Qualitative Description of DWT

e will talk about precise definition of DW'T' later on

olet X = [X0, X1,...,Xn_1]! be a vector of N time series
values (note: “T” denotes transpose; i.e., X is a column vector)

o need to assume N = 27 for some positive integer J (restrictive!)

e DWT is a linear transform of X yielding N DW'T' coefficients
(note: assume that both X and its DW'T are real-valued)

e notation: W = WX
— W is vector of DWT coefficients (jth component is W)

— W is N x N orthonormal transform matrix; i.e.,
WIW = Iy, where Iy is N x N identity matrix

e inverse of VWV is just its transpose, so Wwl = N also
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Implications of Orthonormality: I

o let W}; denote the jth row of W, where y =0,1,..., N — 1
e note that Wj, itself is a column vector

o let W, denote element of WV in row j and column !

e note that W, is also [th element of W,

e let’s consider two vectors, say, W;e and Wi,

e orthonormality says

= 1, whenj==%k
Wies Wie) = W Wr =X -
Wje,; Wre) zz; Wk i {07 when j £ K

— (Wje, W) is inner product of jth & kth rows
— HVV]'.H2 = (Wje, Wje) is squared norm (energy) for Wj,
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Implications of Orthonormality: II

e example from W of dimension 16 x 16 we'll see later on

— inner product of row 8 with itself (i.e., squared norm):

T

Wy, S sum = 1

T

— row 8 said to have ‘unit energy’ since squared norm is 1
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Implications of Orthonormality: III

e another example from same W

— inner product of rows 8 and 12:

— rows 8 & 12 said to be orthogonal since inner product is 0
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The Haar DWT: 1

e like CWT, DWT tell us about variations in local averages
e to see this, let’s look inside W for the Haar DW'T for N = 2/

e row j = 0:

note: || Whe

e row 7 = I:

— )T
_W7W7 R ,} :WOO
N —2 zeros
|2 — % + % = 1 & hence has required unit energy

_ T
OO—W,\/Q, .., 0 | =W,
N— 4zeros

e Wpe and W, are orthogonal

Wi
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I Wo Wy mesessssssssssas qum = ()
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The Haar DWT': 11

e keep shifting by two to form rows until we come to ...

. N , 1 17 =T
.I'OW]—7_1- [,07°°°7O,7_W7W}:W%_1‘
N —2 zeros

o first V/2 rows form orthonormal set of N/2 vectors

N = 16 example

N O Ot = W NN~ O
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The Haar DWT: 111

e to form next row, stretch [ — ﬁ, ﬁ, 0,... ,O} out

by a factor of two and renormalize to preserve unit energy
- N. 1 1 11
.]_7 [_§7_§7§7§7 ,O ,} WN

N —4 zeros
note: HWN IP=1+1+1+3=1 asrequired

* Wpe and Wy are orthogonal (% = 8 in example)
2

ALY

S —
: " WoiWVs 4 JT'"““""“ sum = (
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The Haar DWT: 1V

® Wie and Wy are orthogonal
2

e Whe and Wy are orthogonal

W2,tW8,t wsssssssssssssss gy — ()
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The Haar DWT: V

e form next row by shifting YWy to right by 4 units
7.

.]:%—'_1 [07070707_%7_%7%7%7 WN

0, . ]
—— o tle

N —8 zeros
* Wy ., orthogonal to first N /2 rows and also to Wy
2 2

T —
i Wsg Wy wessssssssssssss qum = ()

Wo 4

e continue shifting by 4 units to form more rows, ending with . . .

3N : 1 111
QI’OW]_T— .[O,...,O,_Q, 91999 } WSN e
N —4 zeros
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The Haar DWT: VI

e to form next row, stretch [ — 5, —%, %, %, 0,... ,O} out
by a tactor of two and renormalize to preserve unit energy

3N . 1 1 __ T
°j =" [ R ]:W
3 ’ Q7 /R /R0 \ , 3N
\/ \/J \\/ \/ N SZeros e
4 of these 4 of these
note: H)/\/g]v.H2 =8 % = 1, as required
4

°j = % + 1: shift row % to right by 8 units

e continue shifting and stretching until finally we come to . ..

. : 1 1 1 1 __ T
.]—N—z [—W,...7—\/N,\/N,...7W}:WN_Q.
% of these % of these
- . 1 1 _ T
.j—N—l [W77W}:WN_1.
N of these
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The Haar DWT': VII

e NV = 16 example of Haar DWT matrix W

WMTSA: 57

N O Ot = W N —~ O

8

9
10
11
12
13
14
15
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Haar DW'T Coefficients: 1

e obtain Haar DW'T coeflicients W by premultiplying X by W:
W = WX
e jth coeflicient W is inner product of jth row W,e and X:
Wi = W,e, X)
e can interpret coefficients as difference of averages

e to see this, let
)\ 1
X:(\) =< Z X;_; = ‘scale A" average
l 0
—note: X¢(1) = X3 = scale 1 ‘average’
—note: X y_1(N) =X = sample average
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Haar DW'T Coefficients: 11

e consider form Wy = (Wye, X) takes in N = 16 example:

Wo.t ]l—‘ _ _
Wor X, sgresesemmmssns sum oc X (1) — Xo(1)
Xt LW%JJ_L

e similar interpretation for Wi,..., Wy _ = Wy = (Wre, X):
N_

W?,t —]l . _
W7’tXt ersmmnnsnnnnnns® Q) X15<1> — X14<1>
Xt LW#L
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Haar DW'T Coefficients: 111

e now consider form of Wy = Wg = (Wg,, X):
2

JA%Y ﬂﬂm
We Xy = pamemmmmmeenes qum ox X3(2) — X1(2)
Xt LW#L

Wiy
4

e similar interpretation for Wy N
2

WMTSA: 58 I1-14



Haar DW'T Coefficients: 1V

o Wiy = Wi = (Wi9e, X) takes the following form:
1

War qp e -

We Xy =" papmmmmmeees sum oc X7(4) — X3(4)
Xt Lmﬂ;jgjh

e continuing in this manner, come to Wy _o = (W) 4e, X):

Tarrney
Wiar wiiiiii _

Wig s Xy =ttt qum oc X 15(8) — X7(8)
Xt me‘ffji
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Haar DW'T Coefficients: V

e final coeflicient Wjy_1 = W75 has a different interpretation:

W15,t L

W157tXt ST Pt el V04 O(y15(16>
X, imﬂvfﬁﬁh

e structure of rows in W
— first % rows yleld W;'s o< changes on scale 1
— next % rows yield W;’s oc changes on scale 2
— next % rows yield Wj’s o< changes on scale 4

— next to last row yields W o< change on scale %

— last row yields W; oc average on scale N
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Structure of DW'T Matrices

° % wavelet coefficients for scale T = 2J _1, 9=1,...,J

—Tj = 27— 1 is standardized scale
— 7; At is physical scale, where At is sampling interval

e cach W, localized in time: as scale T, localization |
e rows of W for given scale 7;:

— circularly shifted with respect to each other
— shift between adjacent rows is 27; = 2/

e similar structure for DW'T's other than the Haar
e differences of averages common theme for DW'T's

— simple differencing replaced by higher order differences
— simple averages replaced by weighted averages
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Two Basic Decompositions Derivable from DW'T

e additive decomposition

— reexpresses X as the sum of J + 1 new time series, each of
which is associated with a particular scale 7;
— called multiresolution analysis (MRA)

— related to first ‘scary-looking” CWT equation
e energy decomposition

— yields analysis of variance across J scales
— called wavelet spectrum or wavelet variance

— related to second ‘scary-looking” CWT equation
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Partitioning of DWT Coefficient Vector W

e decompositions are based on partitioning of W and W

e partition W into subvectors associated with scale:

e W, has N/ 2J elements (scale T = 2= 1 changes)
: J N _N N __oJ _
note: } 5y =5+7+ - +2+1=2"-1=N—-1
e V ;has 1 element, which is equal to v/ N - X (scale N average)
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Example of Partitioning of W

e consider time series X of length N = 16 & its Haar DWT W

W, W, W; W, V,y

WMTSA: 62, 42 11-20



Partitioning of DWT Matrix VW

e partition YV commensurate with partitioning of W:

o W is QMJ x N matrix (related to scale 7; = 2= changes)
1

e V7is 1 x N row vector (each element is \/_N>
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Example of Partitioning of W

e NV = 16 example of Haar DWT matrix W

01 IRCTTCTECTERLEry o) L L E———
L fon;lensnmnnnnnn T
] TS 1 NI
3lresesTunnunnas 1] rmnnannanna
L S ) NP
5m-%-m 13 fesnnnnna R0RE Wg
6 [rnnennnnnnnnTon 4 bttt ),
e ] L LR V)
0 5 10 15 0 5 10 15
t t
e two properties: (a) W; = W;X and (b) WjoT =1y

2]
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DWT Analysis and Synthesis Equations

e recall the DW'T analysis equation W = WX

o WIW = Iy because W is an orthonormal transform
o implies that WIW = WIWX = X

e yields DWT synthesis equation:

W,
Wy
X = WIw = [Wf,WQT,...,W}F,Vﬂ ;

W
VY

J

=) WW;+V;V,
1=1
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Multiresolution Analysis: 1

e synthesis equation leads to additive decomposition:

eD; = Wij is portion of synthesis due to scale 7;
e D; is vector of length N and is called jth ‘detail

e 55 = V?;V 7= X1, where 1 is a vector containing N ones
(later on we will call this the ‘smooth’ of Jth order)

e additive decomposition called multiresolution analysis (MRA)
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Multiresolution Analysis: 11

e example of MRA for time series of length N = 16

Sy
pagnenry
IERRRR! D,

et Ds
ﬂﬂ"“"“ﬂj,TDQ

i_r"'ﬁ!lTi-T"-Ji- Dl

0O o5 10 15

e adding values for, e.g.. t =14 in Dy, ..., Dy & S4 yields X4
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Energy Preservation Property of DWT Coefficients

e define ‘energy’ in X as its squared norm:

IX? = (X, X) = X' X = ZXt
t=0

(usually not really energy, but will use term as shorthand)
e cnergy of X is preserved in its DW'T coefficients W because
W] =W!IwW = WwX)!wx
= x'whwx
= XTIyX = X'X = |X]|?

e note: same argument holds for any orthonormal transtorm
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Wavelet Spectrum (Variance Decomposition): I

e let X denote sample mean of X;'s: X = ~ Zi\ial X

e let 6%( denote sample variance of X¢'s:

| N—1 ) | N—1
A~ -~ 2 —_—
t=0 t=0
— — | X||© —
N |
2
— —||[W]|]* -
SIW]
- J
o since [W/[2 = zjzl W, -|!2 IV and V7 -

2
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Wavelet Spectrum (Variance Decomposition): II

e define discrete wavelet power spectrum:
PX(T]') = NHW]-HZ, where 7; = 271

e gives us a scale-based decomposition of the sample variance:

J
.9
oy = Z Px (1)
j=1

e in addition, each W+ in W associated with a portion of X;
i.e. WZt offers scale- & time- based decomposition of & X

WMTSA: 62 I1-28



Wavelet Spectrum (Variance Decomposition): III

e wavelet spectra for time series X and Y of length NV = 16,

each with zero sample mean and same sample variance

20 0.3
X 0 X { { I | J l Pt : J l
—2 | RN
20 0.3[
Y 0 . l T I l i ‘ { i J { |
—2 L | | | 0.0 L1
0 5} 10 15 1 2 4 8
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Summary of Qualitative Description of DWT

e DWT is expressed by an N x N orthonormal matrix W
e transforms time series X into DW'T coefficients W = WX
e cach coefficient in W associated with a scale and location

— W, is subvector of W with coefficients for scale 7; = 2)—1
— coeflicients in W ; related to differences of averages over 7

— last coeflicient in W related to average over scale N
e orthonormality leads to basic scale-based decompositions

— multiresolution analysis (additive decomposition)

— discrete wavelet power spectrum (analysis of variance)

e stayed tuned for precise definition of DWT!
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