
Review of Concepts from Fourier & Filtering Theory

• precise definition of DWT requires a few basic concepts from
Fourier analysis and theory of linear filters

• will start with discussion/review of:

− basic ideas behind Fourier analysis of time series

− Fourier theory for infinite sequences

− convolution/filtering of infinite sequences

− filter cascades

− Fourier theory for finite sequences

− circular convolution/filtering of finite sequences

− periodization of a filter

WMTSA: Chapter 2 III–1

What is Fourier Analysis?: I

• one of the most widely used methods for data analysis in

− geophysics

− oceanography

− atmospheric science

− astronomy

− engineering (all types)

− etc.

• used to analyze time series (observations collected over time)

• let Xt denote value of time series at time indexed by t

• example: X89 = 65◦ = temperature in Loew Hall 105 at 1PM
on day 89 of 2018 (30th March)

III–2

What is Fourier Analysis?: II

• four examples of time series X0, X1, . . . , X127

0 64 128 0 64 128
t t

Xt

Xt

• Q: how would you describe these 4 series?

• Fourier analysis does so by comparing Xt’s to sines & cosines
(note: will collectively refer to sines & cosines as ‘sinusoids’)

• Q: what do sines and cosines have to do with time series?

III–3

What is Fourier Analysis?: III

• let’s plot sin(u) and cos(u) versus u as u goes from 0 to 4π:

2

0

−2
0 2π 4π 0 2π 4π

u u

• let u = 2π 2
128t for t = 0, 1, . . . , 127

• now let’s plot sin(2π 2
128t) and cos(2π 2

128t) versus t:

2

0

−2
0 64 128 0 64 128

t t

• artificial time series exhibiting 2 cycles over time span of 128
(meaning of ‘ 2

128’ – called frequency f of the sinusoid)

III–4

Adding Sines & Cosines with Different Frequencies

0 128 0 128 0 128
t t t

f = 1/128

f = 3/128

f = 5/128

f = 7/128

f = 9/128

f = 11/128

f = 13/128

f = 15/128

f = 17/128

f = 19/128

Xt

• sinusoid amplitudes fixed in column 1, but random in 2 & 3

III–5

What is Fourier Analysis?: IV

• conclusion: by summing up lots of sinusoids with different am-
plitudes, can get artificial Xt’s that resemble actual Xt’s

• goal of Fourier analysis: given a time series Xt, figure out how
to construct it using sinusoids; i.e., to write

Xt =
X

k

Ak sin(2πfkt) + Bk cos(2πfkt),

where fk’s are a collection of different frequencies

• above called ‘Fourier representation’ for a time series

• allows us to reexpress time series in a standard way

• different time series will need different Ak’s and Bk’s

• can compare time series by comparing their Ak’s and Bk’s

III–6

Some Notation, Conventions and Basic Facts: I

• easier to do Fourier theory by not dealing with sinusoids directly

• i ≡
√
−1 and hence i2 = −1, i3 = −i & i4 = 1

(note: ‘≡’ means ‘equal by definition’)

• if x & y are real-valued variables, z = x+ iy is complex-valued

• z∗ ≡ x− iy, |z| ≡
√
x2 + y2 and |z|2 = zz∗ and

• eix ≡ cos(x) + i sin(x) is definition of a complex exponential

• |eix|2 = 1 because cos2(x) + sin2(x) = 1

• ei(x+y) = eixeiy – just expand out both sides

• (eix)n = einx for integer n (de Moivre’s theorem)

•
∫
eix dx = eix

i because∫
cos(x) + i sin(x) dx = sin(x)− i cos(x) =

i sin(x)+cos(x)
i

WMTSA: 20–21 III–7

Some Notation, Conventions and Basic Facts: II

• since eix = cos(x) + i sin(x) & e−ix = cos(x) − i sin(x), have

cos(x) = eix+e−ix

2 and sin(x) = eix−e−ix

2i

• e±iπ = −1 (trivial, but useful!)

• can write z = |z|eiθ (polar representation)

− |z| is magnitude of z (|z| is nonnegative)

− θ = arg(z) is argument of z (defined if z 6= 0);
θ = angle between positive x axis & line to (x, y)

− by convention −π < θ ≤ π

θ

(x, y) z = x + iy

|z| is length of line from (0, 0) to (x, y)

WMTSA: 20–21 III–8

Fourier Theory for Infinite Sequences: I

• let {at : t = . . . ,−1, 0, 1, . . .} = {at} denote an infinite real-
valued sequence satisfying

∑
t a

2
t < ∞ (do not need stronger

condition
∑
t |at| <∞ – addendum to overheads has details)

• discrete Fourier transform (DFT) of {at}:

A(f) ≡
∞∑

t=−∞
ate
−i2πft

• f called frequency: e−i2πft = cos(2πft)− i sin(2πft)
(controls how fast cosine & sine go up & down as t increases)

• A(·) called Fourier analysis of {at}
(note: A(·) is function, while A(f) is value of A(·) at f)

WMTSA: 21–22 III–9

Fourier Theory for Infinite Sequences: II

• A(f) defined for all f , but 0 ≤ f ≤ 1/2 of main interest

− because {at} is real-valued,

A(−f) =
∞X

t=−∞
ate

i2πft =




∞X

t=−∞
ate
−i2πft




∗

= A∗(f)

− A(·) periodic with unit period; i.e., A(f + 1) = A(f) since

e−i2π(f+1)t = e−i2πfte−i2πt = e−i2πft[cos(2πt)−i sin(2πt)] = e−i2πft

− implies A(f + j) = A(f) for any integer j

− need only know A(f) for 0 ≤ f ≤ 1/2 to know it for all f

• ‘low frequencies’ are those in lower range of [0, 1/2]

• ‘high frequencies’ are those in upper range of [0, 1/2]

WMTSA: 22 III–10

Fourier Theory for Infinite Sequences: III

• can reconstruct {at} from its Fourier transform (Exercise [22c]):
Z 1/2

−1/2
A(f)ei2πft df = at, t = . . . ,−1, 0, 1, . . .

left-hand side called inverse DFT of A(·)
• {at} and A(·) are two representations for one ‘thingy’

• notation: {at} ←→ A(·) means

− DFT of {at} is A(·): A(f) =
P

t ate−i2πft

− inverse DFT of A(·) is {at}: at =
R 1/2
−1/2 A(f)ei2πft df

• large |A(f)| says ei2πft important in synthesizing {at}; i.e.,
{at} resembles some combination of cos(2πft) and sin(2πft)

WMTSA: 22–23 III–11

Fourier Theory for Infinite Sequences: IV

• if {at} ←→ A(·) & {bt} ←→ B(·), then
∞X

t=−∞
atbt =

Z 1/2

−1/2
A(f)B∗(f) df

‘two sequence’ Parseval’s theorem (Exercise [23a])

• setting bt = at yields ‘one sequence’ Parseval:
∞X

t=−∞
a2
t =

Z 1/2

−1/2
|A(f)|2 df

(key to ‘energy’ decomposition across frequencies)

WMTSA: 23 III–12

Fourier Theory for Infinite Sequences: V

• suppose {at : t = 0, . . . , N − 1} is finite sequence

• extend to infinite sequence by setting at = 0 for t < 0 & t ≥ N

• DFT is then

A(f) ≡
∞X

t=−∞
ate
−i2πft =

N−1X

t=0

ate
−i2πft

• notation: {at : t = 0, . . . , N−1} ←→ A(·); i.e., zero extension
is implicit

• will use shorthand {at} ←→ A(·) if t = 0, . . . , N − 1 is clear
from context

WMTSA: 23 III–13

Examples of Fourier Transforms of Infinite Sequences

• consider at = 3
16

≥
4
5

¥|t|
+ 1

20

≥
−4

5

¥|t|
and bt = at−1

.................{at} {bt}

A(·) B(·)
blue is real part
red is imaginary part

−8 −4 0 4 8 −8 −4 0 4 8
t t

0

2

0

−2
0.0 0.5 0.0 0.5

f f

• because {at} is symmetric about t = 0 (i.e., a−t = at),
its DFT A(·) is real-valued

• {bt} is asymmetric, so its DFT B(·) is complex-valued

III–14

Convolution of Infinite Sequences: I

• given {at} ←→ A(·) and {bt} ←→ B(·), define

a ∗ bt ≡
∞X

u=−∞
aubt−u, t = . . . ,−1, 0, 1, . . .

• note: ‘a∗bt’ is just a fancy variable name (could have used ‘ct’)

• sequence {a ∗ bt} is convolution of {at} and {bt}
− reverse direction of {bt}, multiply by {at} & sum to get a∗b0

− shift {bt} and repeat to get other values a ∗ bt

a−1 a0 a1 a2 a3

b1 b0 b−1 b−2 b−3

· · · · · · a ∗ b0 =
P∞

u=−∞ aub−u

WMTSA: 24 III–15

Convolution of Infinite Sequences: I

• given {at} ←→ A(·) and {bt} ←→ B(·), define

a ∗ bt ≡
∞X

u=−∞
aubt−u, t = . . . ,−1, 0, 1, . . .

• note: ‘a∗bt’ is just a fancy variable name (could have used ‘ct’)

• sequence {a ∗ bt} is convolution of {at} and {bt}
− reverse direction of {bt}, multiply by {at} & sum to get a∗b0

− shift {bt} and repeat to get other values a ∗ bt

a−1 a0 a1 a2 a3

b2 b1 b0 b−1 b−2

· · · · · · a ∗ b1 =
P∞

u=−∞ aub1−u

WMTSA: 24 III–15

Convolution of Infinite Sequences: I

• given {at} ←→ A(·) and {bt} ←→ B(·), define

a ∗ bt ≡
∞X

u=−∞
aubt−u, t = . . . ,−1, 0, 1, . . .

• note: ‘a∗bt’ is just a fancy variable name (could have used ‘ct’)

• sequence {a ∗ bt} is convolution of {at} and {bt}
− reverse direction of {bt}, multiply by {at} & sum to get a∗b0

− shift {bt} and repeat to get other values a ∗ bt

a−1 a0 a1 a2 a3

b3 b2 b1 b0 b−1

· · · · · · a ∗ b2 =
P∞

u=−∞ aub2−u

WMTSA: 24 III–15

Convolution of Infinite Sequences: I

• given {at} ←→ A(·) and {bt} ←→ B(·), define

a ∗ bt ≡
∞X

u=−∞
aubt−u, t = . . . ,−1, 0, 1, . . .

• note: ‘a∗bt’ is just a fancy variable name (could have used ‘ct’)

• sequence {a ∗ bt} is convolution of {at} and {bt}
− reverse direction of {bt}, multiply by {at} & sum to get a∗b0

− shift {bt} and repeat to get other values a ∗ bt

a−1 a0 a1 a2 a3

b4 b3 b2 b1 b0

· · · · · · a ∗ b3 =
P∞

u=−∞ aub3−u

WMTSA: 24 III–15

Convolution of Infinite Sequences: II

• DFT of {a ∗ bt} has a simple form, namely,
∞X

t=−∞
a ∗ bte

−i2πft = A(f)B(f);

i.e., just multiply two DFTs together (Exercise [24])

• can state this result as {a ∗ bt} ←→ A(·)B(·)
• related concept is (complex) cross-correlation:

a∗ ? bt =
∞X

u=−∞
a∗ubu+t =

∞X

u=−∞
aubu+t ←→ A∗(f)B(f)

• letting bt = at yields autocorrelation:
∞X

u=−∞
auau+t ←→ A∗(f)A(f) = |A(f)|2

WMTSA: 24–25 III–16

Basic Concepts of Filtering: I

• convolution & linear time invariant filtering are same concepts:

− {bt} is input to filter

− {at} represents the filter

− {a ∗ bt} is output from filter

• flow diagram for filtering:

{bt} −→ {at} −→ {a ∗ bt} or {bt} −→ at −→ {a ∗ bt}

• since {at} equivalent to A(·), can also express flow diagram as

{bt} −→ A(·) −→ {a ∗ bt}

WMTSA: 25 III–17

Basic Concepts of Filtering: II

• {at} called impulse response sequence for filter

• A(·) called transfer function for filter

• in general A(·) is complex-valued, so write A(f) = |A(f)|eiθ(f)

− |A(f)| defines gain function

−A(f) ≡ |A(f)|2 defines squared gain function

− θ(f) called phase function (well-defined at f if |A(f)| > 0)

WMTSA: 25 III–18

Example of a Low-Pass Filter

• consider bt = 3
16

≥
4
5

¥|t|
+ 1

20

≥
−4

5

¥|t|
& at =






1
2, t = 0
1
4, t = −1 or 1

0, otherwise

.................

.................{bt} {at} {a ∗ bt}

B(·) A(·) A(·)B(·)
−8 −4 0 4 8 −8 −4 0 4 8 −8 −4 0 4 8

t t t

0

2

1

0
0.0 0.5 0.0 0.50.0 0.5

f f f

• note: A(·) & B(·) are both real-valued (equal to gain functions)

WMTSA: 25–26 III–19

Example of a High-Pass Filter

• consider same {bt}, but now let at =






1
2, t = 0

−1
4, t = −1 or 1

0, otherwise

.................

.................{bt} {at} {a ∗ bt}

B(·) A(·) A(·)B(·)
−8 −4 0 4 8 −8 −4 0 4 8 −8 −4 0 4 8

t t t

0

2

1

0
0.0 0.5 0.0 0.50.0 0.5

f f f

• might regard {at} as highly discretized Mexican hat wavelet

WMTSA: 26–27 III–20

Cascade of Filters: I

• idea: output from one filter becomes input to another

• flow diagram for cascade with 2 filters (can have more!):

{bt} −→ A1(·)
1.−→ A2(·)

2.−→{a ∗ bt}
if {bt} ←→ B(·) and {a ∗ bt} ←→ C(·), then

1. output from A1(·) has DFT A1(f)B(f)

2. output from A2(·) has DFT A2(f)A1(f)B(f)
so C(f) = A2(f)A1(f)B(f)

• let A(f) ≡ A2(f)A1(f)

• can reexpress overall effect of filter cascade as

{bt} −→ A(·) −→ {a ∗ bt}

WMTSA: 27–28 III–21

Cascade of Filters: II

• A(·) is transfer function for equivalent filter for cascade

• let {at} ←→ A(·), {a1,t} ←→ A1(·) and {a2,t} ←→ A2(·)
• to form {at}, just need to convolve {a1,t} and {a2,t}

• example: a1,t =






−1
2, t = −1

1
2, t = 0

0, otherwise

& a2,t =






1
2, t = 0

−1
2, t = 1

0, otherwise

a1,−3 a1,−2 a1,−1 a1,0 a1,1 a1,2

a2,1 a2,0 a2,−1 a2,−2 a2,−3 a2,−4

· · · · · · a−2 =
P∞

u=−∞ a1,ua2,−2−u

WMTSA: 27–28 III–22

Cascade of Filters: II

• A(·) is transfer function for equivalent filter for cascade

• let {at} ←→ A(·), {a1,t} ←→ A1(·) and {a2,t} ←→ A2(·)
• to form {at}, just need to convolve {a1,t} and {a2,t}

• example: a1,t =






−1
2, t = −1

1
2, t = 0

0, otherwise

& a2,t =






1
2, t = 0

−1
2, t = 1

0, otherwise

0 0 −1
2

1
2 0 0

−1
2

1
2 0 0 0 0

· · · · · · a−2 = 0

WMTSA: 27–28 III–22

Cascade of Filters: II

• A(·) is transfer function for equivalent filter for cascade

• let {at} ←→ A(·), {a1,t} ←→ A1(·) and {a2,t} ←→ A2(·)
• to form {at}, just need to convolve {a1,t} and {a2,t}

• example: a1,t =






−1
2, t = −1

1
2, t = 0

0, otherwise

& a2,t =






1
2, t = 0

−1
2, t = 1

0, otherwise

0 0 −1
2

1
2 0 0

0 −1
2

1
2 0 0 0

· · · · · · a−1 = −1
4

WMTSA: 27–28 III–22

Cascade of Filters: II

• A(·) is transfer function for equivalent filter for cascade

• let {at} ←→ A(·), {a1,t} ←→ A1(·) and {a2,t} ←→ A2(·)
• to form {at}, just need to convolve {a1,t} and {a2,t}

• example: a1,t =






−1
2, t = −1

1
2, t = 0

0, otherwise

& a2,t =






1
2, t = 0

−1
2, t = 1

0, otherwise

0 0 −1
2

1
2 0 0

0 0 −1
2

1
2 0 0

· · · · · · a0 = 1
2

WMTSA: 27–28 III–22

Cascade of Filters: II

• A(·) is transfer function for equivalent filter for cascade

• let {at} ←→ A(·), {a1,t} ←→ A1(·) and {a2,t} ←→ A2(·)
• to form {at}, just need to convolve {a1,t} and {a2,t}

• example: a1,t =






−1
2, t = −1

1
2, t = 0

0, otherwise

& a2,t =






1
2, t = 0

−1
2, t = 1

0, otherwise

0 0 −1
2

1
2 0 0

0 0 0 −1
2

1
2 0

· · · · · · a1 = −1
4

WMTSA: 27–28 III–22

Cascade of Filters: II

• A(·) is transfer function for equivalent filter for cascade

• let {at} ←→ A(·), {a1,t} ←→ A1(·) and {a2,t} ←→ A2(·)
• to form {at}, just need to convolve {a1,t} and {a2,t}

• example: a1,t =






−1
2, t = −1

1
2, t = 0

0, otherwise

& a2,t =






1
2, t = 0

−1
2, t = 1

0, otherwise

0 0 −1
2

1
2 0 0

0 0 0 0 −1
2

1
2

· · · · · · a2 = 0

WMTSA: 27–28 III–22

Cascade of Filters: III

• gives high-pass filter seen earlier: at =






1
2, t = 0

−1
4, t = −1 or 1

0, otherwise

• filter {bt} with {a1,t} to get, say, {a1 ∗ bt}:

........
.........

.................
{bt} {a1,t} {a1 ∗ bt}

B(·) A1(·) A1(·)B(·)
−8 −4 0 4 8 −8 −4 0 4 8 −8 −4 0 4 8

t t t

0

2

0

−2
0.0 0.5 0.0 0.50.0 0.5

f f f

WMTSA: 27–28 III–23

Cascade of Filters: IV

• filter {a1 ∗ bt} with {a2,t} to get same {a ∗ bt} as before:

.................

.................
{a1 ∗ bt} {a2,t} {a ∗ bt}

A1(·)B(·) A2(·) A(·)B(·) = A2(·)A1(·)B(·)
−8 −4 0 4 8 −8 −4 0 4 8 −8 −4 0 4 8

t t t

0

2

0

−2
0.0 0.5 0.0 0.50.0 0.5

f f f

• cascade of M filters of widths L1, . . . , LM has {at} of width

L =
MX

m=1

Lm −M + 1 (Exercise [28a])

(check on above example with M = 2: L = 2 + 2− 2 + 1 = 3)

WMTSA: 27–28 III–24

Fourier Theory for Finite Sequences: I

• let {at : t = 0, 1, . . . , N − 1} = {at} denote a finite sequence
(same shorthand as for infinite sequence – don’t get confused!)

• discrete Fourier transform (DFT) of {at}:

Ak ≡
N−1X

t=0

ate
−i2πfkt, with fk ≡

k

N
& k = 0, 1, . . . , N − 1

• note: can define Ak for all k, but {Ak : k = 0, 1, . . . , N − 1}
is DFT (sequence indexed by all integers k is periodic with a
period of N ; i.e., Ak+N = Ak)

• Ak is associated with frequency fk, and 0 ≤ fk < 1

• Ak for 0 ≤ fk ≤ 1/2 of main interest because AN−k = A∗k
(if N even, k = 0, . . . , N/2 index the frequencies of interest)

WMTSA: 28 III–25

Fourier Theory for Finite Sequences: II

• can recover {at} from its DFT {Ak} (Exercise [29a]):

1

N

N−1X

k=0

Ake
i2πfkt = at, t = 0, 1, . . . , N − 1;

left-hand side called inverse DFT of {Ak}
• {at} and {Ak} are two representations for one ‘thingy’

• relationship between {at} and {Ak} denoted by

{at} ←→ {Ak} or, less formally, by at ←→ Ak

• can define at for t < 0 & t ≥ N via inverse DFT:
{at : t = . . . ,−1, 0, 1, . . .} periodic with period N

WMTSA: 29 III–26

Fourier Theory for Finite Sequences: III

• if {at} ←→ {Ak} & {bt} ←→ {Bk}, then

N−1X

t=0

atbt =
1

N

N−1X

k=0

AkB
∗
k

‘two sequence’ Parseval’s theorem (Exercise [29b])

• setting bt = at yields ‘one sequence’ Parseval:

N−1X

t=0

a2
t =

1

N

N−1X

k=0

|Ak|2

WMTSA: 29 III–27

Examples of Fourier Transforms of Finite Sequences

• two time series {Xt} of length N = 16 and their DFTs {Xk}

.
.
..............................

.........
........

...............

.......
.....

..
..

.....
.
.
..Xt

Xk
blue is real part
red is imaginary part

0 5 10 15 0 5 10 15
t or k t or k

1

0

−1
5

0

−5

• series differ only at t = 13, but their DFTs differ at all k

• note that X16−k = X∗k for k = 1, 2, 3, 4, 5, 6 and 7

WMTSA: 42, 49 III–28

Examples of Fourier Transforms of Finite Sequences

• two time series {Xt} of length N = 16 and their DFTs {Xk}

.
.
.............

.
....
........

.... .
.
.......
........

...............

.
......
.....
..
..

.....
.

.
..Xt

Xk
blue is real part
red is imaginary part

0 5 10 15 0 5 10 15
t or k t or k

1

0

−1
5

0

−5

• series differ only at t = 13, but their DFTs differ at all k

• note that X16−k = X∗k for k = 1, 2, 3, 4, 5, 6 and 7

WMTSA: 42, 49 III–28

Examples of Fourier Transforms of Finite Sequences

• two time series {Xt} of length N = 16 and their DFTs {Xk}

.
.
.............

.
....
........

.... .
.
.......
........

...............

.
......
.....
..
..

.....
.

.
..Xt

Xk
blue is real part
red is imaginary part

0 5 10 15 0 5 10 15
t or k t or k

1

0

−1
5

0

−5

• series differ only at t = 13, but their DFTs differ at all k

• note that X16−k = X∗k for k = 1, 2, 3, 4, 5, 6 and 7

WMTSA: 42, 49 III–28

Examples of Fourier Transforms of Finite Sequences

• two time series {Xt} of length N = 16 and their DFTs {Xk}

.
.
.............

.
....
........

.... .
.
.......
........

...............

.
......
.....
..
..

.....
.

.
..Xt

Xk
blue is real part
red is imaginary part

0 5 10 15 0 5 10 15
t or k t or k

1

0

−1
5

0

−5

• series differ only at t = 13, but their DFTs differ at all k

• note that X16−k = X∗k for k = 1, 2, 3, 4, 5, 6 and 7

WMTSA: 42, 49 III–28

Examples of Fourier Transforms of Finite Sequences

• two time series {Xt} of length N = 16 and their DFTs {Xk}

.
.
.............

.
....
........

.... .
.
.......
........

...............

.
......
.....
..
..

.....
.

.
..Xt

Xk
blue is real part
red is imaginary part

0 5 10 15 0 5 10 15
t or k t or k

1

0

−1
5

0

−5

• series differ only at t = 13, but their DFTs differ at all k

• note that X16−k = X∗k for k = 1, 2, 3, 4, 5, 6 and 7

WMTSA: 42, 49 III–28

Examples of Fourier Transforms of Finite Sequences

• two time series {Xt} of length N = 16 and their DFTs {Xk}

.
.
.............

.
....
........

.... .
.
.......
........

...............

.
......
.....
..
..

.....
.

.
..Xt

Xk
blue is real part
red is imaginary part

0 5 10 15 0 5 10 15
t or k t or k

1

0

−1
5

0

−5

• series differ only at t = 13, but their DFTs differ at all k

• note that X16−k = X∗k for k = 1, 2, 3, 4, 5, 6 and 7

WMTSA: 42, 49 III–28

Examples of Fourier Transforms of Finite Sequences

• two time series {Xt} of length N = 16 and their DFTs {Xk}

.
.
.............

.
....
........

.... .
.
.......
........

...............

.
......
.....
..
..

.....
.

.
..Xt

Xk
blue is real part
red is imaginary part

0 5 10 15 0 5 10 15
t or k t or k

1

0

−1
5

0

−5

• series differ only at t = 13, but their DFTs differ at all k

• note that X16−k = X∗k for k = 1, 2, 3, 4, 5, 6 and 7

WMTSA: 42, 49 III–28

Examples of Fourier Transforms of Finite Sequences

• two time series {Xt} of length N = 16 and their DFTs {Xk}

.
.
.............

.
....
........

.... .
.
.......
........

...............

.
......
.....
..
..

.....
.

.
..Xt

Xk
blue is real part
red is imaginary part

0 5 10 15 0 5 10 15
t or k t or k

1

0

−1
5

0

−5

• series differ only at t = 13, but their DFTs differ at all k

• note that X16−k = X∗k for k = 1, 2, 3, 4, 5, 6 and 7

WMTSA: 42, 49 III–28

Convolution/Filtering of Finite Sequences: I

• given {at} & {bt} of length N with DFTs {Ak} & {Bk}, define

a ∗ bt ≡
N−1X

u=0

aubt−u, t = 0, 1, . . . , N − 1

• assumes bt defined for t < 0 by periodic extension;
thus b−1 = bN−1, b−2 = bN−2, b−3 = bN−3 etc

• equivalent definition, but with periodicity explicitly stated

a ∗ bt ≡
N−1X

u=0

aubt−u mod N, t = 0, 1, . . . , N − 1

• k mod N ≡ k if 0 ≤ k ≤ N − 1; if not, k mod N ≡ k + nN ,
where n is unique integer such that 0 ≤ k +nN ≤ N −1; thus
b0 mod N = b0, b−1 mod N = bN−1, b−2 mod N = bN−2 etc.

WMTSA: 29–30 III–29

Convolution/Filtering of Finite Sequences: II

• sequence {a ∗ bt} called circular (cyclic) convolution

a0
a1

a2

a3
a4

a5

a6

a7
b0 b7

b6

b5b4
b3

b2

b1

a ∗ b0 =
P7

u=0 aub−u mod 8

• DFT of {a ∗ bt} again has a simple form (Exercise [30]):
N−1X

t=0

a ∗ bte
−i2πfkt = AkBk;

i.e., {a ∗ bt} ←→ {AkBk}

WMTSA: 30–31 III–30

Convolution/Filtering of Finite Sequences: II

• sequence {a ∗ bt} called circular (cyclic) convolution

a0
a1

a2

a3
a4

a5

a6

a7
b1 b0

b7

b6b5
b4

b3

b2

a ∗ b1 =
P7

u=0 aub1−u mod 8

• DFT of {a ∗ bt} again has a simple form (Exercise [30]):
N−1X

t=0

a ∗ bte
−i2πfkt = AkBk;

i.e., {a ∗ bt} ←→ {AkBk}

WMTSA: 30–31 III–30

Convolution/Filtering of Finite Sequences: II

• sequence {a ∗ bt} called circular (cyclic) convolution

a0
a1

a2

a3
a4

a5

a6

a7
b2 b1

b0

b7b6
b5

b4

b3

a ∗ b2 =
P7

u=0 aub2−u mod 8

• DFT of {a ∗ bt} again has a simple form (Exercise [30]):
N−1X

t=0

a ∗ bte
−i2πfkt = AkBk;

i.e., {a ∗ bt} ←→ {AkBk}

WMTSA: 30–31 III–30

Convolution/Filtering of Finite Sequences: II

• sequence {a ∗ bt} called circular (cyclic) convolution

a0
a1

a2

a3
a4

a5

a6

a7
b3 b2

b1

b0b7
b6

b5

b4

a ∗ b3 =
P7

u=0 aub3−u mod 8

• DFT of {a ∗ bt} again has a simple form (Exercise [30]):
N−1X

t=0

a ∗ bte
−i2πfkt = AkBk;

i.e., {a ∗ bt} ←→ {AkBk}

WMTSA: 30–31 III–30

Convolution/Filtering of Finite Sequences: II

• sequence {a ∗ bt} called circular (cyclic) convolution

a0
a1

a2

a3
a4

a5

a6

a7
b4 b3

b2

b1b0
b7

b6

b5

a ∗ b4 =
P7

u=0 aub4−u mod 8

• DFT of {a ∗ bt} again has a simple form (Exercise [30]):
N−1X

t=0

a ∗ bte
−i2πfkt = AkBk;

i.e., {a ∗ bt} ←→ {AkBk}

WMTSA: 30–31 III–30

Convolution/Filtering of Finite Sequences: II

• sequence {a ∗ bt} called circular (cyclic) convolution

a0
a1

a2

a3
a4

a5

a6

a7
b5 b4

b3

b2b1
b0

b7

b6

a ∗ b5 =
P7

u=0 aub5−u mod 8

• DFT of {a ∗ bt} again has a simple form (Exercise [30]):
N−1X

t=0

a ∗ bte
−i2πfkt = AkBk;

i.e., {a ∗ bt} ←→ {AkBk}

WMTSA: 30–31 III–30

Convolution/Filtering of Finite Sequences: II

• sequence {a ∗ bt} called circular (cyclic) convolution

a0
a1

a2

a3
a4

a5

a6

a7
b6 b5

b4

b3b2
b1

b0

b7

a ∗ b6 =
P7

u=0 aub6−u mod 8

• DFT of {a ∗ bt} again has a simple form (Exercise [30]):
N−1X

t=0

a ∗ bte
−i2πfkt = AkBk;

i.e., {a ∗ bt} ←→ {AkBk}

WMTSA: 30–31 III–30

Convolution/Filtering of Finite Sequences: II

• sequence {a ∗ bt} called circular (cyclic) convolution

a0
a1

a2

a3
a4

a5

a6

a7
b7 b6

b5

b4b3
b2

b1

b0

a ∗ b7 =
P7

u=0 aub7−u mod 8

• DFT of {a ∗ bt} again has a simple form (Exercise [30]):
N−1X

t=0

a ∗ bte
−i2πfkt = AkBk;

i.e., {a ∗ bt} ←→ {AkBk}

WMTSA: 30–31 III–30

Convolution/Filtering of Finite Sequences: III

• related concept is complex cross-correlation:

a∗ ? bt ≡
N−1X

u=0

a∗ubu+t mod N t = 0, 1, . . . , N − 1,

for which {a∗ ? bt} ←→ {A∗kBk}
a∗0

a∗7

a∗6

a∗5
a∗4

a∗3

a∗2

a∗1
b0 b7

b6

b5b4
b3

b2

b1

a∗ ? b0 =
P7

u=0 a∗ubu

WMTSA: 30–31 III–31

Convolution/Filtering of Finite Sequences: III

• related concept is complex cross-correlation:

a∗ ? bt ≡
N−1X

u=0

a∗ubu+t mod N t = 0, 1, . . . , N − 1,

for which {a∗ ? bt} ←→ {A∗kBk}
a∗0

a∗7

a∗6

a∗5
a∗4

a∗3

a∗2

a∗1
b1 b0

b7

b6b5
b4

b3

b2

a∗ ? b1 =
P7

u=0 a∗ubu+1 mod 8

WMTSA: 30–31 III–31

Convolution/Filtering of Finite Sequences: III

• related concept is complex cross-correlation:

a∗ ? bt ≡
N−1X

u=0

a∗ubu+t mod N t = 0, 1, . . . , N − 1,

for which {a∗ ? bt} ←→ {A∗kBk}
a∗0

a∗7

a∗6

a∗5
a∗4

a∗3

a∗2

a∗1
b2 b1

b0

b7b6
b5

b4

b3

a∗ ? b2 =
P7

u=0 a∗ubu+2 mod 8

WMTSA: 30–31 III–31

Convolution/Filtering of Finite Sequences: III

• related concept is complex cross-correlation:

a∗ ? bt ≡
N−1X

u=0

a∗ubu+t mod N t = 0, 1, . . . , N − 1,

for which {a∗ ? bt} ←→ {A∗kBk}
a∗0

a∗7

a∗6

a∗5
a∗4

a∗3

a∗2

a∗1
b3 b2

b1

b0b7
b6

b5

b4

a∗ ? b3 =
P7

u=0 a∗ubu+3 mod 8

WMTSA: 30–31 III–31

Convolution/Filtering of Finite Sequences: III

• related concept is complex cross-correlation:

a∗ ? bt ≡
N−1X

u=0

a∗ubu+t mod N t = 0, 1, . . . , N − 1,

for which {a∗ ? bt} ←→ {A∗kBk}
a∗0

a∗7

a∗6

a∗5
a∗4

a∗3

a∗2

a∗1
b4 b3

b2

b1b0
b7

b6

b5

a∗ ? b4 =
P7

u=0 a∗ubu+4 mod 8

WMTSA: 30–31 III–31

Convolution/Filtering of Finite Sequences: III

• related concept is complex cross-correlation:

a∗ ? bt ≡
N−1X

u=0

a∗ubu+t mod N t = 0, 1, . . . , N − 1,

for which {a∗ ? bt} ←→ {A∗kBk}
a∗0

a∗7

a∗6

a∗5
a∗4

a∗3

a∗2

a∗1
b5 b4

b3

b2b1
b0

b7

b6

a∗ ? b5 =
P7

u=0 a∗ubu+5 mod 8

WMTSA: 30–31 III–31

Convolution/Filtering of Finite Sequences: III

• related concept is complex cross-correlation:

a∗ ? bt ≡
N−1X

u=0

a∗ubu+t mod N t = 0, 1, . . . , N − 1,

for which {a∗ ? bt} ←→ {A∗kBk}
a∗0

a∗7

a∗6

a∗5
a∗4

a∗3

a∗2

a∗1
b6 b5

b4

b3b2
b1

b0

b7

a∗ ? b6 =
P7

u=0 a∗ubu+6 mod 8

WMTSA: 30–31 III–31

Convolution/Filtering of Finite Sequences: III

• related concept is complex cross-correlation:

a∗ ? bt ≡
N−1X

u=0

a∗ubu+t mod N t = 0, 1, . . . , N − 1,

for which {a∗ ? bt} ←→ {A∗kBk}
a∗0

a∗7

a∗6

a∗5
a∗4

a∗3

a∗2

a∗1
b7 b6

b5

b4b3
b2

b1

b0

a∗ ? b7 =
P7

u=0 a∗ubu+7 mod 8

WMTSA: 30–31 III–31

Convolution/Filtering of Finite Sequences: IV

• with {at} ←→ {Ak}, can obtain {a∗ ? bt} by filtering {bt}
with filter {A∗k} (Exercise [31])

• flow diagram for circular filtering:

{bt} −→ {at} −→ {a ∗ bt} or {bt} −→ {Ak} −→ {a ∗ bt}
(latter cannot be mistaken for infinite sequence case)

• sometimes convenient to simplify the above to

{bt} −→ at −→ {a ∗ bt} or {bt} −→ Ak −→ {a ∗ bt}
or to just

bt −→ at −→ a ∗ bt or bt −→ Ak −→ a ∗ bt

WMTSA: 31–32 III–32

Periodized Filters: I

• circular filters of length N often constructed implicitly

• let {bt : t = 0, . . . , N − 1} be a finite sequence, and
consider using {at : t = 0, 1, . . . ,M − 1} to form

a ∗ bt =
M−1X

u=0

aubt−u mod N, t = 0, . . . , N − 1

• resembles circular filtering: input {bt}, output {a ∗ bt},
but {at} is a sequence of width M (need not be equal to N)

• if M < N , can write

a ∗ bt =
M−1X

u=0

aubt−u mod N =
N−1X

u=0

aubt−u mod N

by defining at = 0 for t = M, . . . , N − 1

WMTSA: 32 III–33

Periodized Filters: II

• if M > N , define at = 0 for all t ≥M so that

a ∗ bt =
M−1X

u=0

aubt−u mod N =
∞X

u=0

aubt−u mod N

• split infinite sum into sum of sums over N terms:

a ∗ bt =
N−1X

u=0

aubt−u mod N +
2N−1X

u=N

aubt−u mod N + · · ·

• rewrite each sum so that u goes from 0 to N − 1:

a ∗ bt =
N−1X

u=0

aubt−u mod N +
N−1X

u=0

au+Nbt−u−N mod N + · · ·

WMTSA: 32–33 III–34

Periodized Filters: III

• use fact that, for any integer n,

t− u− nN mod N = t− u mod N

to get

a ∗ bt =
N−1X

u=0

aubt−u mod N +
N−1X

u=0

au+Nbt−u mod N + · · ·

• collect multipliers of bt−u mod N together & call their sum a◦u:

a ∗ bt =
N−1X

u=0




∞X

n=0

au+nN



 bt−u mod N ≡
N−1X

u=0

a◦ubt−u mod N

WMTSA: 32–33 III–35

Periodized Filters: IV

• {a◦t} is {at} periodized to length N and is formed by

− chopping zero-padded {at} into finite sequences of length N :

a0, a1, . . . , aN−1| {z }
block n=0

, aN, aN+1, . . . , a2N−1| {z }
block n=1

, . . .

− adding finite sequences element by element:

block n = 0: a0 a1 · · · aN−1
+ + · · · +

block n = 1: aN aN+1 · · · a2N−1
+ + · · · +
...
⇓ ⇓ · · · ⇓

periodized filter: a◦0 a◦1 · · · a◦N−1

WMTSA: 33 III–36

Periodized Filters: V

• as example, let’s periodize {a0, a1, a2, a3, a4, a5} to length 4

• extend with zeros and chop into blocks of length 4:

a0, a1, a2, a3| {z }
block n=0

, a4, a5, 0, 0| {z }
block n=1

, 0, 0, 0, 0| {z }
block n=2

, . . .

• add blocks element by element:

block n = 0: a0 a1 a2 a3
+ + + +

block n = 1: a4 a5 0 0
⇓ ⇓ ⇓ ⇓

periodized filter: a0 + a4 a1 + a5 a2 a3

• yields a◦0 = a0 + a4, a◦1 = a1 + a5, a◦2 = a2 and a◦3 = a3

III–37

Periodized Filters: VI

• as a second example, let’s periodize a filter of width M = 46
to length N = 16, which, after padding with two zeros, goes as
follows:

.. at, t = 0, . . . , 47

III–38

Periodized Filters: VI

• as a second example, let’s periodize a filter of width M = 46
to length N = 16, which, after padding with two zeros, goes as
follows:

.. at, t = 0, . . . , 47

block n = 0 n = 1 n = 2

III–38

Periodized Filters: VI

• as a second example, let’s periodize a filter of width M = 46
to length N = 16, which, after padding with two zeros, goes as
follows:

..
................
................
................

at, t = 0, . . . , 47

block n = 0 n = 1 n = 2

at, t = 0, . . . , 15

at, t = 16, . . . , 31

at, t = 32, . . . , 47

III–38

Periodized Filters: VI

• as a second example, let’s periodize a filter of width M = 46
to length N = 16, which, after padding with two zeros, goes as
follows:

..
................
................
................
................

at, t = 0, . . . , 47

block n = 0 n = 1 n = 2

at, t = 0, . . . , 15

at, t = 16, . . . , 31

at, t = 32, . . . , 47

a◦t , t = 0, . . . , 15

III–38

Periodized Filters: VII

• have set at = 0 for all t ≥M ; now set at = 0 for all t < 0 also

• DFT of infinite sequence {at} given by

A(f) =
∞X

t=−∞
ate
−i2πft =

M−1X

t=0

ate
−i2πft

• Exercise [33]: DFT of {a◦t : t = 0, . . . , N − 1} is given by
{A(k

N) : k = 0, . . . , N − 1}
• periodization equivalent to sampling in frequency domain

• result holds for M < N , M = N or M > N (and for starting
values of t other than 0)

WMTSA: 33 III–39

Periodized Filters: VIII

• in terms of a flow diagram, can thus express

a ∗ bt =
M−1X

u=0

aubt−u mod N, t = 0, . . . , N − 1,

as

{bt} −→ {A(k
N)} −→ {a∗bt} or {bt} −→ A(k

N) −→ {a∗bt}

• variation on the above:

− place N elements of {bt} into vector B

− place N elements of {a ∗ bt} into vector C

− can then reexpress flow diagram as

B −→ A(k
N) −→ C

− above is most common form of flow diagram

WMTSA: 33 III–40

Summary of Fourier/Filtering Theory: I

• {at : t = . . . ,−1, 0, 1, . . .} = {at} has DFT

A(f) ≡
∞X

t=−∞
ate
−i2πft

• inverse DFT says that

at =

Z 1/2

−1/2
A(f)ei2πft df

• relationship between {at} and A(·) denoted by

{at} ←→ A(·) or, less formally, by at ←→ A(f)

WMTSA: 35–38 III–41

Summary of Fourier/Filtering Theory: II

• given {at} ←→ A(·) and {bt} ←→ B(·), their convolution

a ∗ bt ≡
∞X

u=−∞
aubt−u, t = . . . ,−1, 0, 1, . . . ,

has a DFT given by
∞X

t=−∞
a ∗ bte

−i2πft = A(f)B(f)

• {a ∗ bt} is output from filter with impulse response sequence
{at} and transfer function A(·) related by {at} ←→ A(·)

• can express filtering operation in a flow diagram as either

{bt} −→ {at} −→ {a ∗ bt} or {bt} −→ A(·) −→ {a ∗ bt}

WMTSA: 35–38 III–42

Summary of Fourier/Filtering Theory: III

• {at : t = 0, 1, . . . , N − 1} = {at} has DFT

Ak ≡
N−1X

t=0

ate
−i2πfkt, with fk ≡

k

N
& k = 0, 1, . . . , N − 1

• inverse DFT says that

at =
1

N

N−1X

k=0

Ake
i2πfkt, t = 0, 1, . . . , N − 1

• relationship between {at} and {Ak} denoted by

{at} ←→ {Ak} or, less formally, by at ←→ Ak

WMTSA: 35–38 III–43

Summary of Fourier/Filtering Theory: IV

• given {at} & {bt} of length N with DFTs {Ak} & {Bk},
their circular convolution

a ∗ bt ≡
N−1X

u=0

aubt−u mod N, t = 0, 1, . . . , N − 1,

has a DFT given by

N−1X

t=0

a ∗ bte
−i2πfkt = AkBk

• {a ∗ bt} is output from circular filtering operation expressed as

{bt} −→ at −→ {a ∗ bt} or {bt} −→ Ak −→ {a ∗ bt}

WMTSA: 35–38 III–44

Summary of Fourier/Filtering Theory: V

• given {at} of width M & {bt}, can express

a ∗ bt =
M−1X

u=0

aubt−u mod N, t = 0, . . . , N − 1,

as (assuming at ≡ 0 for t < 0 and t ≥M)

a ∗ bt =
N−1X

u=0

a◦ubt−u mod N, where a◦u ≡
∞X

n=−∞
au+nN

• DFT of {a◦t} given by A(k
N), k = 0, . . . , N − 1, where

A(f) ≡
∞X

t=−∞
ate
−i2πft =

M−1X

t=0

ate
−i2πft

WMTSA: 35–38 III–45

Summary of Fourier/Filtering Theory: VI

• can represent this type of filtering operation as either

{bt} −→ A(k
N) −→ {a ∗ bt} or B −→ A(k

N) −→ C

where B & C are vectors of length N containing {bt} & {a∗bt}

WMTSA: 35–38 III–46

Summary of Fourier/Filtering Theory: VII

• can achieve effect of cascade with L filters

{bt} −→ A1(·) −→ A2(·) −→ · · · −→ AL(·) −→ {a ∗ bt}
by using a single equivalent filter

{bt} −→ A(·) −→ {a ∗ bt}, where A(f) =
LY

l=1

Al(f)

• similarly, effect of cascade with L circular filters

B −→ A1(
k
N) −→ A2(

k
N) −→ · · · −→ AL(k

N) −→ C

can be achieved using a single equivalent circular filter

B −→ A(k
N) −→ C, where A(k

N) =
LY

l=1

Al(
k
N)

WMTSA: 35–38 III–47

Do We Need
∑
t |at| <∞ for DFT to Exist?: I

• for real-valued infinite sequence {at : t = . . . ,−1, 0, 1, . . .},
have stated that

∑
t a

2
t <∞ is sufficient for DFT

A(f) ≡
∞∑

t=−∞
ate
−i2πft

to exist and to be well-defined

• note that
∑
t a

2
t <∞ does not imply

∑
t |at| <∞

• might seem we need stronger condition
∑
t |at| <∞ since

A(0) =

∞∑
t=−∞

at =

∞∑
t=−∞

|at|

if at ≥ 0 for all t, opening up possibility A(0) =∞ if we only
assume

∑
t a

2
t <∞

WMTSA: 21–22 III–Addendum–1

Do We Need
∑
t |at| <∞ for DFT to Exist?: II

• in fact,
∑
t a

2
t <∞ is sufficient, as per following argument (see,

e.g., Section 1.3 of L.H. Koopmans, The Spectral Analysis of
Time Series, Academic Press, 1974)

• let L2(−1
2,−

1
2) denote collection of all complex-valued func-

tions A(·) such that∫ 1/2

−1/2
|A(f)|2 df <∞

(need to interpret above integral as Lebesgue integral)

• can regard L2(−1
2,−

1
2) as Hilbert space with inner product

〈A(·), B(·)〉 =

∫ 1/2

−1/2
A(f)B∗(f) df

III–Addendum–2

Do We Need
∑
t |at| <∞ for DFT to Exist?: III

• can argue that Et(f) ≡ e−i2πft for t = 0,±1, . . . form a
complete orthonormal sequence in L2(−1

2,−
1
2)

• hence A(·) ∈ L2(−1
2,−

1
2) if and only if there exists a sequence

of complex numbers {at, t = 0,±1, . . .} with
∑
t |at|2 < ∞

such that

A(f) =

∞∑
t=−∞

atEt(f) =

∞∑
t=−∞

ate
−i2πft

where

at = 〈A(·), Et(·)〉 =

∫ 1/2

−1/2
A(f)ei2πft df

III–Addendum–3

Do We Need
∑
t |at| <∞ for DFT to Exist?: IV

• let `2 be set all complex-valued sequences {at} such that
∞∑

t=−∞
|at|2 <∞

• can regard `2 as Hilbert space with inner product

〈{at}, {bt}〉 =

∞∑
t=−∞

atb
∗
t

• thus

A(f) =

∞∑
t=−∞

ate
−i2πft and at =

∫ 1/2

−1/2
A(f)ei2πft df

give a one-to-one mapping (the DFT) from L2(−1
2,−

1
2) onto

`2 that can be shown to preserve inner products

III–Addendum–4

Do We Need
∑
t |at| <∞ for DFT to Exist?: V

• second heuristic proof (not based on Hilbert space theory)

• for integer m ≥ 0, let

Am(f) ≡
m∑

t=−m
ate
−i2πft,

i.e., DFT of finite sequence {at : t = −m, . . . ,m}
• one-sequence Parseval’s theorem says

m∑
t=−m

a2
t =

∫ 1/2

−1/2
|Am(f)|2 df

(solution to Exercise [23a] gives rigorous proof for finite sums)

III–Addendum–5

Do We Need
∑
t |at| <∞ for DFT to Exist?: VI

• hence
∞∑

t=−∞
a2
t = lim

m→∞

m∑
t=−m

a2
t = lim

m→∞

∫ 1/2

−1/2
|Am(f)|2 df

=

∫ 1/2

−1/2
lim

m→∞
|Am(f)|2 df

=

∫ 1/2

−1/2
|A(f)|2 df

(note: need to justify interchange of limit and integration using
argument such as provided by Vitali convergence theorem)

III–Addendum–6

Do We Need
∑
t |at| <∞ for DFT to Exist?: VII

• hence A(·) is square-integrable over interval [−1
2,

1
2]

• if B(·) is also square-integrable over [−1
2,

1
2], Cauchy–Schwarz

inequality (CSI) says∣∣∣∣∣
∫ 1/2

−1/2
A(f)B∗(f) df

∣∣∣∣∣
2

≤
∫ 1/2

−1/2
|A(f)|2 df

∫ 1/2

−1/2
|B(f)|2 df

• letting B(f) = e−i2πft in above says that∣∣∣∣∣
∫ 1/2

−1/2
A(f)ei2πft df

∣∣∣∣∣
2

≤
∫ 1/2

−1/2
|A(f)|2 df <∞

III–Addendum–7

Do We Need
∑
t |at| <∞ for DFT to Exist?: VIII

• hence ∫ 1/2

−1/2
A(f)ei2πft df ≡ ãt

is finite for all t

• final step is to argue that we must have ãt = at

• for DFT Am(·) of finite sequence {at : t = −m, . . . ,m}, have∫ 1/2

−1/2
Am(f)ei2πft df = at

for all m ≥ |t| (solution to Exercise [22c] gives rigorous proof
for finite sums)

III–Addendum–8

Do We Need
∑
t |at| <∞ for DFT to Exist?: IX

• thus, for m ≥ |t|,

|ãt − at|2 =

∣∣∣∣∣
∫ 1/2

−1/2
(A(f)− Am(f)) ei2πft df

∣∣∣∣∣
2

≤

∣∣∣∣∣
∫ 1/2

−1/2
|A(f)− Am(f)| df

∣∣∣∣∣
2

≤
∫ 1/2

−1/2
|A(f)− Am(f)|2 df (using CSI)

=

−m∑
u=−∞

a2
u +

∞∑
u=m

a2
u→ 0

as m→∞, which completes the proof

III–Addendum–9

Do We Need
∑
t |at| <∞ for DFT to Exist?: X

• thus stronger condition
∑
t |at| < ∞ is sufficient but not nec-

essary for DFT to exist

• example of real-valued sequence for which
∑
t |at| = ∞ but∑

t a
2
t <∞ is

at =
Γ(1

2)Γ(|t| + 1
4)

√
2πΓ(|t| + 3

4)
,

for which

A(f) =
1√

2| sin(πf)|
− note that A(0) =∞ since sin(0) = 0

− above {at} is autocovariance sequence for a fractionally dif-
ferenced (FD) process with parameter δ = 1

4 (we’ll be dis-
cussing FD processes later on)

WMTSA: 284 III–Addendum–10

	III-1-to-2
	III-3
	III-4-to-6
	03-Fourier-filtering-2016.pdf
	chunk-1
	chunk-2
	chunk-3

	03-Fourier-filtering-addendum

	III-7
	III-8
	03-Fourier-filtering-2016.pdf
	chunk-1
	chunk-2
	chunk-3

	03-Fourier-filtering-addendum

	III-9
	III-10-to-end.pdf
	03-Fourier-filtering-2016.pdf
	chunk-1
	chunk-2
	chunk-3

	03-Fourier-filtering-addendum

