ||\mathbf{W}_j||^2 + \frac{1}{N} ||\mathbf{V}_{J_0}||^2 - \overline{X}^2$$

WMTSA: 150–156