Review of Concepts from Fourier & Filtering Theory

e precise definition of DW'T requires a few basic concepts from
Fourier analysis and theory of linear filters

e will start with discussion/review of:

— basic ideas behind Fourier analysis of time series
— Fourier theory for infinite sequences

— convolution /filtering of infinite sequences

— filter cascades

— Fourier theory for finite sequences

— circular convolution /filtering of finite sequences

— periodization of a filter

WMTSA: Chapter 2 I11-1



What is Fourier Analysis?: 1

e one of the most widely used methods for data analysis in
— geophysics
— oceanography
— atmospheric science
— astronomy
— engineering (all types)
— etc.
e used to analyze time series (observations collected over time)

e let X} denote value of time series at time indexed by ¢

e example: Xgg = 65° = temperature in Loew Hall 105 at 1PM
on day 89 of 2018 (30th March)
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What is Fourier Analysis?: 11

e four examples of time series Xg, X1, ..., Xq97

g Rl
it

e (): how would you describe these 4 series?”

e Fourier analysis does so by comparing X¢'s to sines & cosines
(note: will collectively refer to sines & cosines as ‘sinusoids’)

e (): what do sines and cosines have to do with time series?

I11-3



What is Fourier Analysis?: 111

e let’s plot sin(u) and cos(u) versus u as u goes from 0 to 4m:

5 _
ol N . 7
| R4 N4
—2 | | | |
0 2T 47 0 2 4
U U

oletu:27r%8tf0rt:(),l,...,127
e now let’s plot Sin(Qw%ggt) and COS(Q?T%St) versus t:

5 _
0 NN
| R4 N4
—2 | | | |
0 64 1280 64 128
t t

e artificial time series exhibiting 2 cycles over time span of 128
(meaning of ‘%’ — called frequency f of the sinusoid)
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Adding Sines & Cosines with Different Frequencies

T T~ o f=1/128
lemlml f=3/128
Wlwlml f:5/128
VAN, fonmmmmons e 77108

VARAAARANY, IV, oo f = 9/128

WNW WWWWVW' WWWWWW —11/128
VWAVAMAMANL AAARARARAARAR [~ = 13/128
BOCAAIIUNSIAN ob0miootonss WWMM —15/128
HOSSSSUTILUUNII, Jormsssosoboossss, KSR, F — 17/128
e WWMW —19/128
MM AVINVAY A W Xy

0 1280 128 0
t t t

e sinusoid amplitudes fixed in column 1, but random in 2 & 3
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What is Fourier Analysis?: IV

e conclusion: by summing up lots of sinusoids with different am-
plitudes, can get artificial X+'s that resemble actual X¢'s

e coal of Fourier analysis: given a time series X¢, figure out how
to construct it using sinusoids; i.e., to write

Xt = Z Ay sin(27 fi.t) + By, cos(27 fi.t),
k
where f;.’s are a collection of different frequencies

e above called ‘Fourier representation’ for a time series
e allows us to reexpress time series in a standard way
e different time series will need different A.’s and B}.’s

e can compare time series by comparing their A;.’s and B}.’s
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Some Notation, Conventions and Basic Facts: 1

e casier to do Fourier theory by not dealing with sinusoids directly

ei=+/—1 and hence 7 =—1,2 S— i &it=1
(note: ‘=" means ‘equal by deﬁmtlon )

e if x & y are real-valued variables, z = x + iy is complex-valued

o ¥ =1 —iy, |2| = 22+ 32 and |2]° = 22* and

o ' = cos(x) +1i sm(x) is definition of a complex exponential

o ["¥]? = 1 because cos?(x) + sin?(z) = 1

o cHTTY) = ciTely just expand out both sides

o (") = e for integer n (de Moivre’s theorem)

o [dr = ﬁ because

i sin(x)+cos(z)
[

| cos(z) + zsm( )dx = sin(z) — icos(x) =
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Some Notation, Conventions and Basic Facts: 11

o since e = cos(z) + isin(z) & e~ = cos(x) — isin(z), have

cos(x) = ewze_m and sin(zx) = ezx_zf_m
o e = —1 (trivial, but useful!)

o can write z = |z|e’? (polar representation)
— |z| is magnitude of z (|z| is nonnegative)
— 0 = arg(z) is argument of z (defined if z # 0);
0 = angle between positive x axis & line to (z,y)
— by convention —m < 0 <7

(,y) 2=z +y
0

|z| is length of line from (0,0) to (z,y)
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Fourier Theory for Infinite Sequences: 1

olet {a; :t=...,—1,0,1,...} = {ay} denote an infinite real-
valued sequence satisfying >~ a7 < oo (do not need stronger
condition ) , |at| < co — addendum to overheads has details)

e discrete Fourier transform (DFT) of {ay}:

O

Alf)y= Y ape !

{=—00
o f called frequency: e 2™/t = cos(2r ft) — i sin(2n ft)
(controls how fast cosine & sine go up & down as ¢ increases)

e A(-) called Fourier analysis of {a;}
(note: A(-) is function, while A(f) is value of A(+) at f)
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Fourier Theory for Infinite Sequences: Il

o A(f) defined for all f, but 0 < f < 1/2 of main interest

— because {at} is real-valued,

*
©.9) 0@

A=f)= > @ = 3" a0 = A%(f)

t=—00 t=—00
— A(-) periodic with unit period; i.e., A(f +1) = A(f) since
e 2n(f A1) g2 fto—idnt _ =i [0 sin(2mt)] = e~i2n 1
— implies A(f 4+ j) = A(f) for any integer j
— need only know A(f) for 0 < f < 1/2 to know it for all f
e ‘low frequencies’ are those in lower range of |0, 1/2]

e ‘high frequencies’ are those in upper range of [0, 1/2]
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Fourier Theory for Infinite Sequences: 111

e can reconstruct {a;} from its Fourier transform (Exercise [22¢]):

1/2 |
/ A(f)eﬂﬂftdf:at, t=...,—1,0,1,...
—1/2

left-hand side called inverse DFT of A(-)
e {a;} and A(-) are two representations for one ‘thingy’
e notation: {a;} «— A(-) means

— DFT of {a} is A(-): A(f) = >, aze™ 27/

— inverse DFT of A(-) is {at}: ar = fi{Q/Q A(f)et2m It qf

o large |A(f)| says 2™/t important in synthesizing {a;}; ie.,

{a;} resembles some combination of cos(2x ft) and sin(27 ft)
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Fourier Theory for Infinite Sequences: IV
oif {ar} — A() & {bt} «— B(:), then

1/2
D aby = / A(f)B*(f) df
t=—0o0 —1/2

‘two sequence’ Parseval’s theorem (Exercise [23a])

e setting by = ay vields ‘one sequence’ Parseval:

=—00

(key to ‘energy’ decomposition across frequencies)
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Fourier Theory for Infinite Sequences: V

e suppose {az : t =0,..., N — 1} is finite sequence
e extend to infinite sequence by settinga; = O0fort < 0&t > N
e DF'T is then

00 | N—-1 |
A(f) — Z ate—ZQﬂ'ft _ Z at6—227rft
{=—00 t=0
e notation: {as:t=0,..., N—1} «— A(-); i.e., zero extension

is implicit
e will use shorthand {a;} «— A(-)ift =0,..., N — 1 is clear
from context
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Examples of Fourier Transforms of Infinite Sequences

. i d
e consider a; = 1_36 (%) + 2—10 (—%) and by = ay_1

i I {act | I {0}
OJJ'HTTTT TTTTHLL JJJ'HTTTT TTTTHL
l l l l l l l l l l
—8 —4 (t) 4 8 —8—4 g 4 8
o AN T B(.
0 \\;\ <>/ _\V - ) blue is real part
- red is imaginary part
—2 oy o
0.0 0.50.0 0.5

f f
e because {at} is symmetric about ¢t = 0 (i.e., a—¢ = ay),
its DFT A(-) is real-valued

e {b:} is asymmetric, so its DFT B(-) is complex-valued
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Convolution of Infinite Sequences: 1

o given {a;} «— A(-) and {b;} «— B(-), define

O

a* by = Z aybt—y, t=...,—1,0,1,...

U=—00
e note: ‘axby’ is just a fancy variable name (could have used ‘ct’)
e sequence {a * by} is convolution of {as} and {b:}
— reverse direction of {b¢}, multiply by {a;} & sum to get axby
— shift {b+} and repeat to get other values a * by

a—1 Qo ai a9 as

00
a * b() — Zu:—oo a’ub_u

by by by by b_g
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Convolution of Infinite Sequences: 1

o given {a;} «— A(-) and {b;} «— B(-), define

O

a* by = Z aybt—y, t=...,—1,0,1,...

U=—00
e note: ‘axby’ is just a fancy variable name (could have used ‘ct’)
e sequence {a * by} is convolution of {as} and {b:}
— reverse direction of {b¢}, multiply by {a;} & sum to get axby
— shift {b+} and repeat to get other values a * by

a—1 Qo ai a9 as

oo

by b by bq by
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Convolution of Infinite Sequences: 1

o given {a;} «— A(-) and {b;} «— B(-), define

O

a* by = Z aybt—y, t=...,—1,0,1,...

U=—00
e note: ‘axby’ is just a fancy variable name (could have used ‘ct’)
e sequence {a * by} is convolution of {as} and {b:}
— reverse direction of {b¢}, multiply by {a;} & sum to get axby
— shift {b+} and repeat to get other values a * by

a—1 Qo ai a9 as

oo
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Convolution of Infinite Sequences: 1

o given {a;} «— A(-) and {b;} «— B(-), define

O

a* by = Z aybt—y, t=...,—1,0,1,...

U=—00
e note: ‘axby’ is just a fancy variable name (could have used ‘ct’)
e sequence {a * by} is convolution of {as} and {b:}
— reverse direction of {b¢}, multiply by {a+} & sum to get axby
— shift {b+} and repeat to get other values a * by

a—_1 Qo ai a9 as

00
a * b3 — Zu:—oo aub3_u
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Convolution of Infinite Sequences: 11

e DFT of {a * bt} has a simple form, namely,

©.0

S™ axbe M = A()B(f);

{=—00

i.e., just multiply two DFTs together (Exercise [24])
e can state this result as {a x bt} «—— A(-)B(-)

e related concept is (complex) cross-correlation:

O ©.@)
a™ * by = Z azbqut — Z ayby+t < A*<f>B<f>
U=—00 U=—00
e letting by = ay yields autocorrelation:
0@
Y auturt —— A*HAS) = AP
U=—0Q
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Basic Concepts of Filtering: 1

e convolution & linear time invariant filtering are same concepts:

— {bt} is input to filter

— {at} represents the filter

— {a * b} is output from filter

e flow diagram for filtering:

{bi} — Har}| — {a b} or {b} — [at] — {a * b}

e since {a;} equivalent to A(-), can also express flow diagram as

{bt} —

WMTSA: 25
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Basic Concepts of Filtering: 11

e {a;} called impulse response sequence for filter
e A(-) called transfer function for filter
o in general A(+) is complex-valued, so write A(f) = |A(f)|e??(/)

— |A(f)| defines gain function
— A(f) = |A(f)|? defines squared gain function
— 0(f) called phase function (well-defined at f if |A(f)| > 0)

WMTSA: 25 I11-18



Example of a Low-Pass Filter

(L =0
o s\ )Y
e consider ?5_1_6(5> +57 (—5) at =<7, t=-—lorl

L0, otherwise

] {b:} [ {ai}] {ax b}

Oﬂf!TTTTITTTTH& . B . S -H'FTTTHTTTT'H!-

_'8_'4%3 L 8 -s_4 9 1 8 -84 9 1 s

2[ B() | A() | A(+)B(")

0.0 0.50.0 0.50.0 0.5

f f f

e note: A(-) & B(+) are both real-valued (equal to gain functions)
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Example of a High-Pass Filter

L, t=0
e consider same {b;}, but now let @y = ¢ —3, t=—1 or 1

0, otherwise

i I {oe} | {at] {a b}
OJJ'HTTTT TTTTH&WW

—8 —4 g 4 8 1 %) 4 8 -8-4 %) 4 8

2\ B() A() AC)B()

1k o L

0.0 0.50.0 0.50.0 0.5
f f f

e might regard {a;} as highly discretized Mexican hat wavelet
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Cascade of Filters: 1

e idea: output from one filter becomes input to another

e flow diagram for cascade with 2 filters (can have more!):

{be} — A1(")

L.

—

Ag()| = {ax by}

if {b;} «—— B(:) and {a * b} «—— C(-), then
1. output from Aj(-) has DFT A(f)B(f)

2. output from Ao(-) has DFT As(f)A1(f)B(f)
so C(f) = Aa(f)A1(f)B(f)

o let A(f) = Aa(f)AL(S)

e can reexpress overall effect of filter cascade as

{bt} —

WMTSA: 27-28
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Cascade of Filters: 11

e A(-) is transfer function for equivalent filter for cascade
olet {at} «— A(), {a1} — Ai() and {ag s} «— Ao(:)

o to form {a;}, just need to convolve {aj +} and {ag ¢}

(L t=-1 L, t=0
e example: aj ¢ = %, t =20 & agy = —%, t=1
L0, otherwise 0, otherwise

a1 -3 a;—2 a1 —-10a1p0 a1 Qai2

a1 dA20 A2 -10a2-20G2 302 4

WMTSA: 27-28 [11-22
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Cascade of Filters: 11

e A(-) is transfer function for equivalent filter for cascade
olet {at} «— A(), {a1} — Ai() and {ag s} «— Ao(:)

o to form {a;}, just need to convolve {aj +} and {ag ¢}

(L t=-1 L, t=0
e example: aj ¢ = %, t =0 & agy = —%, t=1
L0, otherwise 0, otherwise
0 0 —5 2 0 0
I I I a9 =10
-2 L 0 0 0 0
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Cascade of Filters: 11

e A(-) is transfer function for equivalent filter for cascade
o let {at} «— A(-), {a1t} «— A1(-) and {ag s} «— As(:)
o to form {a;}, just need to convolve {aj +} and {ag ¢}

! 1
_?7 t — —1 §, t — O
e example: aj ¢ = %, t =20 & agy = —%, t=1
L0, otherwise 0, otherwise
0 0 —5 2 0 0
| l -1 = —i

WMTSA: 27-28 [11-22



Cascade of Filters: 11

e A(-) is transfer function for equivalent filter for cascade
o let {at} «— A(-), {a1t} «— A1(-) and {ag s} «— As(:)
o to form {a;}, just need to convolve {aj +} and {ag ¢}

! 1
_?7 t — —1 §, t — O
e example: aj ¢ = %, t =20 & agy = —%, t=1
L0, otherwise 0, otherwise
0 0 —5 2 0 0
! . . _ 1
: : : ap = 5
0 0 - 4+ 0 0
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Cascade of Filters: 11

e A(-) is transfer function for equivalent filter for cascade
olet {at} «— A(), {a1} — Ai() and {ag s} «— Ao(:)

o to form {a;}, just need to convolve {aj +} and {ag ¢}

(1 1
_?7 t — —1 §, t — O
e example: aj ¢ = %, t =20 & agy = —%, t=1
L0, otherwise 0, otherwise
0 0 —5 2 0 0
—_—— . a; = —=
o 0 0 -1 < 0
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Cascade of Filters: 11

e A(-) is transfer function for equivalent filter for cascade
olet {at} «— A(), {a1} — Ai() and {ag s} «— Ao(:)

o to form {a;}, just need to convolve {aj +} and {ag ¢}

! 1
_?7 t — —1 §, t — O
e example: aj ¢ = %, t =20 & agy = —%, t=1
L0, otherwise 0, otherwise
0 0 —5 2 0 0
' : : a9 — 0
o 0 0 0 -3 3

WMTSA: 27-28 [11-22



Cascade of Filters: 111

ot =0

e gives high-pass filter seen earlier: a; = < —%, t=—1or1

0, otherwise

DN —

\

o filter {04} with {a1+} to get, say, {ay * bt}

] I {b} [ {ars}[ {ay * b}
QJJ'HTTTT TTTTHLL assssss  ssssssss |mgm.m ® T " m_u g,

|
-8 -4 0 4 8§ —-8-— 4 8

4 :
[ PO[AO. [ A0BD
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Cascade of Filters: IV

o filter {ay * bt} with {ag ¢} to get same {a * bt} as before:

N {CL1 X bt} B {CLQ)t} N {a X bt}
Ofswsamy® Tu"amatan e e
 E EREwme e
2l Al)B() | Aq) nl A()B(-) = As(-) A (1) B(:)
N A Il
—2 o o L
0.0 0.50.0 0.50.0 0.5
f f f
e cascade of M filters of widths Ly, ..., Lj; has {a;} of width
M
L= Lp—M+1 (Exercise [28a])
m=1

(check on above example with M =2: L =2+2—-2+1=3)
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Fourier Theory for Finite Sequences: 1

elet {ar:t=0,1,..., N — 1} = {a+} denote a finite sequence
(same shorthand as for infinite sequence — don’t get confused!)
e discrete Fourier transform (DFT) of {ay}:
N—-1 2
Ap = TR i = — = ., N —
. Zate , with f}. N&k 0,1,...,N—1
t=0
e note: can define Ay, for all k, but {A; : k=0,1,..., N — 1}
is DF'T (sequence indexed by all integers k is periodic with a
period of N;ie., Ay = 4;)
e A, is associated with frequency fz., and 0 < f. < 1

o Ay for 0 < fi, < 1/2 of main interest because Ay _j = A
(if N even, k =0,..., N/2 index the frequencies of interest)
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Fourier Theory for Finite Sequences: 11

e can recover {as} from its DFT {A.} (Exercise [29a)):
| N—-1 |
N Z AkeZ27Tfkt:at, t=0,1,...,N — 1.
k=0
left-hand side called inverse DFT of { Az}

e {a;} and {A.} are two representations for one ‘thingy’
e relationship between {a;} and { A} denoted by
{a;} «—— {AL} or, less formally, by ay «—— Ay

e can define a; for t < 0 & t > N via inverse DEF'T"
{az :t=...,—1,0,1,...} periodic with period N

WMTSA: 29 I11-26



Fourier Theory for Finite Sequences: 111

o if {at} — {Ak} & {bt} — {Bk}a then

N—1 ! N—1
t=0 k=0

‘two sequence’ Parseval’s theorem (Exercise [29b))

e setting by = a; yields ‘one sequence’ Parseval:

N—1 V-l
2 2
“TN Z | A

t=0 k=0

WMTSA: 29 1127



Examples of Fourier Transforms of Finite Sequences

e two time series { Xt} of length N = 16 and their DFTs {A}.}

1 _
X 0T J,-i-H'L ! 'J.-*-I e
Jon O
—1L ! ! L L | | |
5 — —
X, 0 WJT blue is real part
red is imaginary part
—o L ' ' I | | |
0 5 10 150 5 10 15
tor k tork

e series differ only at ¢ = 13, but their DFT's differ at all k&
e note that Xjg_j, = A for k=1,2,3,4,5,6 and 7

WMTSA: 42, 49 I11-28



Examples of Fourier Transforms of Finite Sequences

e two time series { Xt} of length N = 16 and their DFTs {A}.}

1_ —
X 0 ! "i"HF.L ! - -i-I F.L
! il J : l“M i J
—10L | | L | | |
5_ —
Xp 0 wﬂﬁ, blue is real part
red is imaginary part
_5 I | | | | | |
o 5 10 150 5 10 15
tork t or k

e series differ only at ¢ = 13, but their DFT's differ at all k&
e note that Xjg_j, = A for k=1,2,3,4,5,6 and 7
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Examples of Fourier Transforms of Finite Sequences

e two time series { Xt} of length N = 16 and their DFTs {A}.}

1_ —
X 0 ! "i"HF.L ! - -i-I F.L
! il J : l“M i J
—10L | | L | | |
5_ —
X 0 wﬁ blue is real part
red is imaginary part
_5 I | | | | | |
o 5 10 150 5 10 15
tork t or k

e series differ only at ¢ = 13, but their DFT's differ at all k&
e note that Xjg_j, = A for k=1,2,3,4,5,6 and 7

WMTSA: 42, 49 I11-28



Examples of Fourier Transforms of Finite Sequences

e two time series { Xt} of length N = 16 and their DFTs {A}.}

1 — —
X 0 ! "i"HF.L ! - -i-I F.L
! il J : ] l i J ] J i J
—10L | | L | | |
5 — —
X 0 ‘EL_[H_ITJW‘LJT blue. I8 real.part
red is imaginary part
_5 I | | | | | |
o 5 10 150 5 10 15
tork t or k

e series differ only at ¢ = 13, but their DFT's differ at all k&
e note that Xjg_j, = A for k=1,2,3,4,5,6 and 7
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Examples of Fourier Transforms of Finite Sequences

e two time series { Xt} of length N = 16 and their DFTs {A}.}
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Examples of Fourier Transforms of Finite Sequences

e two time series { Xt} of length N = 16 and their DFTs {A}.}
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Examples of Fourier Transforms of Finite Sequences

e two time series { Xt} of length N = 16 and their DFTs {A}.}

1_ —
X 0 ! "i"HF.L ! - -i-I F.L
! il J : l“M i J
—10L | | L | | |
5_ —
Xp 0 w blue is real part
red is imaginary part
_5 I | | | | | |
o 5 10 150 5 10 15
tork t or k

e series differ only at ¢ = 13, but their DFT's differ at all k&
e note that Xjg_j, = A for k=1,2,3,4,5,06 and 7

WMTSA: 42, 49 I11-28



Examples of Fourier Transforms of Finite Sequences

e two time series { Xt} of length N = 16 and their DFTs {A}.}

1_ —
X 0 ! "i"HF.L ! - -i-I F.L
! il J : l“M i J
—10L | | L | | |
5_ —
Xp 0 ‘ELJHTHWJT blue is real part
red is imaginary part
_5 I | | | | | |
o 5 10 150 5 10 15
tork t or k

e series differ only at ¢ = 13, but their DFT's differ at all k&
e note that Xjg_j, = &) for k =1,2,3,4,5,6 and 7
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Convolution /Filtering of Finite Sequences: 1

o given {a;} & {b;} of length N with DFTs { A} & { B}, define

N-—1
ax by = Z aybt—y, t=0,1,... . N —1

u=0

e assumes b defined for ¢ < 0 by periodic extension;

thus b_1 — bN—la b_Q — bN—27 b_g — bN—B ete
e equivalent definition, but with periodicity explicitly stated
N—1
a* by = Z aybi—yymod N, t=0,1,..., N —1

u=0

efimod N=kit0< k<N —1;ifnot, kmod N =k+ nN.,
where n 1s unique integer such that 0 < k+n/N < N —1; thus

bO mod N — bo, b—l mod N — bN_l, b_Q mod N = bN—Q etc.

WMTSA: 29-30 I11-29



Convolution /Filtering of Finite Sequences: 11

e sequence {a * by} called circular (cyclic) convolution

e DFT of {a * b} again has a simple form (Exercise [30]):
N—-1
Z a x bte_iZWfkt — A/{B]ﬁ
t=0
i.e., {a * bt} — {AkBk}

WMTSA: 30-31 I11-30



Convolution /Filtering of Finite Sequences: 11

e sequence {a * by} called circular (cyclic) convolution
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Convolution /Filtering of Finite Sequences: 11

e sequence {a * by} called circular (cyclic) convolution

7
a*xbs=> _oaubs_ymods
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Convolution /Filtering of Finite Sequences: 11

e sequence {a * by} called circular (cyclic) convolution

7
a*xbs=> _00ubs—yumods

e DFT of {a * b} again has a simple form (Exercise [30]):
N—-1
Z a x bte_iZWfkt — A/{B]ﬁ
t=0
i.e., {a * bt} — {AkBk}
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Convolution /Filtering of Finite Sequences: 11

e sequence {a * by} called circular (cyclic) convolution

7
a * b? — Zu:() aub7—u mod 8

e DFT of {a * b} again has a simple form (Exercise [30]):
N—-1
Z a x bte_iZWfkt — A/{B]ﬁ
t=0
i.e., {a * bt} — {AkBk}

WMTSA: 30-31 I11-30



Convolution /Filtering of Finite Sequences: III

e related concept is complex cross-correlation:
N—1
a**thZ@ZbuHmodN t=0,1,...,N —1,

u=0

for which {a™ x by} «— { A7 By}

7
ag a* xbyg=>Y _ab,

u=0 ""u

WMTSA: 30-31 I11-31



Convolution /Filtering of Finite Sequences: III

e related concept is complex cross-correlation:
N—1
a**thZ@ZbuHmodN t=0,1,...,N —1,

u=0

for which {a™ x by} «— { A7 By}

* 7 *
a * bl — Zuzo aubu—l—l mod 8
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Convolution /Filtering of Finite Sequences: III

e related concept is complex cross-correlation:
N—1
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*
Ag a* * bQ — Zu:o azbu—l—Z mod &8

WMTSA: 30-31 I11-31



Convolution /Filtering of Finite Sequences: III

e related concept is complex cross-correlation:
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Convolution /Filtering of Finite Sequences: III

e related concept is complex cross-correlation:
N—1
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for which {a™ x by} «— { A7 By}

7
*
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Convolution /Filtering of Finite Sequences: III

e related concept is complex cross-correlation:
N—1
a**thZ@ZbuHmodN t=0,1,...,N —1,

u=0

for which {a™ x by} «— { A7 By}

k ES 7 S
Ag a* x by = Zu:o %bu+5 mod 8
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Convolution /Filtering of Finite Sequences: III

e related concept is complex cross-correlation:
N—1
a**thZ@ZbuHmodN t=0,1,...,N —1,

u=0

for which {a™ x by} «— { A7 By}

7
k ES
ag a**bg = _00buti6mods
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Convolution /Filtering of Finite Sequences: III

e related concept is complex cross-correlation:
N—1
a**thZ@ZbuHmodN t=0,1,...,N —1,

u=0

for which {a™ x by} «— { A7 By}

7
k ES
ag a**xbr=> 4@ byi7mods
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Convolution /Filtering of Finite Sequences: IV

o with {a;} «— {A.}, can obtain {a* x b} by filtering {b;}
with filter { A} } (Exercise [31])

e flow diagram for circular filtering:

{bt} — H{ar} — {ax b} or {b} — {Ap} — {axb}

(latter cannot be mistaken for infinite sequence case)

e sometimes convenient to simplify the above to
{bt} — At — {a * bt} or {bt} — Ak — {a * bt}

or to just

by — |at| — a x by or by — A — a * by

WMTSA: 31-32 I11-32



Periodized Filters: 1

e circular filters of length IV often constructed implicitly
olet {by:t=0,..., N — 1} be a finite sequence, and
consider using {a; : t =0,1,..., M — 1} to form
M—1
a*bt: Z aubt—umodNa t:O,...,N—l
u=0
e resembles circular filtering: input {b;}, output {a * b},
but {a;} is a sequence of width M (need not be equal to N)

o if M < N, can write

M—1 N—1
a* by = Z aubt—u mod N — Z aubt—u mod N

by defining a; =0fort=M,...,N — 1

WMTSA: 32 I11-33



Periodized Filters: 11

oif M > N, define ax = 0 for all ¢ > M so that
M—1 00
a* by = Z Guby—y mod N = Z aubt—y mod N

u=0 u=0
e split infinite sum into sum of sums over N terms:
N-—1 2N —1

a* by = Z bty mod N T Z bty mod N+
u=0 u=N

e rewrite each sum so that u goes from 0 to N — 1:
N—-1 N—-1
a by = Z aubi_y mod N + Z a”LH—th—u—N mod N 1+

WMTSA: 32-33 I11-34



Periodized Filters: 111

e use fact that, for any integer n,

t—u—nNmod N =t —wumodN

to get
N—-1 N—-1
a % by = Z Gubt—y mod N T Z G+ Nty mod N+ -+
u=0 u=0

e collect multipliers of b;_,, ;1oq & together & call their sum ay):

N—1 [/ N—-1
_ @)
a* by = E E Ay+nN bt—u mod N = E , aubt—u mod N

WMTSA: 32-33 I11-35



Periodized Filters: 1V

o {a;} is {a¢} periodized to length N and is formed by
— chopping zero-padded {at } into finite sequences of length NV:

g’Oaala X '7aN—L7 SLN)aN—i—la e 7a2N—L7 O
block n=0 block n=1
— adding finite sequences element by element:

block n = 0: agy aij -+ AN_1

+ o+
block n = 1: aN aN.1 "' GON_1

+ o+

v
periodized filter: ag aj v Ay

WMTSA: 33 I11-36



Periodized Filters: V

e as example, let’s periodize {aq, ay, as, as, ay, as} to length 4

e extend with zeros and chop into blocks of length 4:

ap, aj, as, as, a4, as,0,0, 0,0,0,0

2 ) e

blocErn:O blocﬁrnzl blocﬁrn:2

e add blocks element by element:

block n = 0: a aq
+ +
block n = 1: @ as
4 4

ap ag
+ +
0 0

4 J

periodized filter: ag+ a4 a1+ as ag as

e yields ay = ap + a4, a] = a1 + as, a5 = ag and a3 = a3

I11-37



Periodized Filters: VI

e as a second example, let’s periodize a filter of width M = 46
to length NV = 16, which, after padding with two zeros, goes as
follows:

frrrri—n—rrn—rrrrrrd-**f?T!'—ﬁ-iﬁ‘ifr'—'—'—'—L'—'—'—'—'—'—'—* at,t:O,...,47

I11-38



Periodized Filters: VI

e as a second example, let’s periodize a filter of width M = 46
to length NV = 16, which, after padding with two zeros, goes as
follows:

1—.—.ﬂ—-—-—.—.—.—.—.—.—.—.T.—~J-!*$TfT!L.1-i“iﬂ—.—.4M.4+.4—H at,tzo,...,47

block n =0 n=1 n=2
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Periodized Filters: VI

e as a second example, let’s periodize a filter of width M = 46
to length NV = 16, which, after padding with two zeros, goes as
follows:

1—.—.ﬂ—-—-—.—.—.—.—.—.—.—.T.—~J-!*$TfT!L.1-i“iﬂ—.—.4M.4+.4—H at,tzo,...,47

block n = 0 n=1 n =2
LB N I e RN E e a,t7t—O’ 715
;-#*TTTT!L__i-i“ a;, t = 16, .31

I11-38



Periodized Filters: VI

e as a second example, let’s periodize a filter of width M = 46
to length NV = 16, which, after padding with two zeros, goes as
follows:

1—.—.ﬂ—-—-—.—.—.—.—.—.—.—.T.—~J-!*$TfT!L.1-i“iﬂ—.—.4M.4+.4—H at,tzo,...,47

block n =0 n=1 n=>2
BN BN Bn Bn Bn B B BN BN BN BN Bn Bn Bn M W a’t7t207--°715
j-!*$TTT!.—W-iﬁ‘ at,t:16,...,31

T "mmw'
T._-!**TT-'_'iiﬁgg CL?,tZO,...,].nB

I11-38



Periodized Filters: VII

e have set a; = 0 for all t > M; now set a; = 0 for all t < 0 also
e DFT of infinite sequence {a;} given by

o0 | M—1 |
A(f) _ Z atG—ZZWft _ Z ate—’LQ?Tft
t=—0o0 t=0

o Exercise [33]: DFT of {af : t = 0,...,N — 1} is given by
{A(F): k=0,...,N -1}

e periodization equivalent to sampling in frequency domain

e result holds for M < N, M = N or M > N (and for starting
values of ¢ other than 0)

WMTSA: 33 I11-39



Periodized Filters: VIII

e in terms of a flow diagram, can thus express
M—1

a * by = Z bty mod Ny, t=0,...,N—1
u=0
as

{br} — {AR)} — {axb} or {b} — A(R)

e variation on the above:

— place N elements of {b;} into vector B
— place N elements of {a * b} into vector C

— can then reexpress flow diagram as

B — A(%) — C

— above is most common form of flow diagram

WMTSA: 33 I11-40
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Summary of Fourier /Filtering Theory: I

e{a;:t=...,—-1,0,1,...} = {az} has DFT
o0 .
A(f) = Z are 12T
l=—00

e inverse DF'T says that

1/2 .

ap = / A(f)e’LQWft df
—1/2

e relationship between {a;} and A(-) denoted by

{ar} «— A(-) or, less formally, by a; «+— A(f)

WMTSA: 35-38 I11-41



Summary of Fourier /Filtering Theory: II

o given {a;} «— A(-) and {bs} «— B(-), their convolution
o

a* by = Z aybt—y, t=...,—1,0,1,...,

U=——00

has a DF'T given by

O

Y axbe P = A(f)B(f)

{=—00

e {a * bt} is output from filter with impulse response sequence
{a;} and transfer function A(-) related by {a;} «— A(-)

e can express filtering operation in a flow diagram as either

{bt}) — H{ar} — {ax b} or {b} — A() — {a b}

WMTSA: 35-38 [11-42



Summary of Fourier /Filtering Theory: III

o{a;:t=0,1,...,N — 1} = {as} has DFT

N—1
- k
Ay = Zate_ﬂﬂfkt, with kaN & k=0,1,....N—1
t=0

e inverse DF'T says that
! N-—1
_ 127 fi,t _ _
at—N];)Ake , t=0,1,...,N—1

e relationship between {a;} and { A} denoted by
{a;} «—— {AL} or, less formally, by a «—— Ay

WMTSA: 35-38 I11-43



Summary of Fourier/Filtering Theory: IV

o given {as} & {b+} of length N with DFTs {A.} & { B},
their circular convolution
N—1

axb =Y aubp_ymod N» t=0,1,....N—1,

u=0
has a DF'T given by
N—1
Z a * bte_ﬁﬂfkt — AkBk
t=0

e {ax bt} is output from circular filtering operation expressed as

{bt} — At | — {CL X bt} or {bt} — Ak — {a % bt}

WMTSA: 35-38 I11-44



Summary of Fourier/Filtering Theory: V

o given {a;} of width M & {b+}, can express

M—1
a* by = Z aubi_yymod N, t=0,...,N —1,
u=0
as (assuming a; =0 fort <0 and t > M)
N—-1 00
a * by = Z bty mod N» Where ay = Z Qy+nN
u=0 n=-—00
o DFT of {a} given by A(%), k=0,...,N—1, where
00 M-1
A(f) — Z ate—iZWft _ Z ate—iQWft
{=—00 t=0

WMTSA: 35-38 I11-45



Summary of Fourier/Filtering Theory: VI

e can represent this type of filtering operation as either
{bt}%A(]]f,) > {axb}t or B— A(]]f[) >» C
where B & C are vectors of length N containing {b; } & {ax*b;}

WMTSA: 35-38 I11-46



Summary of Fourier/Filtering Theory: VII

e can achieve effect of cascade with L filters

{bt} —

by using a single equivalent filter

A(r) —

Ap()] — -+

— Ap()] — {a* bt}

{bt} — A() — {ax b}, where A(f) =[] Ai(f)

e similarly, effect of cascade with L circular filters

B —

Ay ()

| Ag(%5)

- — A(#) — C

can be achieved using a single equivalent circular filter

B — A(&)

WMTSA: 35-38

I11-47
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Do We Need » . |a;| < co for DFT to Exist?: 1

e for real-valued infinite sequence {as : t = ..., —1,0,1,...},
have stated that >, a7 < oo is sufficient for DFT

O

A(f) = Z are 12T I1

t=—00
to exist and to be well-defined

o note that >, a? < oo does not imply >, |ag| < oo

e might seem we need stronger condition ) , |a¢| < oo since

00 00
AO)= > ar= ) la
=—00 =—00

if a; > 0 for all ¢, opening up possibility A(0) = oo if we only
assume Y, a7 < 00

WMTSA: 21-22 [IT-Addendum-1



Do We Need ) , |a;| < oo for DFT to Exist?: 11

e in fact, > , a% < oo is sufficient, as per following argument (see,
e.¢., Section 1.3 of L.H. Koopmans, The Spectral Analysis of

Time Series, Academic Press, 1974)

o let LQ(—%, —%) denote collection of all complex-valued func-
tions A(-) such that

1/2
/ A2 df < o

~1/2
(need to interpret above integral as Lebesgue integral)

e can regard LZ(—%, —%) as Hilbert space with inner product

1/2
(A(-), B()) = / A(f)B*(f) df

—1/2

IIT-Addendum—2



Do We Need ), |a;| < oo for DFT to Exist?: III

o can argue that Ei(f) = e 27/t for t = 0,+1,... form a

complete orthonormal sequence in LQ(—%, —%)

e hence A(-) € LQ(—%, —%) if and only if there exists a sequence
of complex numbers {as,t = 0,+1,...} with 3, Jaz|* < oo
such that

©.0 ®.0

Af) =) wkEl(f)= ) ae

=—00 {=—00

where

1/2 |
0t = (A(), By(-)) = / A(f)e Tt af

—1/2

IIT-Addendum—3



Do We Need ), |a;| < co for DFT to Exist?: IV

o let £? be set all complex-valued sequences {az} such that

o can regard 2 as Hilbert space with inner product

({a}, {bi}) = > b}
e thus
A<f> _ i ate—iQWft and at:/1/2 A(f)eiQWftdf
t=—00 —1/2

give a one-to-one mapping (the DFT) from L2(—%, —%) onto

/2 that can be shown to preserve inner products

IIT-Addendum—4



Do We Need ) , |a;| < co for DFT to Exist?: V

e second heuristic proof (not based on Hilbert space theory)

e for integer m > 0, let

m
Am(f) — Z ate—ZQﬂ'ft,
t=—m
i.e., DFT of finite sequence {as : t = —m,...,m}

e one-sequence Parseval’s theorem says

1/2
S a / (s

t=—m

(solution to Exercise [23a] gives rigorous proof for finite sums)

IIT-Addendum-5



Do We Need ), |a;| < co for DFT to Exist?: VI

e hence

Y ai= lim Y a; = lim A (f)]? df
t

m—oQ _1/2

1/2

. / fim | A (F)|2 df

1/2
- / AS) 2 df

—1/2

(note: need to justify interchange of limit and integration using
argument such as provided by Vitali convergence theorem)

IIT-Addendum-—6



Do We Need ) , |at| < co for DFT to Exist?: VII

e hence A(-) is square-integrable over interval [—%, %]

e if B(:) is also square-integrable over [—%, %], Cauchy-Schwarz
inequality (CSI) says

1/2 ? 1/2 1/2
[ apE | < [ #/ ()2 df

~1/2 —1/2

o letting B(f) = e "™/ in above says that
2

1/2 | 1/2
[ ety < [ jagtar < o

—1/2 —1/2

IIT-Addendum—7



Do We Need ) , |at| < co for DFT to Exist?: VIII

e hence

1/2 |
/ A(f)e>™ It ar =

—1/2
is finite for all ¢

e final step is to argue that we must have a; = ay
o for DFT Ay, (+) of finite sequence {ay : t = —m, ..., m}, have
1/2 .
/ A )2 df = a,
—1/2

for all m > |t| (solution to Exercise [22¢| gives rigorous proof
for finite sums)

IIT-Addendum-8



Do We Need ), |a;| < co for DFT to Exist?: IX

e thus, for m > |t|,

1/2 |
=l = | [ A7) = Au(f) e dp

—1/2

2

[AC) = Am(f)] df

VA
i
~—
M N)

A(f) = An(f)IPdf  (using CSI)

VA
N
NS

—m 00
= Z a% + Z ai — 0
U=—00 u=m

as m — 0o, which completes the proof

IIT-Addendum-9



Do We Need ), |a;| < oo for DFT to Exist?: X

e thus stronger condition ) , |az| < oo is sufficient but not nec-
essary for DF'T to exist

e example of real-valued sequence for which » . |at| = oo but
S ad < oo s
I+
V2T ([t +3)
|
A=
— note that A(0) = oo since sin(0) = 0
— above {a;} is autocovariance sequence for a fractionally dif-

ferenced (FD) process with parameter § = % (we'll be dis-
cussing FD processes later on)

for which

WMTSA: 284 IIT-Addendum—10
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