Defining the Discrete Wavelet Transform (DWT)

- can formulate DWT via elegant 'pyramid' algorithm
- defines \mathcal{W} for non-Haar wavelets (consistent with Haar)
- computes $\mathbf{W} = \mathcal{W}\mathbf{X}$ using O(N) multiplications
 - 'brute force' method uses $O(N^2)$ multiplications
 - faster than celebrated algorithm for fast Fourier transform! (this uses $O(N \cdot \log_2(N))$ multiplications)
- can study algorithm using linear filters & matrix manipulations
- will look at both approaches since they are complementary

The Wavelet Filter: I

- precise definition of DWT begins with notion of wavelet filter
- let $\{h_l : l = 0, \dots, L-1\}$ be a real-valued filter
 - -L called filter width
 - both h_0 and h_{L-1} must be nonzero
 - -L must be even $(2, 4, 6, 8, \ldots)$ for technical reasons
 - will assume $h_l \equiv 0$ for l < 0 and $l \ge L$

The Wavelet Filter: II

• $\{h_l\}$ called a wavelet filter if it has these 3 properties

1. summation to zero:

$$\sum_{l=0}^{L-1} h_l = 0$$

2. unit energy:

$$\sum_{l=0}^{L-1} h_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} h_l h_{l+2n} = 0$$

• 2 and 3 together are called the orthonormality property

WMTSA: 69

The Wavelet Filter: III

• define transfer and squared gain functions for wavelet filter:

$$H(f) \equiv \sum_{l=0}^{L-1} h_l e^{-i2\pi f l} \text{ and } \mathcal{H}(f) \equiv |H(f)|^2$$

- claim: orthonormality property equivalent to $\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$ for all f
- to show equivalence, first assume above holds
- consider autocorrelation of $\{h_l\}$:

$$h \star h_j \equiv \sum_{l=-\infty}^{\infty} h_l h_{l+j} \quad j = \dots, -1, 0, 1, \dots$$

• $\{h_l\} \longleftrightarrow H(\cdot) \text{ implies that } \{h \star h_j\} \longleftrightarrow |H(\cdot)|^2 = \mathcal{H}(\cdot)$

WMTSA: 69–70

The Wavelet Filter: IV

inverse DFT says h ★ h_j = ∫^{1/2}_{-1/2} ℋ(f')e^{i2πf'j} df'
Exer. [23b] says that, if {a_j} ↔ A(·), then

$$\{a_{2n}\} \longleftrightarrow \frac{1}{2} \left[A(\frac{f}{2}) + A(\frac{f}{2} + \frac{1}{2}) \right]$$

• application of this result here says that

$$\{h \star h_{2n}\} \longleftrightarrow \frac{1}{2} \left[\mathcal{H}(\frac{f}{2}) + \mathcal{H}(\frac{f}{2} + \frac{1}{2}) \right]$$

• $\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$ for all f says that $\mathcal{H}(\frac{f}{2}) + \mathcal{H}(\frac{f}{2} + \frac{1}{2}) = 2$

• leads to orthonormality condition because

$$\sum_{l=-\infty}^{\infty} h_l h_{l+2n} = h \star h_{2n} = \int_{-1/2}^{1/2} e^{i2\pi f n} df = \begin{cases} 1, & n=0\\ 0, & n\neq 0 \end{cases}$$

WMTSA: 70

The Wavelet Filter: VI

• hence $\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$ implies orthonormality

• Exer. [70]: orthonormality implies

$$\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$$
 for all f

• this establishes the equivalence between above and

$$\sum_{l=-\infty}^{\infty} h_l h_{l+2n} = \begin{cases} 1, & n=0\\ 0, & n\neq 0 \end{cases}$$

The Wavelet Filter: VII

- summation to zero and unit energy relatively easy to achieve (analogous to conditions imposed on wavelet functions $\psi(\cdot)$)
- orthogonality to even shifts is key property
- \bullet orthogonality hardest to satisfy, and is reason L must be even
 - consider filter $\{h_0, h_1, h_2\}$ of width L = 3
 - width 3 requires $h_0 \neq 0$ and $h_2 \neq 0$
 - orthogonality to a shift of 2 requires $h_0h_2 = 0$ impossible!

Haar Wavelet Filter

- simplest wavelet filter is Haar (L=2): $h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}}$
- note that $h_0 + h_1 = 0$ and $h_0^2 + h_1^2 = 1$, as required
- orthogonality to even shifts also readily apparent

D(4) Wavelet Filter: I

• next simplest wavelet filter is D(4), for which L = 4:

$$h_0 = \frac{1 - \sqrt{3}}{4\sqrt{2}}, \quad h_1 = \frac{-3 + \sqrt{3}}{4\sqrt{2}}, \quad h_2 = \frac{3 + \sqrt{3}}{4\sqrt{2}}, \quad h_3 = \frac{-1 - \sqrt{3}}{4\sqrt{2}}$$

- 'D' stands for Daubechies

-L = 4 width member of her 'extremal phase' wavelets

• computations show $\sum_{l} h_{l} = 0 \& \sum_{l} h_{l}^{2} = 1$, as required

• orthogonality to even shifts apparent except for ± 2 case:

WMTSA: 59

D(4) Wavelet Filter: II

- Q: what is rationale for D(4) filter?
- consider $X_t^{(1)} \equiv X_t X_{t-1} = a_0 X_t + a_1 X_{t-1}$, where $\{a_0 = 1, a_1 = -1\}$ defines 1st difference filter: $\{X_t\} \longrightarrow [\{1, -1\}] \longrightarrow \{X_t^{(1)}\}$
 - Haar wavelet filter is normalized 1st difference filter $X_t^{(1)}$ is difference between two '1 point averages'
- consider filter cascade with two 1st difference filters:

$$\{X_t\} \longrightarrow [\{1, -1\}] \longrightarrow [\{1, -1\}] \longrightarrow \{X_t^{(2)}\}$$

• equivalent filter defines 2nd difference filter:

$$\{X_t\} \longrightarrow [\{1, -2, 1\}] \longrightarrow \{X_t^{(2)}\}$$

D(4) Wavelet Filter: III

• renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:

$$a_t = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$$

(mentioned as being highly discretized Mexican hat wavelet)

• consider '2 point weighted average' followed by 2nd difference:

$$\{X_t\} \longrightarrow \{a, b\} \longrightarrow \{1, -2, 1\} \longrightarrow \{Y_t\}$$

• D(4) wavelet filter based on equivalent filter for above:

$$\{X_t\} \longrightarrow [\{h_0, h_1, h_2, h_3\}] \longrightarrow \{Y_t\}$$

D(4) Wavelet Filter: IV

• using conditions

- 1. summation to zero: $h_0 + h_1 + h_2 + h_3 = 0$ 2. unit energy: $h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1$ 3. orthogonality to even shifts: $h_0h_2 + h_1h_3 = 0$ can solve for feasible values of *a* and *b* (Exer. [4.1]) • one solution is $a = \frac{1+\sqrt{3}}{4\sqrt{2}} \doteq 0.48$ and $b = \frac{-1+\sqrt{3}}{4\sqrt{2}} \doteq 0.13$
- (other solutions yield essentially the same filter)
- interpret D(4) filtered output as changes in weighted averages
 - 'change' now measured by 2nd difference (1st for Haar)
 - average is now 2 point weighted average (1 point for Haar)
 - can argue that effective scale of weighted average is one

A Selection of Other Wavelet Filters: I

- lots of other wavelet filters exist here are three we'll see later
- D(6) wavelet filter (top) and C(6) wavelet filter (bottom)

A Selection of Other Wavelet Filters: II

• LA(8) wavelet filter ('LA' stands for 'least asymmetric')

• all 3 wavelet filters resemble Mexican hat (somewhat)

- can interpret each filter as cascade consisting of
 - weighted average of effective width of 1
 - higher order differences
- filter outputs can be interpreted as changes in weighted averages

- given wavelet filter $\{h_l\}$ of width L & time series of length $N = 2^J$, goal is to define matrix \mathcal{W} for computing $\mathbf{W} = \mathcal{W}\mathbf{X}$
- periodize $\{h_l\}$ to length N to form $h_0^{\circ}, h_1^{\circ}, \ldots, h_{N-1}^{\circ}$
- circularly filter **X** using $\{h_l^{\circ}\}$ to yield output

$$\sum_{l=0}^{N-1} h_l^{\circ} X_{t-l \mod N}, \quad t = 0, \dots, N-1$$

• starting with t = 1, take every other value of output to define

$$W_{1,t} \equiv \sum_{l=0}^{N-1} h_l^{\circ} X_{2t+1-l \mod N}, \quad t = 0, \dots, \frac{N}{2} - 1;$$

 $\{W_{1,t}\}$ formed by *downsampling* filter output by a factor of 2

• example of formation of $\{W_{1,t}\}$

• note: ' \downarrow 2' denotes 'downsample by two' (take every 2nd value)

- $\{W_{1,t}\}$ are unit scale wavelet coefficients
 - -j in $W_{j,t}$ indicates a particular group of wavelet coefficients
 - $-j = 1, 2, \dots, J$ (upper limit tied to sample size $N = 2^J$)
 - will refer to index j as the level
 - thus $W_{1,t}$ is associated with level j = 1
 - $-W_{1,t}$ also associated with scale 1
 - level j is associated with scale 2^{j-1} (more on this later)
- $\{W_{1,t}\}$ forms first N/2 elements of $\mathbf{W} = \mathcal{W}\mathbf{X}$
- first N/2 elements of **W** form subvector \mathbf{W}_1
- $W_{1,t}$ is the element of \mathbf{W}_1
- also have $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$, with \mathcal{W}_1 being first N/2 rows of \mathcal{W}

Upper Half of DWT Matrix: I

• setting t = 0 in definition for $W_{1,t}$ yields

$$W_{1,0} = \sum_{l=0}^{N-1} h_l^{\circ} X_{1-l \mod N}$$

= $h_0^{\circ} X_1 + h_1^{\circ} X_0 + h_2^{\circ} X_{N-1} + \dots + h_{N-2}^{\circ} X_3 + h_{N-1}^{\circ} X_2$
= $h_1^{\circ} X_0 + h_0^{\circ} X_1 + h_{N-1}^{\circ} X_2 + h_{N-2}^{\circ} X_3 + \dots + h_2^{\circ} X_{N-1}$

• recall $W_{1,0} = \langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$, where $\mathcal{W}_{0\bullet}^T$ is first row of \mathcal{W} & of \mathcal{W}_1

• comparison with above says that

$$\mathcal{W}_{0\bullet}^{T} = \left[h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{5}^{\circ}, h_{4}^{\circ}, h_{3}^{\circ}, h_{2}^{\circ}\right]$$

Upper Half of DWT Matrix: II

• similar examination of $W_{1,1}, \ldots W_{1,\frac{N}{2}}$ shows following pattern - circularly shift $\mathcal{W}_{0\bullet}$ by 2 to get 2nd row of \mathcal{W} :

$$\mathcal{W}_{1\bullet}^{T} = \left[h_{3}^{\circ}, h_{2}^{\circ}, h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{5}^{\circ}, h_{4}^{\circ}\right]$$

- form $\mathcal{W}_{j\bullet}$ by circularly shifting $\mathcal{W}_{j-1\bullet}$ by 2, ending with $\mathcal{W}_{\underline{N}-1\bullet}^T = \left[h_{N-1}^\circ, h_{N-2}^\circ, \dots, h_5^\circ, h_4^\circ, h_3^\circ, h_2^\circ, h_1^\circ, h_0^\circ\right]$

• if $L \leq N$ (usually the case), then

$$h_l^{\circ} \equiv \begin{cases} h_l, & 0 \le l \le L-1\\ 0, & \text{otherwise} \end{cases}$$

Example: Upper Half of Haar DWT Matrix

• consider Haar wavelet filter (L=2): $h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}}$

• when N = 16, upper half of \mathcal{W} (i.e., \mathcal{W}_1) looks like

h_1	h_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	h_1	h_0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	h_1	h_0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	h_1	h_0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	h_1	h_0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	h_1	h_0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	h_1	h_0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	h_1	h_0

• rows obviously orthogonal to each other
Example: Upper Half of D(4) DWT Matrix

• rows orthogonal because $h_0h_2 + h_1h_3 = 0$

- note: $\langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$ yields $W_{1,0} = h_1 X_0 + h_0 X_1 + h_3 X_{14} + h_2 X_{15}$
- unlike other coefficients from above, this 'boundary' coefficient depends on circular treatment of \mathbf{X} (a curse, not a feature!)

Orthonormality of Upper Half of DWT Matrix: I

- if $L \leq N$, orthonormality of rows of \mathcal{W}_1 follows readily from orthonormality of $\{h_l\}$
- as example of L > N case (comes into play at higher levels), consider N = 4 and L = 6:

$$h_0^{\circ} = h_0 + h_4; \ h_1^{\circ} = h_1 + h_5; \ h_2^{\circ} = h_2; \ h_3^{\circ} = h_3$$

•
$$\mathcal{W}_1$$
 is:

$$\begin{bmatrix}
h_1^{\circ} \ h_0^{\circ} \ h_3^{\circ} \ h_2^{\circ} \\
h_3^{\circ} \ h_2^{\circ} \ h_1^{\circ} \ h_0^{\circ}
\end{bmatrix} = \begin{bmatrix}
h_1 + h_5 & h_0 + h_4 & h_3 & h_2 \\
h_3 & h_2 & h_1 + h_5 & h_0 + h_4
\end{bmatrix}$$
• inner product of two rows is

• Inner product of two rows is

 $h_1h_3 + h_3h_5 + h_0h_2 + h_2h_4 + h_1h_3 + h_3h_5 + h_0h_2 + h_2h_4$ = 2(h_0h_2 + h_1h_3 + h_2h_4 + h_3h_5) = 0 because {h_l} is orthogonal to {h_{l+2}} (an even shift)

WMTSA: 71

Orthonormality of Upper Half of DWT Matrix: II

• will now show that, for all L and even N,

$$W_{1,t} = \sum_{l=0}^{N-1} h_l^{\circ} X_{2t+1-l \mod N}, \text{ or, equivalently, } \mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$$

forms *half* an orthonormal transform; i.e.,

$$\mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$$

• need to show that rows of \mathcal{W}_1 have unit energy and are pairwise orthogonal

Orthonormality of Upper Half of DWT Matrix: III

• recall what first row of \mathcal{W}_1 looks like:

$$\mathcal{W}_{0\bullet}^{T} = \left[h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{2}^{\circ}\right]$$

• last $\frac{N}{2} - 1$ rows formed by circularly shift above by 2, 4, ...

• orthonormality follows if we can show

$$\sum_{n=0}^{N-1} h_n^{\circ} h_{n+l \bmod N}^{\circ} \equiv h^{\circ} \star h_l^{\circ} = \begin{cases} 1, & \text{if } l = 0; \\ 0, & \text{if } l = 2, 4, \dots, N-2. \end{cases}$$

• Exer. [33] says
$$\{h_l^{\circ}\} \longleftrightarrow \{H(\frac{k}{N})\}$$

• implies
$$\{h^{\circ} \star h_{l}^{\circ}\} \longleftrightarrow \{|H(\frac{k}{N})|^{2} = \mathcal{H}(\frac{k}{N})\}$$

Orthonormality of Upper Half of DWT Matrix: IV

• inverse DFT relationship says that

$$h^{\circ} \star h_{2l}^{\circ} = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{H}(\frac{k}{N}) e^{i2\pi(2l)k/N}$$

= $\frac{1}{N} \left(\sum_{k=0}^{\frac{N}{2}-1} \mathcal{H}(\frac{k}{N}) e^{i4\pi lk/N} + \sum_{k=0}^{\frac{N}{2}-1} \mathcal{H}(\frac{k}{N} + \frac{1}{2}) e^{i4\pi l(\frac{k}{N} + \frac{1}{2})} \right)$
= $\frac{1}{N} \sum_{k=0}^{\frac{N}{2}-1} \left[\mathcal{H}(\frac{k}{N}) + \mathcal{H}(\frac{k}{N} + \frac{1}{2}) \right] e^{i4\pi lk/N}$

• orthonormality property for $\{h_l\}$ says $\mathcal{H}(\frac{k}{N}) + \mathcal{H}(\frac{k}{N} + \frac{1}{2}) = 2$

Orthonormality of Upper Half of DWT Matrix: V

• thus have

$$h^{\circ} \star h_{2l}^{\circ} = \frac{2}{N} \sum_{k=0}^{\frac{N}{2}-1} e^{i4\pi lk/N} = \begin{cases} 1, & \text{if } l = 0; \\ 0, & \text{if } l = 1, 2, \dots, \frac{N}{2} - 1, \end{cases}$$

where the last part follows from an application of

$$\sum_{k=0}^{\frac{N}{2}-1} z^k = \frac{1-z^{N/2}}{1-z} \text{ with } z = e^{i4\pi l/N}, \text{ so } z^{N/2} = e^{i2\pi l} = 1$$

• \mathcal{W}_1 is thus half of the desired orthonormal DWT matrix

• Q: how can we construct the other half of \mathcal{W} ?

The Scaling Filter: I

• create scaling (or 'father wavelet') filter $\{g_l\}$ by reversing $\{h_l\}$ and then changing sign of coefficients with even indices

• 2 filters related by $g_l \equiv (-1)^{l+1} h_{L-1-l} \& h_l = (-1)^l g_{L-1-l}$

The Scaling Filter: II

- $\{g_l\}$ is 'quadrature mirror' filter corresponding to $\{h_l\}$
- properties 2 and 3 of $\{h_l\}$ are shared by $\{g_l\}$:

2. unit energy:

$$\sum_{l=0}^{L-1} g_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} g_l g_{l+2n} = 0$$

• scaling & wavelet filters both satisfy orthonormality property

- orthonormality property of $\{h_l\}$ was all we needed to prove that \mathcal{W}_1 is half of an orthonormal transform (never used $\sum_l h_l = 0$)
- \bullet going back and replacing h_l with g_l everywhere yields another half of an orthonormal transform
- periodize $\{g_l\}$ to length N to form $g_0^{\circ}, g_1^{\circ}, \ldots, g_{N-1}^{\circ}$
- circularly filter **X** using $\{g_l^{\circ}\}$ and downsample to define

$$V_{1,t} \equiv \sum_{l=0}^{N-1} g_l^{\circ} X_{2t+1-l \mod N}, \quad t = 0, \dots, \frac{N}{2} - 1$$

- $\{V_{1,t}\}$ are scaling coefficients for level j = 1
- place these N/2 coefficients in vector called \mathbf{V}_1

• define \mathcal{V}_1 in a manner analogous to \mathcal{W}_1 so that $\mathbf{V}_1 = \mathcal{V}_1 \mathbf{X}$

• when
$$L = 4$$
 and $N = 16$, \mathcal{V}_1 looks like

•
$$\mathcal{V}_1$$
 obeys same orthonormality property as \mathcal{W}_1 :
similar to $\mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$, have $\mathcal{V}_1 \mathcal{V}_1^T = I_{\frac{N}{2}}$

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1 : I

- Q: how does \mathcal{V}_1 help us?
- claim: rows of \mathcal{V}_1 and \mathcal{W}_1 are pairwise orthogonal
- readily apparent in Haar case:

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1 : II

• let's check that orthogonality holds for D(4) case also:

• before proving claim, need to introduce matrices for circularly shifting vectors

Matrices for Circularly Shifting Vectors

• define \mathcal{T} and \mathcal{T}^{-1} to be $N \times N$ matrices that circularly shift $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ either right or left one unit: $\mathcal{T}\mathbf{X} = [X_{N-1}, X_0, X_1, \dots, X_{N-3}, X_{N-2}]^T$ $\mathcal{T}^{-1}\mathbf{X} = [X_1, X_2, X_3, \dots, X_{N-2}, X_{N-1}, X_0]^T$

• for N = 4, here are what these matrices look like:

$\mathcal{T}=$	$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	$\& \ \mathcal{T}^{-1} =$	$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$
	$1 \ 0 \ 0 \ 0$		$0 \ 0 \ 1 \ 0$
	$0 \ 1 \ 0 \ 0$		$0 \ 0 \ 0 \ 1$
	$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$		$1 \ 0 \ 0 \ 0$

• note that $\mathcal{T}\mathcal{T}^{-1} = I_N$

• define $\mathcal{T}^2 = \mathcal{T}\mathcal{T}, \ \mathcal{T}^{-2} = \mathcal{T}^{-1}\mathcal{T}^{-1}$ etc.

• for all integers j & k, have $\mathcal{T}^j \mathcal{T}^k = \mathcal{T}^{j+k}$, with $\mathcal{T}^0 \equiv I_N$

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1 : III

•
$$[\mathcal{T}^{2t}\mathcal{V}_{0\bullet}]^T$$
 and $[\mathcal{T}^{2t}\mathcal{W}_{0\bullet}]^T$ are tth rows of $\mathcal{V}_1 \& \mathcal{W}_1$
• for $0 \le t \le \frac{N}{2} - 1$ and $0 \le t' \le \frac{N}{2} - 1$, need to show that $\langle \mathcal{T}^{2t}\mathcal{V}_{0\bullet}, \mathcal{T}^{2t'}\mathcal{W}_{0\bullet} \rangle = 0$
• letting $n = t' - t$, have, for $n = 0, \dots, \frac{N}{2} - 1$,

$$\langle \mathcal{T}^{2t} \mathcal{V}_{0\bullet}, \mathcal{T}^{2t'} \mathcal{W}_{0\bullet} \rangle = \mathcal{V}_{0\bullet}^T \mathcal{T}^{-2t} \mathcal{T}^{2t'} \mathcal{W}_{0\bullet}$$
$$= \mathcal{V}_{0\bullet}^T \mathcal{T}^{2n} \mathcal{W}_{0\bullet} = \sum_{l=0}^{N-1} g_l^{\circ} h_{l+2n \bmod N}^{\circ}$$

Frequency Domain Properties of Scaling Filter

- needs some facts about frequency domain properties of $\{g_l\}$
- define transfer and squared gain functions for $\{g_l\}$

$$G(f) \equiv \sum_{l=0}^{L-1} g_l e^{-i2\pi f l} \& \mathcal{G}(f) \equiv |G(f)|^2$$

• Exer. [76a]:
$$G(f) = e^{-i2\pi f(L-1)}H(\frac{1}{2} - f)$$
, so
 $\mathcal{G}(f) = |e^{-i2\pi f(L-1)}|^2 |H(\frac{1}{2} - f)|^2 = \mathcal{H}(\frac{1}{2} - f)$

• evenness of $\mathcal{H}(\cdot)$ yields $\mathcal{G}(f) = \mathcal{H}(f - \frac{1}{2})$

• unit periodicity of $\mathcal{H}(\cdot)$ yields $\mathcal{G}(f) = \mathcal{H}(f + \frac{1}{2})$

•
$$\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$$
 implies
 $\mathcal{H}(f) + \mathcal{G}(f) = 2$ and also $\mathcal{G}(f) + \mathcal{G}(f + \frac{1}{2}) = 2$

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1 : IV

• to establish orthogonality of \mathcal{V}_1 and \mathcal{W}_1 , need to show

$$\sum_{l=0}^{N-1} g_l^{\circ} h_{l+2n \mod N}^{\circ} = g^{\circ} \star h_{2n}^{\circ} = 0 \text{ for } n = 0, \dots, \frac{N}{2} - 1,$$

where $\{g^{\circ} \star h_l^{\circ}\}$ is cross-correlation of $\{g_l^{\circ}\} \& \{h_l^{\circ}\}$
since $\{g_l^{\circ}\} \longleftrightarrow \{G(\frac{k}{N})\}$ and $\{h_l^{\circ}\} \longleftrightarrow \{H(\frac{k}{N})\}$, have
 $\{g^{\circ} \star h_l^{\circ}\} \longleftrightarrow \{G^*(\frac{k}{N})H(\frac{k}{N})\}$

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1 : **V**

• Exer. [78]: use inverse DFT of $\{G^*(\frac{k}{N})H(\frac{k}{N})\}$ to argue that

$$g^{\circ} \star h_{2n}^{\circ} = \frac{1}{N} \sum_{k=0}^{\frac{N}{2}-1} \left[G^*(\frac{k}{N}) H(\frac{k}{N}) + G^*(\frac{k}{N} + \frac{1}{2}) H(\frac{k}{N} + \frac{1}{2}) \right] e^{i4\pi nk/N}$$

and then argue that

$$G^*(\frac{k}{N})H(\frac{k}{N}) + G^*(\frac{k}{N} + \frac{1}{2})H(\frac{k}{N} + \frac{1}{2}) = 0,$$

which establishes orthonormality

• thus
$$\mathcal{W}_1 \& \mathcal{V}_1$$
 are jointly orthonormal:
 $\mathcal{W}_1 \mathcal{V}_1^T = \mathcal{V}_1 \mathcal{W}_1^T = 0_{\frac{N}{2}}$ in addition to $\mathcal{V}_1 \mathcal{V}_1^T = \mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$,
where $0_{\frac{N}{2}}$ is an $\frac{N}{2} \times \frac{N}{2}$ matrix, all of whose elements are zeros

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1 : **VI**

• implies that

$$\mathcal{P}_1 \equiv \left[\begin{array}{c} \mathcal{W}_1 \\ \mathcal{V}_1 \end{array} \right]$$

is an $N \times N$ orthonormal matrix since

$$\mathcal{P}_{1}\mathcal{P}_{1}^{T} = \begin{bmatrix} \mathcal{W}_{1} \\ \mathcal{V}_{1} \end{bmatrix} \begin{bmatrix} \mathcal{W}_{1}^{T}, \mathcal{V}_{1}^{T} \end{bmatrix}$$
$$= \begin{bmatrix} \mathcal{W}_{1}\mathcal{W}_{1}^{T} & \mathcal{W}_{1}\mathcal{V}_{1}^{T} \\ \mathcal{V}_{1}\mathcal{W}_{1}^{T} & \mathcal{V}_{1}\mathcal{V}_{1}^{T} \end{bmatrix} = \begin{bmatrix} I_{N} & 0_{N} \\ \frac{2}{2} & \frac{2}{2} \\ 0_{N} & I_{N} \\ \frac{2}{2} & \frac{2}{2} \end{bmatrix} = I_{N}$$

• if N = 2 (not of too much interest!), in fact $\mathcal{P}_1 = \mathcal{W}$

• if N > 2, \mathcal{P}_1 is an intermediate step: \mathcal{V}_1 spans same subspace as lower half of \mathcal{W} and will be further manipulated

Three Comments

- if N even (i.e., don't need $N = 2^J$), then \mathcal{P}_1 is well-defined and can be of interest by itself
- rather than defining $g_l = (-1)^{l+1} h_{L-1-l}$, could use alternative definition $g_l = (-1)^{l+1} h_{1-l}$ (definitions are same for Haar)
 - $-g_{-(L-2)}, \ldots, g_1$ would be nonzero rather than g_0, \ldots, g_{L-1} - structure of \mathcal{V}_1 would then not parallel that of \mathcal{W}_1
 - useful for wavelet filters with infinite widths
- scaling and wavelet filters are often called 'father' and 'mother' wavelet filters, but Strichartz (1994) notes that this terminology

'... shows a scandalous misunderstanding of human reproduction; in fact, the generation of wavelets more closely resembles the reproductive life style of amoebas.'
Interpretation of Scaling Coefficients: I

• consider Haar scaling filter (L = 2): $g_0 = g_1 = \frac{1}{\sqrt{2}}$

• when
$$N = 16$$
, matrix \mathcal{V}_1 looks like

• since $\mathbf{V}_1 = \mathcal{V}_1 \mathbf{X}$, each $V_{1,t}$ is proportional to a 2 point average: $V_{1,0} = g_1 X_0 + g_0 X_1 = \frac{1}{\sqrt{2}} X_0 + \frac{1}{\sqrt{2}} X_1 \propto \overline{X}_1(2)$ and so forth

Interpretation of Scaling Coefficients: II

• reconsider shapes of $\{g_l\}$ seen so far:

for L > 2, can regard V_{1,t} as proportional to weighted average
can argue that effective width of {g_l} is 2 in each case; thus scale associated with V_{1,t} is 2, whereas scale is 1 for W_{1,t}

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's look at their squared gain functions
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(4) filters

• $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's look at their squared gain functions
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(6) filters

• $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's look at their squared gain functions
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(8) filters

• $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's look at their squared gain functions
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(10) filters

• $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's look at their squared gain functions
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(12) filters

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's look at their squared gain functions
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(14) filters

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's look at their squared gain functions
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(16) filters

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's look at their squared gain functions
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(18) filters

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's look at their squared gain functions
- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(20) filters

What Kind of Process is $\{V_{1,t}\}$?: I

• letting $\{X_t\} \longleftrightarrow \{\mathcal{X}_k\} \& f_k = k/N$, use inverse DFT to get $X_t = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{X}_k e^{i2\pi f_k t} = \frac{1}{N} \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} \mathcal{X}_k e^{i2\pi f_k t},$

where the change in the limits of summation is OK because $\{\mathcal{X}_k\}$ and $\{e^{i2\pi f_k t}\}$ are both periodic with a period of N

• since $\{g_l\} \longleftrightarrow G(f) = |G(f)|e^{i\theta^{(G)}(f)}$, where $|G(f)| \approx \sqrt{2}$ for $|f| \in [-\frac{1}{4}, \frac{1}{4}]$ and $|G(f)| \approx 0$ for $|f| \in (\frac{1}{4}, \frac{1}{2}]$, can argue

$$\sum_{l=0}^{L-1} g_l X_{t-l \mod N} \approx \frac{\sqrt{2}}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \mathcal{X}_k e^{i\theta^{(G)}(f_k)} e^{i2\pi f_k t}$$

What Kind of Process is $\{V_{1,t}\}$?: II

• with downsampling,

$$V_{1,t} \approx \frac{\sqrt{2}}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \mathcal{X}_{k} e^{i\theta^{(G)}(f_{k})} e^{i2\pi f_{k}(2t+1)}, \quad 0 \le t \le \frac{N}{2} - 1$$

$$= \frac{2}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \frac{1}{\sqrt{2}} \mathcal{X}_{k} e^{i\theta^{(G)}(f_{k})} e^{i2\pi f_{k}} \times e^{i2\pi(2f_{k})t}$$

$$\equiv \frac{1}{N'} \sum_{k=-\frac{N'}{2}+1}^{\frac{N'}{2}} \mathcal{X}_{k}' e^{i2\pi f_{k}'t}, \quad 0 \le t \le N' - 1$$
for what $N' = N$, $\mathcal{X}' = -\frac{1}{2}$, $\mathcal{X}_{k} e^{i\theta^{(G)}(f_{k})} e^{i2\pi f_{k}}$ and $f' = 2$ for $k < N' = 0$.

if we let
$$N' \equiv \frac{N}{2}$$
, $\mathcal{X}'_k \equiv \frac{1}{\sqrt{2}} \mathcal{X}_k e^{i\theta^{(G)}(f_k)} e^{i2\pi f_k}$ and $f'_k \equiv 2f_k$

What Kind of Process is $\{V_{1,t}\}$?: III

• let's study the above result:

$$V_{1,t} \approx \frac{1}{N'} \sum_{k=-\frac{N'}{2}+1}^{\frac{N'}{2}} \mathcal{X}'_{k} e^{i2\pi f'_{k}t}, \ 0 \le t \le N'-1$$

•
$$\mathcal{X}'_k$$
 is associated with $f'_k = 2f_k = \frac{2k}{N} = \frac{k}{N/2} = \frac{k}{N'}$

- since $-\frac{N'}{2} + 1 \le k \le \frac{N'}{2}$, have $-\frac{1}{2} < f'_k \le \frac{1}{2}$
- whereas result of filtering $\{X_t\}$ with $\{g_l\}$ is a 'half-band' (lowpass) process involving approximately just $f_k \in [-\frac{1}{4}, \frac{1}{4}]$ downsampled process $\{V_{1,t}\}$ is 'full-band' involving $f'_k \in [-\frac{1}{2}, \frac{1}{2}]$

What Kind of Process is $\{W_{1,t}\}$?: I

• in a similar manner, because $h_l \approx$ high pass, can argue that

$$\sum_{l=0}^{L-1} h_l X_{t-l \mod N} \approx \frac{\sqrt{2}}{N} \left(\sum_{k=-\frac{N}{2}+1}^{-\frac{N}{4}} + \sum_{k=\frac{N}{4}+1}^{\frac{N}{2}} \right) \mathcal{X}_k e^{i\theta^{(H)}(f_k)} e^{i2\pi f_k t}$$

• with downsampling,

$$W_{1,t} \approx \frac{1}{N'} \sum_{k=-\frac{N'}{2}+1}^{\frac{N'}{2}} \mathcal{X}'_{k} e^{i2\pi f'_{k}t}, \quad 0 \le t \le N'-1,$$

where now
$$\mathcal{X}'_k = -\frac{1}{\sqrt{2}}\mathcal{X}_{k+\frac{N}{2}}e^{i\theta^{(H)}(f_k+\frac{1}{2})}e^{i2\pi f_k}$$

What Kind of Process is $\{W_{1,t}\}$?: II

- note that $|\mathcal{X}'_k| \propto |\mathcal{X}_{k+\frac{N}{2}}| = |\mathcal{X}_{k-\frac{N}{2}}|$ because $\{\mathcal{X}_k\}$ is periodic
- since X_t is real-valued, $|\mathcal{X}_{-k}| = |\mathcal{X}_k|$ and hence $|\mathcal{X}'_k| \propto |\mathcal{X}_{\underline{N}_{-k}}|$
- as before, \mathcal{X}'_k is associated with $f'_k = 2f_k$
- $\mathcal{X}_{\frac{N}{2}-k}$ is associated with $f_{\frac{N}{2}-k} = \frac{1}{2} f_k$
- conclusion: the coefficient for $W_{1,t}$ at f'_k is related to the coefficient for X_t at $\frac{1}{2} f_k$
- in particular, coefficients for $f'_k \in [0, \frac{1}{2}]$ are related to those for $f_k \in [\frac{1}{4}, \frac{1}{2}]$, but in a *reversed* direction
- whereas filtering $\{X_t\}$ with $\{h_l\}$ yields a 'half-band' (highpass) process, the downsampled process $\{W_{1,t}\}$ is 'full-band'

Example: $\{V_{1,t}\}$ and $\{W_{1,t}\}$ as Full-Band Processes

• $\{V_{1,t}\}$ and $\{W_{1,t}\}$ formed using Haar DWT

• plots are of magnitude squared DFTs for $\{X_t\}$ etc.

Example of Decomposing X into W_1 and V_1 : I

• oxygen isotope records \mathbf{X} from Antarctic ice core

Example of Decomposing X into W_1 and V_1 : II

- oxygen isotope record series **X** has N = 352 observations
- spacing between observations is $\Delta t \doteq 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients \mathbf{V}_1 related to averages on scale of $2\Delta t$
- wavelet coefficients \mathbf{W}_1 related to changes on scale of Δt
- coefficients $V_{1,t}$ and $W_{1,t}$ plotted against mid-point of years associated with X_{2t} and X_{2t+1}
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway

Reconstructing X from \mathbf{W}_1 and \mathbf{V}_1

• in matrix notation, form wavelet & scaling coefficients via

$$\begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \mathbf{X} \\ \mathcal{V}_1 \mathbf{X} \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \mathbf{X} = \mathcal{P}_1 \mathbf{X}$$

• recall that $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ because \mathcal{P}_1 is orthonormal

- since $\mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}$, premultiplying both sides by \mathcal{P}_1^T yields $\mathcal{P}_1^T \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1^T \ \mathcal{V}_1^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1 = \mathbf{X}$
- $\mathcal{D}_1 \equiv \mathcal{W}_1^T \mathbf{W}_1$ is the first level detail
- $\mathcal{S}_1 \equiv \mathcal{V}_1^T \mathbf{V}_1$ is the first level 'smooth'
- $\mathbf{X} = \mathcal{D}_1 + \mathcal{S}_1$ in this notation

Construction of First Level Detail: I

• consider
$$\mathcal{D}_{1} = \mathcal{W}_{1}^{T} \mathbf{W}_{1}$$
 for $L = 4 \& N > L$:

$$\begin{bmatrix}
 h_{1} & h_{3} & 0 & \cdots & 0 & 0 \\
 h_{0} & h_{2} & 0 & \cdots & 0 & 0 \\
 0 & h_{1} & h_{3} & \cdots & 0 & 0 \\
 0 & h_{0} & h_{2} & \cdots & 0 & 0 \\
 \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & h_{1} & h_{3} \\
 0 & 0 & 0 & \cdots & h_{0} & h_{2} \\
 h_{3} & 0 & 0 & \cdots & 0 & h_{1} \\
 h_{2} & 0 & 0 & \cdots & 0 & h_{0}
 \end{bmatrix}
 \begin{bmatrix}
 W_{1,0} \\
 W_{1,1} \\
 W_{1,2} \\
 \vdots \\
 W_{1,N/2-2} \\
 W_{1,N/2-2} \\
 W_{1,N/2-1}
 \end{bmatrix}$$
note: \mathcal{W}_{1}^{T} is $N \times \frac{N}{2} \& \mathbf{W}_{1}$ is $\frac{N}{2} \times 1$

• \mathcal{D}_{1} is not result of filtering $W_{1,t}$'s with $\{h_{0}, h_{1}, h_{2}, h_{3}\}$

Construction of First Level Detail: II

Г

• augment \mathcal{W}_1 to $N \times N$ and \mathbf{W}_1 to $N \times 1$:

$$\mathcal{D}_{1} = \begin{bmatrix} h_{1} & h_{3} & 0 & \cdots & 0 & 0 \\ h_{0} & h_{2} & 0 & \cdots & 0 & 0 \\ 0 & h_{1} & h_{3} & \cdots & 0 & 0 \\ 0 & h_{0} & h_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & h_{1} & h_{3} \\ 0 & 0 & 0 & \cdots & h_{0} & h_{2} \\ h_{3} & 0 & 0 & \cdots & 0 & h_{1} \\ h_{2} & 0 & 0 & \cdots & 0 & h_{0} \end{bmatrix} \begin{bmatrix} W_{1,0} \\ W_{1,1} \\ W_{1,2} \\ \vdots \\ W_{1,N/2-2} \\ W_{1,N/2-1} \end{bmatrix}$$

• can now regard the above as equivalent to use of a filter

Construction of First Level Detail: II

• augment \mathcal{W}_1 to $N \times N$ and \mathbf{W}_1 to $N \times 1$:

• can now regard the above as equivalent to use of a filter

Construction of First Level Detail: III

• formally, define *upsampled* (by 2) version of $W_{1,t}$'s:

$$W_{1,t}^{\uparrow} \equiv \begin{cases} 0, & t = 0, 2, \dots, N-2; \\ W_{1,(t-1)/2} = W_{(t-1)/2}, & t = 1, 3, \dots, N-1 \end{cases}$$

• example of upsampling:

$$W_{1,t} \xrightarrow{\uparrow} 1 \xrightarrow{\uparrow} 1 \xrightarrow{\uparrow} 1 \xrightarrow{\uparrow} 1 \xrightarrow{\downarrow} 1$$

• note: ' \uparrow 2' denotes 'upsample by 2' (put 0's before values)

Construction of First Level Detail: IV

• can now write

$$\mathcal{D}_{1,t} = \sum_{l=0}^{N-1} h_l^{\circ} W_{1,t+l \mod N}^{\uparrow}, \quad t = 0, 1, \dots, N-1$$

• doesn't look exactly like filtering, which would look like

$$\sum_{l=0}^{N-1} h_l^{\circ} W_{1,t-l \mod N}^{\uparrow}; \text{ i.e., direction of } W_{1,t}^{\uparrow} \text{ not reversed}$$

• form that $\mathcal{D}_{1,t}$ takes is what engineers call 'cross-correlation'

• if $\{h_l\} \longleftrightarrow H(\cdot)$, cross-correlating $\{h_l\} \& \{W_{1,t}^{\uparrow}\}$ is equivalent to filtering $\{W_{1,t}^{\uparrow}\}$ using filter with transfer function $H^*(\cdot)$

• \mathcal{D}_1 formed by circularly filtering $\{W_{1,t}^{\uparrow}\}$ with filter $\{H^*(\frac{k}{N})\}$

Synthesis (Reconstruction) of X

• can also write the *t*th element of first level smooth S_1 as

$$S_{1,t} = \sum_{l=0}^{L-1} g_l V_{1,t+l \mod N}^{\uparrow}, \quad t = 0, 1, \dots, N-1$$

since {g_l} ↔ G(·), cross-correlating {g_l} & {V_{1,t}[↑]} is the same as circularly filtering {V_{1,t}[↑]} using the filter {G*(^k/_N)}
since X = S₁ + D₁, can write

$$X_{t} = \sum_{l=0}^{N-1} h_{l}^{\circ} W_{1,t+l \mod N}^{\uparrow} + \sum_{l=0}^{N-1} g_{l}^{\circ} V_{1,t+l \mod N}^{\uparrow},$$

which is the filtering version of $\mathbf{X} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1$

WMTSA: 83

Example of Synthesizing X from \mathcal{D}_1 and \mathcal{S}_1

• Haar-based decomposition for oxygen isotope records \mathbf{X}

First Level Variance Decomposition: I

- recall that 'energy' in **X** is its squared norm $\|\mathbf{X}\|^2$

$$\mathcal{P}_1 \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} \text{ and hence } \|\mathcal{P}_1 \mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$$

 \bullet leads to a decomposition of the sample variance for ${\bf X}:$

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} \|\mathbf{X}\|^2 - \overline{X}^2$$
$$= \frac{1}{N} \|\mathbf{W}_1\|^2 + \frac{1}{N} \|\mathbf{V}_1\|^2 - \overline{X}^2$$

First Level Variance Decomposition: II

- breaks up $\hat{\sigma}_X^2$ into two pieces:
 - 1. $\frac{1}{N} \|\mathbf{W}_1\|^2$, attributable to changes in averages over scale 1 2. $\frac{1}{N} \|\mathbf{V}_1\|^2 - \overline{X}^2$, attributable to averages over scale 2
- Haar-based example for oxygen isotope records
 - first piece: $\frac{1}{N} \|\mathbf{W}_1\|^2 \doteq 0.295$
 - second piece: $\frac{1}{N} \|\mathbf{V}_1\|^2 \overline{X}^2 \doteq 2.909$
 - sample variance: $\hat{\sigma}_X^2 \doteq 3.204$
 - changes on scale of $\Delta t \doteq 0.5$ years account for 9% of $\hat{\sigma}_X^2$ (standardized scale of 1 corresponds to physical scale of Δt)

Summary of First Level of Basic Algorithm

- transforms $\{X_t : t = 0, \dots, N-1\}$ into 2 types of coefficients
- N/2 wavelet coefficients $\{W_{1,t}\}$ associated with:
 - $-\mathbf{W}_1$, a vector consisting of first N/2 elements of \mathbf{W}
 - changes on scale 1 and nominal frequencies $\frac{1}{4} \leq f \leq \frac{1}{2}$
 - first level detail \mathcal{D}_1
 - $-\mathcal{W}_1$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- N/2 scaling coefficients $\{V_{1,t}\}$ associated with:
 - $-\mathbf{V}_1$, a vector of length N/2
 - averages on scale 2 and nominal frequencies $0 \le f \le \frac{1}{4}$
 - first level smooth \mathcal{S}_1
 - $-\mathcal{V}_1$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last N/2 rows of \mathcal{W}

Level One Analysis and Synthesis of X

• can express analysis/synthesis of \mathbf{X} as a flow diagram

Constructing Remaining DWT Coefficients: I

- have regarded time series X_t as 'one point' averages $\overline{X}_t(1)$ over
 - physical scale of Δt (sampling interval between observations)
 standardized scale of 1
- first level of basic algorithm transforms \mathbf{X} of length N into
 - N/2 wavelet coefficients $\mathbf{W}_1 \propto$ changes on a scale of 1
 - -N/2 scaling coefficients $\mathbf{V}_1 \propto$ averages of X_t on a scale of 2
- in essence basic algorithm takes length N series **X** related to scale 1 averages and produces
 - length N/2 series \mathbf{W}_1 associated with the same scale
 - length N/2 series \mathbf{V}_1 related to averages on double the scale

Constructing Remaining DWT Coefficients: II

- Q: what if we now treat \mathbf{V}_1 in the same manner as \mathbf{X} ?
- basic algorithm will transform length N/2 series \mathbf{V}_1 into
 - length N/4 series \mathbf{W}_2 associated with the same scale (2)
 - length N/4 series \mathbf{V}_2 related to averages on twice the scale
- by definition, \mathbf{W}_2 contains the level 2 wavelet coefficients
- Q: what if we treat \mathbf{V}_2 in the same way?
- basic algorithm will transform length N/4 series \mathbf{V}_2 into
 - length N/8 series \mathbf{W}_3 associated with the same scale (4)
 - length N/8 series \mathbf{V}_3 related to averages on twice the scale
- by definition, \mathbf{W}_3 contains the level 3 wavelet coefficients

Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \mathbf{W} (recall that $\mathbf{W} = \mathcal{W}\mathbf{X}$ is the vector of DWT coefficients)
- at each level j, outputs \mathbf{W}_j and \mathbf{V}_j from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}

• length of
$$\mathbf{V}_j$$
 given by $N/2^j$

- since $N = 2^J$, length of \mathbf{V}_J is 1, at which point we must stop
- J applications of the basic algorithm *define* the subvectors \mathbf{W}_1 , $\mathbf{W}_2, \ldots, \mathbf{W}_J, \mathbf{V}_J$ of DWT coefficient vector \mathbf{W}
- overall scheme is known as the 'pyramid' algorithm
- item [1] of Comments and Extensions to Sec. 4.6 has pseudo code for DWT pyramid algorithm

Scales Associated with DWT Coefficients

- *j*th level of algorithm transforms scale 2^{j-1} averages into
 - differences of averages on scale 2^{j-1} , i.e., \mathbf{W}_j , the wavelet coefficients
 - averages on scale $2 \times 2^{j-1} = 2^j$, i.e., \mathbf{V}_j , the scaling coefficients
- let $\tau_j \equiv 2^{j-1}$ be standardized scale associated with \mathbf{W}_j - for $j = 1, \dots, J$, takes on values $1, 2, 4, \dots, N/4, N/2$ - physical (actual) scale given by $\tau_j \Delta t$
- let $\lambda_j \equiv 2^j$ be standardized scale associated with \mathbf{V}_j
 - takes on values $2, 4, 8, \ldots, N/2, N$
 - physical scale given by $\lambda_j \Delta t$

WMTSA: 85

Matrix Description of Pyramid Algorithm: I

• matrix gets us jth level wavelet coefficients via $\mathbf{W}_j = \mathcal{B}_j \mathbf{V}_{j-1}$
Matrix Description of Pyramid Algorithm: II

• matrix gets us *j*th level scaling coefficients via $\mathbf{V}_j = \mathcal{A}_j \mathbf{V}_{j-1}$

Matrix Description of Pyramid Algorithm: III

• if we define $\mathbf{V}_0 = \mathbf{X}$ and let j = 1, then

 $\mathbf{W}_j = \mathcal{B}_j \mathbf{V}_{j-1}$ reduces to $\mathbf{W}_1 = \mathcal{B}_1 \mathbf{V}_0 = \mathcal{B}_1 \mathbf{X} = \mathcal{W}_1 \mathbf{X}$ because \mathcal{B}_1 has the same definition as \mathcal{W}_1

• likewise, when j = 1,

 $\mathbf{V}_j = \mathcal{A}_j \mathbf{V}_{j-1}$ reduces to $\mathbf{V}_1 = \mathcal{A}_1 \mathbf{V}_0 = \mathcal{A}_1 \mathbf{X} = \mathcal{V}_1 \mathbf{X}$ because \mathcal{A}_1 has the same definition as \mathcal{V}_1

Formation of Submatrices of \mathcal{W} : I

• using
$$\mathbf{V}_j = \mathcal{A}_j \mathbf{V}_{j-1}$$
 repeatedly and $\mathbf{V}_1 = \mathcal{A}_1 \mathbf{X}$, can write
 $\mathbf{W}_j = \mathcal{B}_j \mathbf{V}_{j-1}$
 $= \mathcal{B}_j \mathcal{A}_{j-1} \mathbf{V}_{j-2}$
 $= \mathcal{B}_j \mathcal{A}_{j-1} \mathcal{A}_{j-2} \mathbf{V}_{j-3}$
 $= \mathcal{B}_j \mathcal{A}_{j-1} \mathcal{A}_{j-2} \cdots \mathcal{A}_1 \mathbf{X} \equiv \mathcal{W}_j \mathbf{X},$

where \mathcal{W}_j is $\frac{N}{2^j} \times N$ submatrix of \mathcal{W} responsible for \mathbf{W}_j • likewise, can get $1 \times N$ submatrix \mathcal{V}_J responsible for \mathbf{V}_J $\mathbf{V}_J = \mathcal{A}_J \mathbf{V}_{J-1}$ $= \mathcal{A}_J \mathcal{A}_{J-1} \mathbf{V}_{J-2}$

$$= \mathcal{A}_{J}\mathcal{A}_{J-1} \mathbf{V}_{J-2}$$
$$= \mathcal{A}_{J}\mathcal{A}_{J-1}\mathcal{A}_{J-2}\mathbf{V}_{J-3}$$
$$= \mathcal{A}_{J}\mathcal{A}_{J-1}\mathcal{A}_{J-2}\cdots\mathcal{A}_{1}\mathbf{X} \equiv \mathcal{V}_{J}\mathbf{X}$$

• \mathcal{V}_J is the last row of \mathcal{W} , & all its elements are equal to $1/\sqrt{N}$

Formation of Submatrices of \mathcal{W} : II

• have now constructed all of DWT matrix:

$$\mathcal{W} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \mathcal{W}_3 \\ \mathcal{W}_4 \\ \vdots \\ \mathcal{W}_j \\ \vdots \\ \mathcal{W}_J \\ \mathcal{V}_J \end{bmatrix} = \begin{bmatrix} \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \mathcal{B}_3 \mathcal{A}_2 \mathcal{A}_1 \\ \mathcal{B}_4 \mathcal{A}_3 \mathcal{A}_2 \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1 \\ \mathcal{A}_J \mathcal{A}_{J-1} \cdots \mathcal{A}_1 \end{bmatrix}$$

Examples of \mathcal{W} and its Partitioning: I

• N = 16 case for Haar DWT matrix \mathcal{W}

• above agrees with qualitative description given previously

Examples of \mathcal{W} and its Partitioning: II

• N = 16 case for D(4) DWT matrix \mathcal{W}

• note: elements of last row equal to $1/\sqrt{N} = 1/4$, as claimed

Matrix Description of Multiresolution Analysis: I

• just as we could reconstruct
$$\mathbf{X}$$
 from \mathbf{W}_1 and \mathbf{V}_1 using

$$\mathbf{X} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1,$$

so can we reconstruct \mathbf{V}_{j-1} from \mathbf{W}_j and \mathbf{V}_j using

$$\mathbf{V}_{j-1} = \mathcal{B}_j^T \mathbf{W}_j + \mathcal{A}_j^T \mathbf{V}_j$$

(recall the correspondences $\mathbf{V}_0 = \mathbf{X}$, $\mathcal{B}_1 = \mathcal{W}_1$ and $\mathcal{A}_1 = \mathcal{V}_1$)

• we can thus write

$$\begin{aligned} \mathbf{X} &= \mathcal{B}_{1}^{T} \mathbf{W}_{1} + \mathcal{A}_{1}^{T} \mathbf{V}_{1} \\ &= \mathcal{B}_{1}^{T} \mathbf{W}_{1} + \mathcal{A}_{1}^{T} (\mathcal{B}_{2}^{T} \mathbf{W}_{2} + \mathcal{A}_{2}^{T} \mathbf{V}_{2}) \\ &= \mathcal{B}_{1}^{T} \mathbf{W}_{1} + \mathcal{A}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2} + \mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathbf{V}_{2} \\ &= \mathcal{B}_{1}^{T} \mathbf{W}_{1} + \mathcal{A}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2} + \mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} (\mathcal{B}_{3}^{T} \mathbf{W}_{3} + \mathcal{A}_{3}^{T} \mathbf{V}_{3}) \\ &= \mathcal{B}_{1}^{T} \mathbf{W}_{1} + \mathcal{A}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2} + \mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathcal{B}_{3}^{T} \mathbf{W}_{3} + \mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathcal{A}_{3}^{T} \mathbf{V}_{3} \end{aligned}$$

Matrix Description of Multiresolution Analysis: II

• studying the bottom line

 $\mathbf{X} = \mathcal{B}_1^T \mathbf{W}_1 + \mathcal{A}_1^T \mathcal{B}_2^T \mathbf{W}_2 + \mathcal{A}_1^T \mathcal{A}_2^T \mathcal{B}_3^T \mathbf{W}_3 + \mathcal{A}_1^T \mathcal{A}_2^T \mathcal{A}_3^T \mathbf{V}_3$ says *j*th level detail should be $\mathcal{D}_j \equiv \mathcal{A}_1^T \mathcal{A}_2^T \cdots \mathcal{A}_{j-1}^T \mathcal{B}_j^T \mathbf{W}_j$

• likewise, letting *j*th level smooth be $S_j \equiv \mathcal{A}_1^T \mathcal{A}_2^T \cdots \mathcal{A}_j^T \mathbf{V}_j$ yields, for $1 \leq k \leq J$,

$$\mathbf{X} = \sum_{j=1}^{k} \mathcal{D}_j + \mathcal{S}_k \text{ and, in particular, } \mathbf{X} = \sum_{j=1}^{J} \mathcal{D}_j + \mathcal{S}_J$$

• above are multiresolution analyses (MRAs) for levels k and J; i.e., additive decomposition (first of two basic decompositions derivable from DWT)

Matrix Description of Energy Decomposition: I

• just as we can recover the energy in
$$\mathbf{X}$$
 from $\mathbf{W}_1 \& \mathbf{V}_1$ using
 $\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$,

so can we recover the energy in \mathbf{V}_{j-1} from $\mathbf{W}_j \& \mathbf{V}_j$ using $\|\mathbf{V}_{j-1}\|^2 = \|\mathbf{W}_j\|^2 + \|\mathbf{V}_j\|^2$

(recall the correspondence $\mathbf{V}_0 = \mathbf{X}$)

• we can thus write

$$\begin{aligned} \|\mathbf{X}\|^2 &= \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2 \\ &= \|\mathbf{W}_1\|^2 + \|\mathbf{W}_2\|^2 + \|\mathbf{V}_2\|^2 \\ &= \|\mathbf{W}_1\|^2 + \|\mathbf{W}_2\|^2 + \|\mathbf{W}_3\|^2 + \|\mathbf{V}_3\|^2 \end{aligned}$$

Matrix Description of Energy Decomposition: II

• generalizing from the bottom line

$$\|\mathbf{X}\|^{2} = \|\mathbf{W}_{1}\|^{2} + \|\mathbf{W}_{2}\|^{2} + \|\mathbf{W}_{3}\|^{2} + \|\mathbf{V}_{3}\|^{2}$$

indicates that, for $1 \leq k \leq J$, we can write

$$\|\mathbf{X}\|^{2} = \sum_{j=1}^{k} \|\mathbf{W}_{j}\|^{2} + \|\mathbf{V}_{k}\|^{2}$$

and, in particular,

$$\|\mathbf{X}\|^{2} = \sum_{j=1}^{J} \|\mathbf{W}_{j}\|^{2} + \|\mathbf{V}_{J}\|^{2}$$

• above are energy decompositions for levels k and J (second of two basic decompositions derivable from DWT)

Partial DWT: I

- J repetitions of pyramid algorithm for X of length $N = 2^J$ yields 'complete' DWT, i.e., $\mathbf{W} = \mathcal{W}\mathbf{X}$
- can choose to stop at $J_0 < J$ repetitions, yielding a 'partial' DWT of level J_0 :

$$\begin{aligned} & \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \\ \vdots \\ \mathcal{W}_j \\ \vdots \\ \mathcal{W}_{J_0} \\ \mathcal{V}_{J_0} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1 \\ \vdots \\ \mathcal{B}_{J_0} \mathcal{A}_{J_0-1} \cdots \mathcal{A}_1 \\ \mathcal{A}_{J_0} \mathcal{A}_{J_0-1} \cdots \mathcal{A}_1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_j \\ \vdots \\ \mathbf{W}_{J_0} \\ \mathbf{V}_{J_0} \end{bmatrix} \\ & \mathcal{V}_{J_0} \text{ is } \frac{N}{2^{J_0}} \times N, \text{ yielding } \frac{N}{2^{J_0}} \text{ coefficients for scale } \lambda_{J_0} = 2^{J_0} \end{aligned}$$

Partial DWT: II

- only requires N to be integer multiple of 2^{J_0}
- partial DWT more common than complete DWT
- choice of J_0 is application dependent
- multiresolution analysis for partial DWT:

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$$

 S_{J_0} represents averages on scale $\lambda_{J_0} = 2^{J_0}$ (includes \overline{X}) • analysis of variance for partial DWT:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \frac{1}{N} \|\mathbf{V}_{J_0}\|^2 - \overline{X}^2$$

Example of $J_0 = 4$ Partial Haar DWT

• oxygen isotope records **X** from Antarctic ice core

Example of $J_0 = 4$ Partial Haar DWT

• oxygen isotope records **X** from Antarctic ice core

Example of MRA from $J_0 = 4$ Partial Haar DWT

• oxygen isotope records **X** from Antarctic ice core

Example of Variance Decomposition

• decomposition of sample variance from $J_0 = 4$ partial DWT

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \sum_{j=1}^4 \frac{1}{N} \|\mathbf{W}_j\|^2 + \frac{1}{N} \|\mathbf{V}_4\|^2 - \overline{X}^2$$

- Haar-based example for oxygen isotope records
- $\begin{array}{ll} -0.5 \text{ year changes:} & \frac{1}{N} \|\mathbf{W}_1\|^2 \doteq 0.295 \ (\doteq \ 9.2\% \text{ of } \hat{\sigma}_X^2) \\ -1.0 \text{ years changes:} & \frac{1}{N} \|\mathbf{W}_2\|^2 \doteq 0.464 \ (\doteq 14.5\%) \\ -2.0 \text{ years changes:} & \frac{1}{N} \|\mathbf{W}_3\|^2 \doteq 0.652 \ (\doteq 20.4\%) \\ -4.0 \text{ years changes:} & \frac{1}{N} \|\mathbf{W}_4\|^2 \doteq 0.846 \ (\doteq 26.4\%) \\ -8.0 \text{ years averages:} & \frac{1}{N} \|\mathbf{V}_4\|^2 \overline{X}^2 \doteq 0.947 \ (\doteq 29.5\%) \\ -\text{ sample variance:} & \hat{\sigma}_X^2 \doteq 3.204 \end{array}$

Filtering Description of Pyramid Algorithm

• flow diagrams for analyses of X at level 1 and of V_{j-1} at level j are quite similar:

• in the above $N_j \equiv N/2^j$ (also recall $\mathbf{V}_0 = \mathbf{X}$ by definition)

Equivalent Wavelet Filter for Level j = 3

• consider flow diagram for extracting \mathbf{W}_3 from \mathbf{X} :

$$\mathbf{X} \longrightarrow \overline{G(\frac{k}{N})} \xrightarrow{1}{\downarrow 2} \overline{G(\frac{k}{N_1})} \xrightarrow{1}{\downarrow 2} \overline{H(\frac{k}{N_2})} \xrightarrow{1}{\downarrow 2} \mathbf{W}_3$$

• can be regarded as filter cascade, but must adjust for ' $\downarrow 2$ '

- equivalent filter for cascade can be represented by
 - impulse response sequence $\{h_{3,l}\}$
 - transfer function $H_3(f) \equiv G(f)G(2f)H(4f)$, where, as usual, $\{h_{3,l}\} \longleftrightarrow H_3(\cdot)$
- in above, '2f' and '4f' adjust for downsampling (Exer. [91])
- with the equivalent filter, flow diagram becomes

$$\mathbf{X} \longrightarrow \left[H_3(\frac{k}{N}) \right] \xrightarrow{}{\downarrow 8} \mathbf{W}_3$$

Equivalent Scaling Filter for Level j = 3

• similar results hold for transforming \mathbf{X} into \mathbf{V}_3 :

$$\mathbf{X} \longrightarrow \boxed{G(\frac{k}{N})} \xrightarrow{1}{\downarrow 2} \boxed{G(\frac{k}{N_1})} \xrightarrow{1}{\downarrow 2} \boxed{G(\frac{k}{N_2})} \xrightarrow{1}{\downarrow 2} \mathbf{V}_3$$

• equivalent filter for cascade can be represented by

- impulse response sequence $\{g_{3,l}\}$ - transfer function $G_3(f) \equiv G(f)G(2f)G(4f)$, where, once again, $\{g_{3,l}\} \longleftrightarrow G_3(\cdot)$
- with the equivalent filter, flow diagram becomes

$$\mathbf{X} \longrightarrow \boxed{G_3(\frac{k}{N})} \xrightarrow{}_{\downarrow 8} \mathbf{V}_3$$

Equivalent Wavelet & Scaling Filters for Level j

- results generalize in an obvious way to other levels j
- jth level equivalent wavelet filter can be represented by
 - impulse response sequence $\{h_{j,l}\} \longleftrightarrow H_j(\cdot)$
 - transfer function $H_j(f) \equiv H(2^{j-1}f) \prod_{l=0}^{j-2} G(2^l f)$
- $\bullet~j{\rm th}$ level equivalent scaling filter can be represented by
 - impulse response sequence $\{g_{j,l}\} \longleftrightarrow G_j(\cdot)$
 - transfer function $G_j(f) \equiv \prod_{l=0}^{j-1} G(2^l f)$
- convenient to define $H_1(f) = H(f)$ and $G_1(f) = G(f)$
- flow diagrams become

$$\mathbf{X} \longrightarrow H_j(\frac{k}{N}) \xrightarrow{1}{\downarrow 2^j} \mathbf{W}_j \text{ and } \mathbf{X} \longrightarrow G_j(\frac{k}{N}) \xrightarrow{1}{\downarrow 2^j} \mathbf{V}_j$$

Relating Filtering and Matrix Descriptions

• because
$$\mathbf{W}_j = \mathcal{W}_j \mathbf{X}$$
 and because

$$\mathbf{X} \longrightarrow \boxed{H_j(\frac{k}{N})} \xrightarrow{}_{\downarrow 2^j} \mathbf{W}_j$$

can argue that

- rows of \mathcal{W}_j must contain values dictated by $\{h_{j,l}\}$ after periodization to length N
- adjacent rows are circularly shifted by 2^j units
- from $\mathbf{V}_j = \mathcal{V}_j \mathbf{X}$ & related flow diagram, can also argue that
 - rows of \mathcal{V}_j must contain values dictated by $\{g_{j,l}\}$ after periodization to length N

- adjacent rows are circularly shifted by 2^{j} units

Haar Equivalent Wavelet & Scaling Filters

•
$$L_j = 2^j$$
 is width of $\{h_{j,l}\}$ and $\{g_{j,l}\}$

D(4) Equivalent Wavelet & Scaling Filters

• L_j dictated by general formula $L_j = (2^j - 1)(L - 1) + 1$, but can argue that *effective* width is 2^j (same as Haar L_j) WMTSA: 98 IV-89

D(6) Equivalent Wavelet & Scaling Filters

• $\{h_{4,l}\}$ resembles discretized version of Mexican hat wavelet

C(6) Equivalent Wavelet & Scaling Filters

• $\{g_{j,l}\}$ yields 'triangularly' weighted average (effective width 2^{j})

LA(8) Equivalent Wavelet & Scaling Filters

again with an effective width of 2^j

WMTSA: 98

Squared Gain Functions for Filters

• squared gain functions give us frequency domain properties:

$$\mathcal{H}_j(f) \equiv |H_j(f)|^2$$
 and $\mathcal{G}_j(f) \equiv |G_j(f)|^2$

• example: squared gain functions for LA(8) $J_0 = 4$ partial DWT

Summary of Key Points about the DWT: I

• DWT \mathcal{W} is orthonormal, i.e., satisfies $\mathcal{W}^T \mathcal{W} = I_N$

- construction of \mathcal{W} starts with a wavelet filter $\{h_l\}$ of even length L that by definition
 - 1. sums to zero; i.e., $\sum_{l} h_{l} = 0$;
 - 2. has unit energy; i.e., $\sum_{l} h_{l}^{2} = 1$; and
 - 3. is orthogonal to its even shifts; i.e., $\sum_{l} h_{l} h_{l+2n} = 0$
- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum_l g_l h_{l+2n} = 0$
- while $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter

Summary of Key Points about the DWT: II

- $\{h_l\}$ and $\{g_l\}$ work in tandem to split time series **X** into
 - wavelet coefficients \mathbf{W}_1 (related to changes in averages on a unit scale) and
 - scaling coefficients \mathbf{V}_1 (related to averages on a scale of 2)
- $\{h_l\}$ and $\{g_l\}$ are then applied to \mathbf{V}_1 , yielding
 - wavelet coefficients \mathbf{W}_2 (related to changes in averages on a scale of 2) and
 - scaling coefficients \mathbf{V}_2 (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients \mathbf{V}_{j-1} at level j-1 are transformed into wavelet and scaling coefficients \mathbf{W}_j and \mathbf{V}_j of scales $\tau_j = 2^{j-1}$ and $\lambda_j = 2^j$

Summary of Key Points about the DWT: III

- after J_0 repetitions, this 'pyramid' algorithm transforms time series **X** whose length N is an integer multiple of 2^{J_0} into DWT coefficients $\mathbf{W}_1, \mathbf{W}_2, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0} (sizes of vectors are $\frac{N}{2}, \frac{N}{4}, \ldots, \frac{N}{2^{J_0}}$ and $\frac{N}{2^{J_0}}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
- first decomposition is additive and is known as a multiresolution analysis (MRA), in which \mathbf{X} is reexpressed as

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0},$$

where \mathcal{D}_j is a time series reflecting variations in **X** on scale τ_j , while \mathcal{S}_{J_0} is a series reflecting its λ_{J_0} averages

Summary of Key Points about the DWT: IV

• second decomposition reexpresses the energy (squared norm) of **X** on a scale by scale basis, i.e.,

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \|\mathbf{V}_{J_0}\|^2,$$

leading to an analysis of the sample variance of \mathbf{X} :

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2$$
$$= \frac{1}{N} \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \frac{1}{N} \|\mathbf{V}_{J_0}\|^2 - \overline{X}^2$$