
Defining the Discrete Wavelet Transform (DWT)

• can formulate DWT via elegant ‘pyramid’ algorithm

• defines W for non-Haar wavelets (consistent with Haar)

• computes W =WX using O(N) multiplications

− ‘brute force’ method uses O(N2) multiplications

− faster than celebrated algorithm for fast Fourier transform!
(this uses O(N · log2(N)) multiplications)

• can study algorithm using linear filters & matrix manipulations

• will look at both approaches since they are complementary

WMTSA: 68 IV–1



The Wavelet Filter: I

• precise definition of DWT begins with notion of wavelet filter

• let {hl : l = 0, . . . , L− 1} be a real-valued filter

− L called filter width

− both h0 and hL−1 must be nonzero

− L must be even (2, 4, 6, 8, . . .) for technical reasons

− will assume hl ≡ 0 for l < 0 and l ≥ L

WMTSA: 68 IV–2



The Wavelet Filter: II

• {hl} called a wavelet filter if it has these 3 properties

1. summation to zero:
L−1∑
l=0

hl = 0

2. unit energy:
L−1∑
l=0

h2
l = 1

3. orthogonality to even shifts: for all nonzero integers n, have
L−1∑
l=0

hlhl+2n = 0

• 2 and 3 together are called the orthonormality property

WMTSA: 69 IV–3



The Wavelet Filter: III

• define transfer and squared gain functions for wavelet filter:

H(f ) ≡
L−1∑
l=0

hle
−i2πfl and H(f ) ≡ |H(f )|2

• claim: orthonormality property equivalent to

H(f ) +H(f + 1
2) = 2 for all f

• to show equivalence, first assume above holds

• consider autocorrelation of {hl}:

h ? hj ≡
∞∑

l=−∞
hlhl+j j = . . . ,−1, 0, 1, . . .

• {hl} ←→ H(·) implies that {h ? hj} ←→ |H(·)|2 = H(·)

WMTSA: 69–70 IV–4



The Wavelet Filter: IV

• inverse DFT says h ? hj =
∫ 1/2
−1/2

H(f ′)ei2πf
′j df ′

• Exer. [23b] says that, if {aj} ←→ A(·), then

{a2n} ←→ 1
2

[
A(f2) + A(f2 + 1

2)
]

• application of this result here says that

{h ? h2n} ←→ 1
2

[
H(f2) +H(f2 + 1

2)
]

• H(f ) +H(f + 1
2) = 2 for all f says that H(f2) +H(f2 + 1

2) = 2

• leads to orthonormality condition because
∞∑

l=−∞
hlhl+2n = h ? h2n =

∫ 1/2

−1/2
ei2πfn df =

{
1, n = 0

0, n 6= 0

WMTSA: 70 IV–5



The Wavelet Filter: VI

• hence H(f ) +H(f + 1
2) = 2 implies orthonormality

• Exer. [70]: orthonormality implies

H(f ) +H(f + 1
2) = 2 for all f

• this establishes the equivalence between above and
∞∑

l=−∞
hlhl+2n =

{
1, n = 0

0, n 6= 0

WMTSA: 70 IV–6



The Wavelet Filter: VII

• summation to zero and unit energy relatively easy to achieve
(analogous to conditions imposed on wavelet functions ψ(·))
• orthogonality to even shifts is key property

• orthogonality hardest to satisfy, and is reason L must be even

− consider filter {h0, h1, h2} of width L = 3

− width 3 requires h0 6= 0 and h2 6= 0

− orthogonality to a shift of 2 requires h0h2 = 0 – impossible!

WMTSA: 69 IV–7



Haar Wavelet Filter

• simplest wavelet filter is Haar (L = 2): h0 = 1√
2

& h1 = − 1√
2

• note that h0 + h1 = 0 and h2
0 + h2

1 = 1, as required

• orthogonality to even shifts also readily apparent
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D(4) Wavelet Filter: I

• next simplest wavelet filter is D(4), for which L = 4:

h0 =
1−
√

3
4
√

2
, h1 =

−3+
√

3
4
√

2
, h2 =

3+
√

3
4
√

2
, h3 =

−1−
√

3
4
√

2

− ‘D’ stands for Daubechies

− L = 4 width member of her ‘extremal phase’ wavelets

• computations show
∑
l hl = 0 &

∑
l h

2
l = 1, as required

• orthogonality to even shifts apparent except for ±2 case:
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D(4) Wavelet Filter: II

• Q: what is rationale for D(4) filter?

• consider X
(1)
t ≡ Xt −Xt−1 = a0Xt + a1Xt−1,

where {a0 = 1, a1 = −1} defines 1st difference filter:

{Xt} −→ {1,−1} −→ {X(1)
t }

− Haar wavelet filter is normalized 1st difference filter

−X(1)
t is difference between two ‘1 point averages’

• consider filter cascade with two 1st difference filters:

{Xt} −→ {1,−1} −→ {1,−1} −→ {X(2)
t }

• equivalent filter defines 2nd difference filter:

{Xt} −→ {1,−2, 1} −→ {X(2)
t }

WMTSA: 60–61 IV–10



D(4) Wavelet Filter: III

• renormalizing and shifting 2nd difference filter yields high-pass
filter considered earlier:

at =


1
2, t = 0

−1
4, t = −1 or 1

0, otherwise

(mentioned as being highly discretized Mexican hat wavelet)

• consider ‘2 point weighted average’ followed by 2nd difference:

{Xt} −→ {a, b} −→ {1,−2, 1} −→ {Yt}

• D(4) wavelet filter based on equivalent filter for above:

{Xt} −→ {h0, h1, h2, h3} −→ {Yt}

WMTSA: 60–61 IV–11



D(4) Wavelet Filter: IV

• using conditions

1. summation to zero: h0 + h1 + h2 + h3 = 0

2. unit energy: h2
0 + h2

1 + h2
2 + h2

3 = 1

3. orthogonality to even shifts: h0h2 + h1h3 = 0

can solve for feasible values of a and b (Exer. [4.1])

• one solution is a =
1+
√

3
4
√

2
.
= 0.48 and b =

−1+
√

3
4
√

2
.
= 0.13

(other solutions yield essentially the same filter)

• interpret D(4) filtered output as changes in weighted averages

− ‘change’ now measured by 2nd difference (1st for Haar)

− average is now 2 point weighted average (1 point for Haar)

− can argue that effective scale of weighted average is one

WMTSA: 60–61 IV–12



A Selection of Other Wavelet Filters: I

• lots of other wavelet filters exist – here are three we’ll see later

• D(6) wavelet filter (top) and C(6) wavelet filter (bottom)
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A Selection of Other Wavelet Filters: II

• LA(8) wavelet filter (‘LA’ stands for ‘least asymmetric’)
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• all 3 wavelet filters resemble Mexican hat (somewhat)

• can interpret each filter as cascade consisting of

− weighted average of effective width of 1

− higher order differences

• filter outputs can be interpreted as changes in weighted averages

WMTSA: 108–109 IV–14



First Level Wavelet Coefficients: I

• given wavelet filter {hl} of width L & time series of length
N = 2J , goal is to define matrix W for computing W =WX

• periodize {hl} to length N to form h◦0, h
◦
1, . . . , h

◦
N−1

• circularly filter X using {h◦l } to yield output

N−1∑
l=0

h◦lXt−l mod N , t = 0, . . . , N − 1

• starting with t = 1, take every other value of output to define

W1,t ≡
N−1∑
l=0

h◦lX2t+1−l mod N , t = 0, . . . , N2 − 1;

{W1,t} formed by downsampling filter output by a factor of 2

WMTSA: 70 IV–15



First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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First Level Wavelet Coefficients: II

• example of formation of {W1,t}
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• note: ‘↓ 2’ denotes ‘downsample by two’ (take every 2nd value)
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First Level Wavelet Coefficients: III

• {W1,t} are unit scale wavelet coefficients

− j in Wj,t indicates a particular group of wavelet coefficients

− j = 1, 2, . . . , J (upper limit tied to sample size N = 2J)

− will refer to index j as the level

− thus W1,t is associated with level j = 1

−W1,t also associated with scale 1

− level j is associated with scale 2j−1 (more on this later)

• {W1,t} forms first N/2 elements of W =WX

• first N/2 elements of W form subvector W1

•W1,t is tth element of W1

• also have W1 =W1X, with W1 being first N/2 rows of W

WMTSA: 70 IV–17



Upper Half of DWT Matrix: I

• setting t = 0 in definition for W1,t yields

W1,0 =

N−1∑
l=0

h◦lX1−l mod N

= h◦0X1 + h◦1X0 + h◦2XN−1 + · · · + h◦N−2X3 + h◦N−1X2

= h◦1X0 + h◦0X1 + h◦N−1X2 + h◦N−2X3 + · · · + h◦2XN−1

• recall W1,0 = 〈W0•,X〉, whereWT
0• is first row ofW & ofW1

• comparison with above says that

WT
0• =

[
h◦1, h

◦
0, h
◦
N−1, h

◦
N−2, . . . , h

◦
5, h
◦
4, h
◦
3, h
◦
2

]

WMTSA: 71 IV–18



Upper Half of DWT Matrix: II

• similar examination of W1,1, . . .W
1,N2

shows following pattern

− circularly shift W0• by 2 to get 2nd row of W :

WT
1• =

[
h◦3, h

◦
2, h
◦
1, h
◦
0, h
◦
N−1, h

◦
N−2, . . . , h

◦
5, h
◦
4

]
− form Wj• by circularly shifting Wj−1• by 2, ending with

WT
N
2 −1• =

[
h◦N−1, h

◦
N−2, . . . , h

◦
5, h
◦
4, h
◦
3, h
◦
2, h
◦
1, h
◦
0

]
• if L ≤ N (usually the case), then

h◦l ≡

{
hl, 0 ≤ l ≤ L− 1

0, otherwise

WMTSA: 71 IV–19



Example: Upper Half of Haar DWT Matrix

• consider Haar wavelet filter (L = 2): h0 = 1√
2

& h1 = − 1√
2

• when N = 16, upper half of W (i.e., W1) looks like

h1 h0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 h1 h0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 h1 h0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 h1 h0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 h1 h0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 h1 h0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 h1 h0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 h1 h0


• rows obviously orthogonal to each other

IV–20



Example: Upper Half of D(4) DWT Matrix

• when L = 4 & N = 16, W1 (i.e., upper half of W) looks like

h1 h0 0 0 0 0 0 0 0 0 0 0 0 0 h3 h2
h3 h2 h1 h0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 h3 h2 h1 h0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 h3 h2 h1 h0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 h3 h2 h1 h0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 h3 h2 h1 h0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 h3 h2 h1 h0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 h3 h2 h1 h0


• rows orthogonal because h0h2 + h1h3 = 0

• note: 〈W0•,X〉 yields W1,0 = h1X0 + h0X1 + h3X14 + h2X15

• unlike other coefficients from above, this ‘boundary’ coefficient
depends on circular treatment of X (a curse, not a feature!)

WMTSA: 81 IV–21



Orthonormality of Upper Half of DWT Matrix: I

• if L ≤ N , orthonormality of rows of W1 follows readily from
orthonormality of {hl}
• as example of L > N case (comes into play at higher levels),

consider N = 4 and L = 6:

h◦0 = h0 + h4; h◦1 = h1 + h5; h◦2 = h2; h◦3 = h3

• W1 is:[
h◦1 h

◦
0 h
◦
3 h
◦
2

h◦3 h
◦
2 h
◦
1 h
◦
0

]
=

[
h1 + h5 h0 + h4 h3 h2
h3 h2 h1 + h5 h0 + h4

]
• inner product of two rows is

h1h3 + h3h5 + h0h2 + h2h4 + h1h3 + h3h5 + h0h2 + h2h4

= 2(h0h2 + h1h3 + h2h4 + h3h5) = 0

because {hl} is orthogonal to {hl+2} (an even shift)
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Orthonormality of Upper Half of DWT Matrix: II

• will now show that, for all L and even N ,

W1,t =

N−1∑
l=0

h◦lX2t+1−l mod N , or, equivalently, W1 =W1X

forms half an orthonormal transform; i.e.,

W1WT
1 = IN

2

• need to show that rows ofW1 have unit energy and are pairwise
orthogonal

WMTSA: 72 IV–23



Orthonormality of Upper Half of DWT Matrix: III

• recall what first row of W1 looks like:

WT
0• =

[
h◦1, h

◦
0, h
◦
N−1, h

◦
N−2, . . . , h

◦
2

]
• last N2 − 1 rows formed by circularly shift above by 2, 4, . . .

• orthonormality follows if we can show

N−1∑
n=0

h◦nh
◦
n+l mod N ≡ h◦ ? h◦l =

{
1, if l = 0;

0, if l = 2, 4, . . . , N − 2.

• Exer. [33] says {h◦l } ←→ {H( kN )}

• implies {h◦ ? h◦l } ←→ {|H( kN )|2 = H( kN )}

WMTSA: 72 IV–24



Orthonormality of Upper Half of DWT Matrix: IV

• inverse DFT relationship says that

h◦ ? h◦2l =
1

N

N−1∑
k=0

H( kN )ei2π(2l)k/N

=
1

N


N
2 −1∑
k=0

H( kN )ei4πlk/N +

N
2 −1∑
k=0

H( kN + 1
2)ei4πl(

k
N+1

2)


=

1

N

N
2 −1∑
k=0

[
H( kN ) +H( kN + 1

2)
]
ei4πlk/N

• orthonormality property for {hl} says H( kN ) +H( kN + 1
2) = 2

WMTSA: 72 IV–25



Orthonormality of Upper Half of DWT Matrix: V

• thus have

h◦ ? h◦2l =
2

N

N
2 −1∑
k=0

ei4πlk/N =

{
1, if l = 0;

0, if l = 1, 2, . . . , N2 − 1,

where the last part follows from an application of

N
2 −1∑
k=0

zk =
1− zN/2

1− z
with z = ei4πl/N , so zN/2 = ei2πl = 1

• W1 is thus half of the desired orthonormal DWT matrix

• Q: how can we construct the other half of W?
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The Scaling Filter: I

• create scaling (or ‘father wavelet’) filter {gl} by reversing {hl}
and then changing sign of coefficients with even indices
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.

.

. .

.

.

..

.

.
.

.

.

.
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.

.
.

{hl} {hl} reversed {gl}

Haar

D(4)

D(6)

C(6)

LA(8)

• 2 filters related by gl ≡ (−1)l+1hL−1−l & hl = (−1)lgL−1−l
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The Scaling Filter: II

• {gl} is ‘quadrature mirror’ filter corresponding to {hl}
• properties 2 and 3 of {hl} are shared by {gl}:

2. unit energy:
L−1∑
l=0

g2
l = 1

3. orthogonality to even shifts: for all nonzero integers n, have

L−1∑
l=0

glgl+2n = 0

• scaling & wavelet filters both satisfy orthonormality property

WMTSA: 76 IV–28



First Level Scaling Coefficients: I

• orthonormality property of {hl} was all we needed to prove that
W1 is half of an orthonormal transform (never used

∑
l hl = 0)

• going back and replacing hl with gl everywhere yields another
half of an orthonormal transform

• periodize {gl} to length N to form g◦0 , g
◦
1 , . . . , g

◦
N−1

• circularly filter X using {g◦l } and downsample to define

V1,t ≡
N−1∑
l=0

g◦lX2t+1−l mod N , t = 0, . . . , N2 − 1
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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.

g◦l

X−l mod 16

g◦lX−l mod 16

∑
=
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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g◦l

X1−l mod 16

g◦lX1−l mod 16

∑
=
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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g◦l

X2−l mod 16

g◦lX2−l mod 16

∑
=
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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g◦l

X3−l mod 16

g◦lX3−l mod 16

∑
=
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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g◦l

X4−l mod 16

g◦lX4−l mod 16

∑
=
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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g◦l

X5−l mod 16

g◦lX5−l mod 16

∑
=
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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X6−l mod 16

g◦lX6−l mod 16

∑
=
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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X7−l mod 16

g◦lX7−l mod 16

∑
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First Level Scaling Coefficients: II

• example of formation of {V1,t}

.

.

.

.
............

.

.
.

.

.

.

.
.
.

.

.

.
.

.
.
.

.
.
.

.............

.

.

..

.

.

..
.

g◦l

X8−l mod 16
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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g◦lX11−l mod 16
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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First Level Scaling Coefficients: II

• example of formation of {V1,t}
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↓ 2
V1,t

• {V1,t} are scaling coefficients for level j = 1

• place these N/2 coefficients in vector called V1

WMTSA: 77 IV–30



First Level Scaling Coefficients: III

• define V1 in a manner analogous to W1 so that V1 = V1X

• when L = 4 and N = 16, V1 looks like

g1 g0 0 0 0 0 0 0 0 0 0 0 0 0 g3 g2
g3 g2 g1 g0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 g3 g2 g1 g0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 g3 g2 g1 g0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 g3 g2 g1 g0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g3 g2 g1 g0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 g3 g2 g1 g0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 g3 g2 g1 g0


• V1 obeys same orthonormality property as W1:

similar to W1WT
1 = IN

2
, have V1VT1 = IN

2

WMTSA: 77 IV–31



Orthonormality of V1 and W1: I

• Q: how does V1 help us?

• claim: rows of V1 and W1 are pairwise orthogonal

• readily apparent in Haar case:

..

..............

.

.

..............

.

.

..............

gl

hl

glhl sum = 0
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Orthonormality of V1 and W1: II

• let’s check that orthogonality holds for D(4) case also:

.

.
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.
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.
.

.

.

............

.

.

.

.

............

..
.
.

.

.

..........

..
.

.
............

gl

hl

hl−2

glhl sum = 0

glhl−2 sum = 0

• before proving claim, need to introduce matrices for circularly
shifting vectors

IV–33



Matrices for Circularly Shifting Vectors

• define T and T −1 to be N × N matrices that circularly shift
X = [X0, X1, . . . , XN−1]T either right or left one unit:

TX = [XN−1, X0, X1, . . . , XN−3, XN−2]T

T −1X = [X1, X2, X3, . . . , XN−2, XN−1, X0]T

• for N = 4, here are what these matrices look like:

T =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 & T −1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


• note that T T −1 = IN

• define T 2 = T T , T −2 = T −1T −1 etc.

• for all integers j & k, have T jT k = T j+k, with T 0 ≡ IN

WMTSA: 52 IV–34



Orthonormality of V1 and W1: III

• [T 2tV0•]T and [T 2tW0•]T are tth rows of V1 & W1

• for 0 ≤ t ≤ N
2 − 1 and 0 ≤ t′ ≤ N

2 − 1, need to show that

〈T 2tV0•, T 2t′W0•〉 = 0

• letting n = t′ − t, have, for n = 0, . . . , N2 − 1,

〈T 2tV0•, T 2t′W0•〉 = VT0•T
−2tT 2t′W0•

= VT0•T
2nW0• =

N−1∑
l=0

g◦l h
◦
l+2n mod N

• example for n = 1, L = 4 and N = 16:

VT0• =
[
g1 g0 0 0 0 0 0 0 0 0 0 0 0 0 g3 g2

]
T 2W0• =

[
h3 h2 h1 h0 0 0 0 0 0 0 0 0 0 0 0 0

]
WMTSA: 77–78 IV–35



Frequency Domain Properties of Scaling Filter

• needs some facts about frequency domain properties of {gl}
• define transfer and squared gain functions for {gl}

G(f ) ≡
L−1∑
l=0

gle
−i2πfl & G(f ) ≡ |G(f )|2

• Exer. [76a]: G(f ) = e−i2πf (L−1)H(1
2 − f ), so

G(f ) = |e−i2πf (L−1)|2|H(1
2 − f )|2 = H(1

2 − f )

• evenness of H(·) yields G(f ) = H(f − 1
2)

• unit periodicity of H(·) yields G(f ) = H(f + 1
2)

• H(f ) +H(f + 1
2) = 2 implies

H(f ) + G(f ) = 2 and also G(f ) + G(f + 1
2) = 2

WMTSA: 76 IV–36



Orthonormality of V1 and W1: IV

• to establish orthogonality of V1 and W1, need to show

N−1∑
l=0

g◦l h
◦
l+2n mod N = g◦ ? h◦2n = 0 for n = 0, . . . ,

N

2
− 1,

where {g◦ ? h◦l } is cross-correlation of {g◦l } & {h◦l }

• since {g◦l } ←→ {G( kN )} and {h◦l } ←→ {H( kN )}, have

{g◦ ? h◦l } ←→ {G
∗( kN )H( kN )}

WMTSA: 77–78 IV–37



Orthonormality of V1 and W1: V

• Exer. [78]: use inverse DFT of {G∗( kN )H( kN )} to argue that

g◦?h◦2n =
1

N

N
2 −1∑
k=0

[
G∗( kN )H( kN ) + G∗( kN + 1

2)H( kN + 1
2)
]
ei4πnk/N

and then argue that

G∗( kN )H( kN ) + G∗( kN + 1
2)H( kN + 1

2) = 0,

which establishes orthonormality

• thus W1 & V1 are jointly orthonormal:

W1VT1 = V1WT
1 = 0N

2
in addition to V1VT1 =W1WT

1 = IN
2
,

where 0N
2

is an N
2 ×

N
2 matrix, all of whose elements are zeros

WMTSA: 77–78 IV–38



Orthonormality of V1 and W1: VI

• implies that

P1 ≡
[
W1
V1

]
is an N ×N orthonormal matrix since

P1PT1 =

[
W1
V1

] [
WT

1 ,V
T
1

]
=

[
W1WT

1 W1VT1
V1WT

1 V1VT1

]
=

[
IN

2
0N

2
0N

2
IN

2

]
= IN

• if N = 2 (not of too much interest!), in fact P1 =W
• if N > 2, P1 is an intermediate step: V1 spans same subspace

as lower half of W and will be further manipulated

WMTSA: 77–78 IV–39



Three Comments

• if N even (i.e., don’t need N = 2J), then P1 is well-defined
and can be of interest by itself

• rather than defining gl = (−1)l+1hL−1−l, could use alternative

definition gl = (−1)l+1h1−l (definitions are same for Haar)

− g−(L−2), . . . , g1 would be nonzero rather than g0, . . . , gL−1

− structure of V1 would then not parallel that of W1

− useful for wavelet filters with infinite widths

• scaling and wavelet filters are often called ‘father’ and ‘mother’
wavelet filters, but Strichartz (1994) notes that this terminology

‘. . . shows a scandalous misunderstanding of human repro-
duction; in fact, the generation of wavelets more closely
resembles the reproductive life style of amoebas.’

WMTSA: 79–80 IV–40



Interpretation of Scaling Coefficients: I

• consider Haar scaling filter (L = 2): g0 = g1 = 1√
2

• when N = 16, matrix V1 looks like

g1 g0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 g1 g0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 g1 g0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 g1 g0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g1 g0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 g1 g0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 g1 g0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 g1 g0


• since V1 = V1X, each V1,t is proportional to a 2 point average:

V1,0 = g1X0 + g0X1 = 1√
2
X0 + 1√

2
X1 ∝ X1(2) and so forth

IV–41



Interpretation of Scaling Coefficients: II

• reconsider shapes of {gl} seen so far:

..

.
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.
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.

.
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.
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.

.

.

.

.

.

..

.

.
.

Haar

D(4)

D(6)

C(6)

LA(8)

• for L > 2, can regard V1,t as proportional to weighted average

• can argue that effective width of {gl} is 2 in each case; thus
scale associated with V1,t is 2, whereas scale is 1 for W1,t
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Frequency Domain Properties of {hl} and {gl}

• since W1 and V1 contain (downsampled) output from filters,
let’s look at their squared gain functions

• example: H(·) and G(·) for Haar & D(4) filters

      

 

 

 

 

 

 

 

      

 

Haar
H(·) G(·)

D(4)
H(·) G(·)

2

1

0
2

1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]
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Frequency Domain Properties of {hl} and {gl}

• since W1 and V1 contain (downsampled) output from filters,
let’s look at their squared gain functions

• example: H(·) and G(·) for Haar & D(6) filters

Haar
H(·) G(·)

D(6)
H(·) G(·)

2

1

0
2

1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]
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Frequency Domain Properties of {hl} and {gl}

• since W1 and V1 contain (downsampled) output from filters,
let’s look at their squared gain functions

• example: H(·) and G(·) for Haar & D(8) filters

Haar
H(·) G(·)

D(8)
H(·) G(·)

2

1

0
2

1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]
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Frequency Domain Properties of {hl} and {gl}

• since W1 and V1 contain (downsampled) output from filters,
let’s look at their squared gain functions

• example: H(·) and G(·) for Haar & D(10) filters

Haar
H(·) G(·)

D(10)
H(·) G(·)

2

1

0
2

1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]
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Frequency Domain Properties of {hl} and {gl}

• since W1 and V1 contain (downsampled) output from filters,
let’s look at their squared gain functions

• example: H(·) and G(·) for Haar & D(12) filters

Haar
H(·) G(·)

D(12)
H(·) G(·)

2

1

0
2

1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]
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Frequency Domain Properties of {hl} and {gl}

• since W1 and V1 contain (downsampled) output from filters,
let’s look at their squared gain functions

• example: H(·) and G(·) for Haar & D(14) filters

Haar
H(·) G(·)

D(14)
H(·) G(·)

2

1

0
2

1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]
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Frequency Domain Properties of {hl} and {gl}

• since W1 and V1 contain (downsampled) output from filters,
let’s look at their squared gain functions

• example: H(·) and G(·) for Haar & D(16) filters

Haar
H(·) G(·)

D(16)
H(·) G(·)

2

1

0
2

1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]
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Frequency Domain Properties of {hl} and {gl}

• since W1 and V1 contain (downsampled) output from filters,
let’s look at their squared gain functions

• example: H(·) and G(·) for Haar & D(18) filters

Haar
H(·) G(·)

D(18)
H(·) G(·)

2

1

0
2

1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]
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Frequency Domain Properties of {hl} and {gl}

• since W1 and V1 contain (downsampled) output from filters,
let’s look at their squared gain functions

• example: H(·) and G(·) for Haar & D(20) filters

Haar
H(·) G(·)

D(20)
H(·) G(·)

2

1

0
2

1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]

WMTSA: 73 IV–43



What Kind of Process is {V1,t}?: I

• letting {Xt} ←→ {Xk} & fk = k/N , use inverse DFT to get

Xt = 1
N

N−1∑
k=0

Xkei2πfkt = 1
N

N
2∑

k=−N2 +1

Xkei2πfkt,

where the change in the limits of summation is OK because
{Xk} and {ei2πfkt} are both periodic with a period of N

• since {gl} ←→ G(f ) = |G(f )|eiθ(G)(f ), where |G(f )| ≈
√

2
for |f | ∈ [−1

4,
1
4] and |G(f )| ≈ 0 for |f | ∈ (1

4,
1
2], can argue

L−1∑
l=0

glXt−l mod N ≈
√

2
N

N
4∑

k=−N4 +1

Xkeiθ
(G)(fk)ei2πfkt

WMTSA: 83–84 IV–44



What Kind of Process is {V1,t}?: II

• with downsampling,

V1,t ≈
√

2
N

N
4∑

k=−N4 +1

Xkeiθ
(G)(fk)ei2πfk(2t+1), 0 ≤ t ≤ N

2 − 1

= 2
N

N
4∑

k=−N4 +1

1√
2
Xkeiθ

(G)(fk)ei2πfk × ei2π(2fk)t

≡ 1
N ′

N ′
2∑

k=−N ′2 +1

X ′ke
i2πf ′kt, 0 ≤ t ≤ N ′ − 1

if we let N ′ ≡ N
2 , X ′k ≡

1√
2
Xkeiθ

(G)(fk)ei2πfk and f ′k ≡ 2fk

WMTSA: 83–84 IV–45



What Kind of Process is {V1,t}?: III

• let’s study the above result:

V1,t ≈ 1
N ′

N ′
2∑

k=−N ′2 +1

X ′ke
i2πf ′kt, 0 ≤ t ≤ N ′ − 1

• X ′k is associated with f ′k = 2fk = 2k
N = k

N/2
= k
N ′

• since −N
′

2 + 1 ≤ k ≤ N ′
2 , have −1

2 < f ′k ≤
1
2

• whereas result of filtering {Xt} with {gl} is a ‘half-band’ (low-
pass) process involving approximately just fk ∈ [−1

4,
1
4] down-

sampled process {V1,t} is ‘full-band’ involving f ′k ∈ [−1
2,

1
2]

WMTSA: 83–84 IV–46



What Kind of Process is {W1,t}?: I

• in a similar manner, because hl ≈ high pass, can argue that

L−1∑
l=0

hlXt−l mod N ≈
√

2
N

 −N4∑
k=−N2 +1

+

N
2∑

k=N
4 +1

Xkeiθ(H)(fk)ei2πfkt

• with downsampling,

W1,t ≈ 1
N ′

N ′
2∑

k=−N ′2 +1

X ′ke
i2πf ′kt, 0 ≤ t ≤ N ′ − 1,

where now X ′k = − 1√
2
X
k+N

2
eiθ

(H)(fk+1
2)ei2πfk

WMTSA: 84-85 IV–47



What Kind of Process is {W1,t}?: II

• note that |X ′k| ∝ |Xk+N
2
| = |X

k−N2
| because {Xk} is periodic

• sinceXt is real-valued, |X−k| = |Xk| and hence |X ′k| ∝ |XN
2 −k
|

• as before, X ′k is associated with f ′k = 2fk

• XN
2 −k

is associated with fN
2 −k

= 1
2 − fk

• conclusion: the coefficient for W1,t at f ′k is related to the coef-

ficient for Xt at 1
2 − fk

• in particular, coefficients for f ′k ∈ [0, 1
2] are related to those for

fk ∈ [14,
1
2], but in a reversed direction

• whereas filtering {Xt} with {hl} yields a ‘half-band’ (high-
pass) process, the downsampled process {W1,t} is ‘full-band’

WMTSA: 84-85 IV–48



Example: {V1,t} and {W1,t} as Full-Band Processes

• {V1,t} and {W1,t} formed using Haar DWT
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• plots are of magnitude squared DFTs for {Xt} etc.
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Example of Decomposing X into W1 and V1: I

• oxygen isotope records X from Antarctic ice core
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Example of Decomposing X into W1 and V1: II

• oxygen isotope record series X has N = 352 observations

• spacing between observations is ∆t
.
= 0.5 years

• used Haar DWT, obtaining 176 scaling and wavelet coefficients

• scaling coefficients V1 related to averages on scale of 2∆t

• wavelet coefficients W1 related to changes on scale of ∆t

• coefficients V1,t and W1,t plotted against mid-point of years
associated with X2t and X2t+1

• note: variability in wavelet coefficients increasing with time
(thought to be due to diffusion)

• data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar
Environmental Centre, Tromsø, Norway

IV–51



Reconstructing X from W1 and V1

• in matrix notation, form wavelet & scaling coefficients via[
W1
V1

]
=

[
W1X
V1X

]
=

[
W1
V1

]
X = P1X

• recall that PT1 P1 = IN because P1 is orthonormal

• since PT1 P1X = X, premultiplying both sides by PT1 yields

PT1
[
W1
V1

]
=
[
WT

1 V
T
1

] [W1
V1

]
=WT

1 W1 + VT1 V1 = X

• D1 ≡ WT
1 W1 is the first level detail

• S1 ≡ VT1 V1 is the first level ‘smooth’

•X = D1 + S1 in this notation

WMTSA: 80–81 IV–52



Construction of First Level Detail: I

• consider D1 =WT
1 W1 for L = 4 & N > L:

D1 =



h1 h3 0 · · · 0 0
h0 h2 0 · · · 0 0
0 h1 h3 · · · 0 0
0 h0 h2 · · · 0 0
... ... ... · · · ... ...
0 0 0 · · · h1 h3
0 0 0 · · · h0 h2
h3 0 0 · · · 0 h1
h2 0 0 · · · 0 h0





W1,0
W1,1
W1,2

...
W1,N/2−2

W1,N/2−1



note: WT
1 is N × N

2 & W1 is N2 × 1

• D1 is not result of filtering W1,t’s with {h0, h1, h2, h3}

WMTSA: 81 IV–53



Construction of First Level Detail: II

• augment W1 to N ×N and W1 to N × 1:

D1 =



h1 h3 0 · · · 0 0
h0 h2 0 · · · 0 0
0 h1 h3 · · · 0 0
0 h0 h2 · · · 0 0
... ... ... · · · ... ...
0 0 0 · · · h1 h3
0 0 0 · · · h0 h2
h3 0 0 · · · 0 h1
h2 0 0 · · · 0 h0





W1,0

W1,1

W1,2
...

W1,N/2−2

W1,N/2−1


• can now regard the above as equivalent to use of a filter

WMTSA: 82 IV–54



Construction of First Level Detail: II

• augment W1 to N ×N and W1 to N × 1:

D1 =



h0 h1 h2 h3 0 0 · · · 0 0 0
0 h0 h1 h2 h3 0 · · · 0 0 0
0 0 h0 h1 h2 h3 · · · 0 0 0
0 0 0 h0 h1 h2 · · · 0 0 0
... ... ... ... ... ... · · · ... ... ...
0 0 0 0 0 0 · · · h1 h2 h3
h3 0 0 0 0 0 · · · h0 h1 h2
h2 h3 0 0 0 0 · · · 0 h0 h1
h1 h2 h3 0 0 0 · · · 0 0 h0





0
W1,0

0
W1,1

0
W1,2

...
W1,N/2−2

0
W1,N/2−1


• can now regard the above as equivalent to use of a filter

WMTSA: 82 IV–54



Construction of First Level Detail: III

• formally, define upsampled (by 2) version of W1,t’s:

W
↑
1,t ≡

{
0, t = 0, 2, . . . , N − 2;

W1,(t−1)/2 = W(t−1)/2, t = 1, 3, . . . , N − 1

• example of upsampling:

.

.

.
.
.

.

.

.
.

.

.
.
.

.

.

.

........W1,t ↑ 2 W ↑
1,t

• note: ‘↑ 2’ denotes ‘upsample by 2’ (put 0’s before values)

WMTSA: 82 IV–55



Construction of First Level Detail: IV

• can now write

D1,t =

N−1∑
l=0

h◦lW
↑
1,t+l mod N , t = 0, 1, . . . , N − 1

• doesn’t look exactly like filtering, which would look like
N−1∑
l=0

h◦lW
↑
1,t−l mod N ; i.e., direction of W

↑
1,t not reversed

• form that D1,t takes is what engineers call ‘cross-correlation’

• if {hl} ←→ H(·), cross-correlating {hl}& {W ↑1,t} is equivalent

to filtering {W ↑1,t} using filter with transfer function H∗(·)

• D1 formed by circularly filtering {W ↑1,t} with filter {H∗( kN )}

WMTSA: 82–83 IV–56



Synthesis (Reconstruction) of X

• can also write the tth element of first level smooth S1 as

S1,t =

L−1∑
l=0

glV
↑

1,t+l mod N , t = 0, 1, . . . , N − 1

• since {gl} ←→ G(·), cross-correlating {gl} & {V ↑1,t} is the

same as circularly filtering {V ↑1,t} using the filter {G∗( kN )}
• since X = S1 +D1, can write

Xt =

N−1∑
l=0

h◦lW
↑
1,t+l mod N +

N−1∑
l=0

g◦l V
↑

1,t+l mod N ,

which is the filtering version of X =WT
1 W1 + VT1 V1

WMTSA: 83 IV–57



Example of Synthesizing X from D1 and S1

• Haar-based decomposition for oxygen isotope records X
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First Level Variance Decomposition: I

• recall that ‘energy’ in X is its squared norm ‖X‖2

• because P1 is orthonormal, have PT1 P1 = IN and hence

‖P1X‖2 = (P1X)TP1X = XTPT1 P1X = XTX = ‖X‖2

• can conclude that ‖X‖2 = ‖W1‖2 + ‖V1‖2 because

P1X =

[
W1
V1

]
and hence ‖P1X‖2 = ‖W1‖2 + ‖V1‖2

• leads to a decomposition of the sample variance for X:

σ̂2
X ≡

1

N

N−1∑
t=0

(
Xt −X

)2
=

1

N
‖X‖2 −X2

=
1

N
‖W1‖2 +

1

N
‖V1‖2 −X

2

IV–59



First Level Variance Decomposition: II

• breaks up σ̂2
X into two pieces:

1. 1
N‖W1‖2, attributable to changes in averages over scale 1

2. 1
N‖V1‖2 −X

2
, attributable to averages over scale 2

• Haar-based example for oxygen isotope records

− first piece: 1
N‖W1‖2

.
= 0.295

− second piece: 1
N‖V1‖2 −X

2 .
= 2.909

− sample variance: σ̂2
X
.
= 3.204

− changes on scale of ∆t
.
= 0.5 years account for 9% of σ̂2

X
(standardized scale of 1 corresponds to physical scale of ∆t)

IV–60



Summary of First Level of Basic Algorithm

• transforms {Xt : t = 0, . . . , N − 1} into 2 types of coefficients

• N/2 wavelet coefficients {W1,t} associated with:

−W1, a vector consisting of first N/2 elements of W

− changes on scale 1 and nominal frequencies 1
4 ≤ f ≤ 1

2
− first level detail D1

−W1, an N
2 ×N matrix consisting of first N2 rows of W

• N/2 scaling coefficients {V1,t} associated with:

−V1, a vector of length N/2

− averages on scale 2 and nominal frequencies 0 ≤ f ≤ 1
4

− first level smooth S1

− V1, an N
2 × N matrix spanning same subspace as last N/2

rows of W
WMTSA: 86–87 IV–61



Level One Analysis and Synthesis of X

• can express analysis/synthesis of X as a flow diagram

G( kN ) −→
↓2

V1
↑2−→ G∗( kN ) −→ S1

↗ ↘
X + −→ X
↘ ↗

H( kN ) −→
↓2

W1
↑2−→ H∗( kN ) −→ D1

WMTSA: 80, 83 IV–62



Constructing Remaining DWT Coefficients: I

• have regarded time series Xt as ‘one point’ averages Xt(1) over

− physical scale of ∆t (sampling interval between observations)

− standardized scale of 1

• first level of basic algorithm transforms X of length N into

− N/2 wavelet coefficients W1 ∝ changes on a scale of 1

− N/2 scaling coefficients V1 ∝ averages of Xt on a scale of 2

• in essence basic algorithm takes length N series X related to
scale 1 averages and produces

− length N/2 series W1 associated with the same scale

− length N/2 series V1 related to averages on double the scale

WMTSA: Section 4.5 IV–63



Constructing Remaining DWT Coefficients: II

• Q: what if we now treat V1 in the same manner as X?

• basic algorithm will transform length N/2 series V1 into

− length N/4 series W2 associated with the same scale (2)

− length N/4 series V2 related to averages on twice the scale

• by definition, W2 contains the level 2 wavelet coefficients

• Q: what if we treat V2 in the same way?

• basic algorithm will transform length N/4 series V2 into

− length N/8 series W3 associated with the same scale (4)

− length N/8 series V3 related to averages on twice the scale

• by definition, W3 contains the level 3 wavelet coefficients

WMTSA: Sections 4.5 and 4.6 IV–64



Constructing Remaining DWT Coefficients: III

• continuing in this manner defines remaining subvectors of W
(recall that W =WX is the vector of DWT coefficients)

• at each level j, outputs Wj and Vj from the basic algorithm
are each half the length of the input Vj−1

• length of Vj given by N/2j

• since N = 2J , length of VJ is 1, at which point we must stop

• J applications of the basic algorithm define the subvectors W1,
W2, . . ., WJ , VJ of DWT coefficient vector W

• overall scheme is known as the ‘pyramid’ algorithm

• item [1] of Comments and Extensions to Sec. 4.6 has pseudo
code for DWT pyramid algorithm

WMTSA: Section 4.6, 100–101 IV–65



Scales Associated with DWT Coefficients

• jth level of algorithm transforms scale 2j−1 averages into

– differences of averages on scale 2j−1, i.e., Wj, the wavelet
coefficients

– averages on scale 2× 2j−1 = 2j, i.e., Vj, the scaling coeffi-
cients

• let τj ≡ 2j−1 be standardized scale associated with Wj

− for j = 1, . . . , J , takes on values 1, 2, 4, . . . , N/4, N/2

− physical (actual) scale given by τj ∆t

• let λj ≡ 2j be standardized scale associated with Vj

− takes on values 2, 4, 8, . . . , N/2, N

− physical scale given by λj ∆t

WMTSA: 85 IV–66



Matrix Description of Pyramid Algorithm: I

• define N
2j
× N

2j−1 matrix Bj in same way as N2 ×N matrixW1;

i.e., rows contain {hl} periodized to length N/2j−1

• for N/2j = 8 and N/2j−1 = 16 when L = 4, have

Bj =



h1 h0 0 0 0 0 0 0 0 0 0 0 0 0 h3 h2
h3 h2 h1 h0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 h3 h2 h1 h0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 h3 h2 h1 h0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 h3 h2 h1 h0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 h3 h2 h1 h0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 h3 h2 h1 h0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 h3 h2 h1 h0


• matrix gets us jth level wavelet coefficients via Wj = BjVj−1

WMTSA: 94 IV–67



Matrix Description of Pyramid Algorithm: II

• define N
2j
× N

2j−1 matrix Aj in same way as N2 ×N matrix V1;

i.e., rows contain {gl} periodized to length N/2j−1

• for N/2j = 8 and N/2j−1 = 16 when L = 4, have

Aj =



g1 g0 0 0 0 0 0 0 0 0 0 0 0 0 g3 g2
g3 g2 g1 g0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 g3 g2 g1 g0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 g3 g2 g1 g0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 g3 g2 g1 g0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g3 g2 g1 g0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 g3 g2 g1 g0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 g3 g2 g1 g0


• matrix gets us jth level scaling coefficients via Vj = AjVj−1

WMTSA: 94 IV–68



Matrix Description of Pyramid Algorithm: III

• if we define V0 = X and let j = 1, then

Wj = BjVj−1 reduces to W1 = B1V0 = B1X =W1X

because B1 has the same definition as W1

• likewise, when j = 1,

Vj = AjVj−1 reduces to V1 = A1V0 = A1X = V1X

because A1 has the same definition as V1

WMTSA: 94 IV–69



Formation of Submatrices of W: I

• using Vj = AjVj−1 repeatedly and V1 = A1X, can write

Wj = BjVj−1

= BjAj−1Vj−2

= BjAj−1Aj−2Vj−3

= BjAj−1Aj−2 · · · A1X ≡ WjX,

where Wj is N
2j
×N submatrix of W responsible for Wj

• likewise, can get 1×N submatrix VJ responsible for VJ

VJ = AJVJ−1

= AJAJ−1VJ−2

= AJAJ−1AJ−2VJ−3

= AJAJ−1AJ−2 · · · A1X ≡ VJX

• VJ is the last row ofW , & all its elements are equal to 1/
√
N

WMTSA: 94 IV–70



Formation of Submatrices of W: II

• have now constructed all of DWT matrix:

W =



W1
W2
W3
W4

...
Wj

...
WJ
VJ


=



B1
B2A1
B3A2A1
B4A3A2A1

...
BjAj−1 · · · A1

...
BJAJ−1 · · · A1
AJAJ−1 · · · A1



WMTSA: 94 IV–71



Examples of W and its Partitioning: I

• N = 16 case for Haar DWT matrix W
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• above agrees with qualitative description given previously
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Examples of W and its Partitioning: II

• N = 16 case for D(4) DWT matrix W
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• note: elements of last row equal to 1/
√
N = 1/4, as claimed
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Matrix Description of Multiresolution Analysis: I

• just as we could reconstruct X from W1 and V1 using

X =WT
1 W1 + VT1 V1,

so can we reconstruct Vj−1 from Wj and Vj using

Vj−1 = BTj Wj +ATj Vj

(recall the correspondences V0 = X, B1 =W1 and A1 = V1)

• we can thus write

X = BT1 W1 +AT1 V1

= BT1 W1 +AT1 (BT2 W2 +AT2 V2)

= BT1 W1 +AT1 B
T
2 W2 +AT1A

T
2 V2

= BT1 W1 +AT1 B
T
2 W2 +AT1A

T
2 (BT3 W3 +AT3 V3)

= BT1 W1 +AT1 B
T
2 W2 +AT1A

T
2 B

T
3 W3 +AT1A

T
2A

T
3 V3
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Matrix Description of Multiresolution Analysis: II

• studying the bottom line

X = BT1 W1 +AT1 B
T
2 W2 +AT1A

T
2 B

T
3 W3 +AT1A

T
2A

T
3 V3

says jth level detail should be Dj ≡ AT1A
T
2 · · · A

T
j−1B

T
j Wj

• likewise, letting jth level smooth be Sj ≡ AT1A
T
2 · · · A

T
j Vj

yields, for 1 ≤ k ≤ J ,

X =

k∑
j=1

Dj + Sk and, in particular, X =

J∑
j=1

Dj + SJ

• above are multiresolution analyses (MRAs) for levels k and J ;
i.e., additive decomposition (first of two basic decompositions
derivable from DWT)
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Matrix Description of Energy Decomposition: I

• just as we can recover the energy in X from W1 & V1 using

‖X‖2 = ‖W1‖2 + ‖V1‖2,
so can we recover the energy in Vj−1 from Wj & Vj using

‖Vj−1‖2 = ‖Wj‖2 + ‖Vj‖2

(recall the correspondence V0 = X)

• we can thus write

‖X‖2 = ‖W1‖2 + ‖V1‖2

= ‖W1‖2 + ‖W2‖2 + ‖V2‖2

= ‖W1‖2 + ‖W2‖2 + ‖W3‖2 + ‖V3‖2

WMTSA: 95 IV–76



Matrix Description of Energy Decomposition: II

• generalizing from the bottom line

‖X‖2 = ‖W1‖2 + ‖W2‖2 + ‖W3‖2 + ‖V3‖2

indicates that, for 1 ≤ k ≤ J , we can write

‖X‖2 =

k∑
j=1

‖Wj‖2 + ‖Vk‖2

and, in particular,

‖X‖2 =

J∑
j=1

‖Wj‖2 + ‖VJ‖2

• above are energy decompositions for levels k and J
(second of two basic decompositions derivable from DWT)

WMTSA: 95 IV–77



Partial DWT: I

• J repetitions of pyramid algorithm for X of length N = 2J

yields ‘complete’ DWT, i.e., W =WX

• can choose to stop at J0 < J repetitions, yielding a ‘partial’
DWT of level J0:

W1
W2

...
Wj

...
WJ0
VJ0


X =



B1
B2A1

...
BjAj−1 · · · A1

...
BJ0
AJ0−1 · · · A1

AJ0
AJ0−1 · · · A1


X =



W1
W2

...
Wj

...
WJ0
VJ0


• VJ0

is N
2J0
×N , yielding N

2J0
coefficients for scale λJ0

= 2J0
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Partial DWT: II

• only requires N to be integer multiple of 2J0

• partial DWT more common than complete DWT

• choice of J0 is application dependent

• multiresolution analysis for partial DWT:

X =

J0∑
j=1

Dj + SJ0

SJ0
represents averages on scale λJ0

= 2J0 (includes X)

• analysis of variance for partial DWT:

σ̂2
X =

1

N

J0∑
j=1

‖Wj‖2 +
1

N
‖VJ0

‖2 −X2

WMTSA: 104 IV–79



Example of J0 = 4 Partial Haar DWT

• oxygen isotope records X from Antarctic ice core
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Example of J0 = 4 Partial Haar DWT

• oxygen isotope records X from Antarctic ice core
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Example of MRA from J0 = 4 Partial Haar DWT

• oxygen isotope records X from Antarctic ice core
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Example of Variance Decomposition

• decomposition of sample variance from J0 = 4 partial DWT

σ̂2
X ≡

1

N

N−1∑
t=0

(
Xt −X

)2
=

4∑
j=1

1

N
‖Wj‖2 +

1

N
‖V4‖2 −X

2

• Haar-based example for oxygen isotope records

− 0.5 year changes: 1
N‖W1‖2

.
= 0.295 (

.
= 9.2% of σ̂2

X)

− 1.0 years changes: 1
N‖W2‖2

.
= 0.464 (

.
= 14.5%)

− 2.0 years changes: 1
N‖W3‖2

.
= 0.652 (

.
= 20.4%)

− 4.0 years changes: 1
N‖W4‖2

.
= 0.846 (

.
= 26.4%)

− 8.0 years averages: 1
N‖V4‖2 −X

2 .
= 0.947 (

.
= 29.5%)

− sample variance: σ̂2
X
.
= 3.204
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Filtering Description of Pyramid Algorithm

• flow diagrams for analyses of X at level 1 and of Vj−1 at level
j are quite similar:

G( kN ) −→
↓2

V1

↗
X
↘

H( kN ) −→
↓2

W1

G( k
Nj−1

) −→
↓2

Vj

↗
Vj−1

↘
H( k

Nj−1
) −→
↓2

Wj

• in the above Nj ≡ N/2j (also recall V0 = X by definition)

WMTSA: 80, 94 IV–83



Equivalent Wavelet Filter for Level j = 3

• consider flow diagram for extracting W3 from X:

X −→ G( kN ) −→
↓2

G( kN1
) −→
↓2

H( kN2
) −→
↓2

W3

• can be regarded as filter cascade, but must adjust for ‘↓ 2’

• equivalent filter for cascade can be represented by

− impulse response sequence {h3,l}
− transfer function H3(f ) ≡ G(f )G(2f )H(4f ), where,

as usual, {h3,l} ←→ H3(·)
• in above, ‘2f ’ and ‘4f ’ adjust for downsampling (Exer. [91])

• with the equivalent filter, flow diagram becomes

X −→ H3( kN ) −→
↓8

W3

WMTSA: 95–96 IV–84



Equivalent Scaling Filter for Level j = 3

• similar results hold for transforming X into V3:

X −→ G( kN ) −→
↓2

G( kN1
) −→
↓2

G( kN2
) −→
↓2

V3

• equivalent filter for cascade can be represented by

− impulse response sequence {g3,l}
− transfer function G3(f ) ≡ G(f )G(2f )G(4f ), where,

once again, {g3,l} ←→ G3(·)
• with the equivalent filter, flow diagram becomes

X −→ G3( kN ) −→
↓8

V3

WMTSA: 96–97 IV–85



Equivalent Wavelet & Scaling Filters for Level j

• results generalize in an obvious way to other levels j

• jth level equivalent wavelet filter can be represented by

− impulse response sequence {hj,l} ←→ Hj(·)
− transfer function Hj(f ) ≡ H(2j−1f )

∏j−2
l=0 G(2lf )

• jth level equivalent scaling filter can be represented by

− impulse response sequence {gj,l} ←→ Gj(·)
− transfer function Gj(f ) ≡

∏j−1
l=0 G(2lf )

• convenient to define H1(f ) = H(f ) and G1(f ) = G(f )

• flow diagrams become

X −→ Hj(
k
N ) −→

↓2j
Wj and X −→ Gj(

k
N ) −→

↓2j
Vj

WMTSA: 95–97 IV–86



Relating Filtering and Matrix Descriptions

• because Wj =WjX and because

X −→ Hj(
k
N ) −→

↓2j
Wj

can argue that

− rows ofWj must contain values dictated by {hj,l} after pe-
riodization to length N

− adjacent rows are circularly shifted by 2j units

• from Vj = VjX & related flow diagram, can also argue that

− rows of Vj must contain values dictated by {gj,l} after peri-
odization to length N

− adjacent rows are circularly shifted by 2j units

WMTSA: 95–97 IV–87



Haar Equivalent Wavelet & Scaling Filters
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L = 2

L2 = 4

L3 = 8

L4 = 16

L = 2

L2 = 4

L3 = 8

L4 = 16

• Lj = 2j is width of {hj,l} and {gj,l}
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D(4) Equivalent Wavelet & Scaling Filters
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{hl}

{h2,l}

{h3,l}

{h4,l}

{gl}

{g2,l}

{g3,l}

{g4,l}

L = 4

L2 = 10

L3 = 22

L4 = 46

L = 4

L2 = 10

L3 = 22

L4 = 46

• Lj dictated by general formula Lj = (2j − 1)(L− 1) + 1,

but can argue that effective width is 2j (same as Haar Lj)
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D(6) Equivalent Wavelet & Scaling Filters
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L = 6

L2 = 16

L3 = 36

L4 = 76

L = 6

L2 = 16

L3 = 36

L4 = 76

• {h4,l} resembles discretized version of Mexican hat wavelet
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C(6) Equivalent Wavelet & Scaling Filters
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L = 6
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L4 = 76

• {gj,l} yields ‘triangularly’ weighted average (effective width 2j)
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LA(8) Equivalent Wavelet & Scaling Filters
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{h2,l}

{h3,l}
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{g3,l}

{g4,l}

L = 8

L2 = 22

L3 = 50

L4 = 106

L = 8

L2 = 22

L3 = 50

L4 = 106

• {hj,l} resembles discretized version of Mexican hat wavelet,

again with an effective width of 2j
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Squared Gain Functions for Filters

• squared gain functions give us frequency domain properties:

Hj(f ) ≡ |Hj(f )|2 and Gj(f ) ≡ |Gj(f )|2

• example: squared gain functions for LA(8) J0 = 4 partial DWT

G4(·)

H4(·)

H3(·)

H2(·)

H1(·)

16

0
16

0
8

0
4

0
2

0
0 1

16
1
8

3
16

1
4

5
16

3
8

7
16

1
2

f
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Summary of Key Points about the DWT: I

• DWT W is orthonormal, i.e., satisfies WTW = IN

• construction of W starts with a wavelet filter {hl} of even
length L that by definition

1. sums to zero; i.e.,
∑
l hl = 0;

2. has unit energy; i.e.,
∑
l h

2
l = 1; and

3. is orthogonal to its even shifts; i.e.,
∑
l hlhl+2n = 0

• 2 and 3 together called orthonormality property

• wavelet filter defines a scaling filter via gl = (−1)l+1hL−1−l
• scaling filter satisfies the orthonormality property, but sums to√

2 and is also orthogonal to {hl}; i.e.,
∑
l glhl+2n = 0

• while {hl} is a high-pass filter, {gl} is a low-pass filter

WMTSA: 150–156 IV–94



Summary of Key Points about the DWT: II

• {hl} and {gl} work in tandem to split time series X into

− wavelet coefficients W1 (related to changes in averages on a
unit scale) and

− scaling coefficients V1 (related to averages on a scale of 2)

• {hl} and {gl} are then applied to V1, yielding

− wavelet coefficients W2 (related to changes in averages on a
scale of 2) and

− scaling coefficients V2 (related to averages on a scale of 4)

• continuing beyond these first 2 levels, scaling coefficients Vj−1
at level j − 1 are transformed into wavelet and scaling coeffi-
cients Wj and Vj of scales τj = 2j−1 and λj = 2j

WMTSA: 150–156 IV–95



Summary of Key Points about the DWT: III

• after J0 repetitions, this ‘pyramid’ algorithm transforms time
series X whose length N is an integer multiple of 2J0 into DWT
coefficients W1, W2, . . ., WJ0

and VJ0
(sizes of vectors are

N
2 , N4 , . . ., N

2J0
and N

2J0
, for a total of N coefficients in all)

• DWT coefficients lead to two basic decompositions

• first decomposition is additive and is known as a multiresolution
analysis (MRA), in which X is reexpressed as

X =

J0∑
j=1

Dj + SJ0
,

where Dj is a time series reflecting variations in X on scale τj,
while SJ0

is a series reflecting its λJ0
averages

WMTSA: 150–156 IV–96



Summary of Key Points about the DWT: IV

• second decomposition reexpresses the energy (squared norm)
of X on a scale by scale basis, i.e.,

‖X‖2 =

J0∑
j=1

‖Wj‖2 + ‖VJ0
‖2,

leading to an analysis of the sample variance of X:

σ̂2
X =

1

N

N−1∑
t=0

(
Xt −X

)2

=
1

N

J0∑
j=1

‖Wj‖2 +
1

N
‖VJ0

‖2 −X2

WMTSA: 150–156 IV–97


