Introduction to Wavelets: Overview

e wavelets are analysis tools for time series and images
e as a subject, wavelets are

— relatively new (1983 to present)
— a synthesis of old /new ideas

— keyword in 50, 000+ articles and books since 1989
(an inundation of material!!l)

e broadly speaking, there have been two waves of wavelets

— continuous wavelet transform (1983 and on)

— discrete wavelet transform (1988 and on)

e will introduce subject via CWT & then concentrate on DW'T
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What is a Wavelet?

e sines & cosines are ‘big waves’
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e wavelets are ‘small waves’ (left-hand is Haar wavelet ¢™(-))
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Technical Definition of a Wavelet: 1

e real-valued function ¢ (-) defined over real axis is a wavelet if
- 20\ ; e [0 )2 _
1. integral of ¢*(-) is unity: [° ¢ (u)du =1
(called ‘unit energy’ property, with apologies to physicists)
2. integral of 4(+) is zero: [7 tp(u) du =0
(technically, need an ‘admissibility condition,” but this is al-
most equivalent to integration to zero)
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Technical Definition of a Wavelet: 11

o f sz du=1& f Y(u) du = 0 give a wavelet because:
— by property 1, for every small € > 0, have

/_Oj¢2(u) du + /TOO V() du < €

for some finite T°

— ‘business’ part of ¥(+) is over interval [T, T

— width 27T of [T, T] might be huge, but will be insignificant
compared to (—o0, 00)

— by property 2, ¥(-) is balanced above/below horizontal axis

e matches ituitive notion of a ‘small’ wave
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Two Non-Wavelets and Three Wavelets

o two failures: f(u) = cos(u) & same limited to [—37/2, 37 /2]:
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e Haar wavelet ™ () and two of its friends:
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What is Wavelet Analysis?

e wavelets tell us about variations in local averages
e to quantify this description, let z(-) be a ‘signal’
— real-valued function of ¢ defined over real axis

— will refer to t as time (but it need not be such)

e consider ‘average value’ of x(-) over |a, b]:

1 b
t) dt
b_awa
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Approximating Average Value of a Signal

e can approximate integral using Riemann sum

— break |a, b] into N subintervals of equal width (b — a)/N

— sample z(-) at midpoint of each subinterval:
xj:x(a+[j—|—%][)_Ta), i=01,... . N—1

— Riemann sum = sum of z;’s x width (b —a)/N

— yields approximation to average value of z(-) over |a, b|:

N—-1
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J=0

e average value of x(+) &~ sample mean of sampled values
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Example of Average Value of a Signal

e let z(-) be step function taking on values xq, x1,..., x5 over
16 equal subintervals of |a, b):
I
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e here we have
| b 1 15
— /a x(t) dt = T ]z% r; = height of dashed line
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Average Values at Different Scales and Times

e define the following function of A and ¢

B as:
AN, 1) Ex/t . x(u) du

2
— )\ 1s width of interval — refered to as ‘scale’

— t 1s midpoint of interval
o A()\,t) is average value of x(-) over scale A centered at ¢
e average values of signals have wide-spread interest

— one second average temperatures over forest
— ten minute rainfall rate during severe storm

— yearly average temperatures over central England
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Defining a Wavelet Coefficient W

e multiply Haar wavelet & time series z(-) together:

Pt p(t)x()
z(t)

3 0 33 0 33 0o 3
t t t
e integrate resulting function to get ‘wavelet coefficient” W (1, 0):

/ P W(1,0)

e to see what W (1,0) is telling us about xz(-), note that
1

1 0
W(1,0)o<%/0 o)t~ 1 [ alt)dt= ALY - AL -}
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Defining Wavelet Coeflicients for Other Scales

e W (1,0) proportional to difference between averages of x(-) over
|—1,0] & [0, 1], i.e., two unit scale averages before/after t = 0

— ‘17in W(1,0) denotes scale 1 (width of each interval)

— 0" in W (1,0) denotes time 0 (center of combined intervals)

e stretch or shrink wavelet to define W (r,0) for other scales 7

0 - W yields
W(2,0)
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Defining Wavelet Coefficients for Other Locations

e relocate to define W (7, t) for other times t:
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Haar Continuous Wavelet Transform (CWT)

e for all 7 > 0 and all —oo <t < 00, can write

W(r.t) = % /_ O:O ()™ (“;t> du

_t does the stretching/shrinking and relocating
— 7 needed so ¢ ( ) = \/TWH) (“T_t) has unit energy

— since it also mtegrates to zero, 1.7, (+) is a wavelet

o W(r,t) over all 7 > 0 and all ¢ is Haar CW'T for x(+)

e analyzes/breaks up/decomposes x(-) into components

— assoclated with a scale and a time

— physically related to a difference of averages
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Other Continuous Wavelet Transforms: 1

e can do the same for wavelets other than the Haar

e start with basic wavelet ()

o use Y ¢(u) = \/ —= (L t) to stretch /shrink & relocate
o define CW'T via

Wirt) = [ st du=—- [~ st ()

e analyzes/breaks up/decomposes x(-) into components

— assoclated with a scale and a time

— physically related to a difference of weighted averages
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Other Continuous Wavelet Transforms: 11

e consider two friends of Haar wavelet

=~ () T (w) T (u)
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e )9 () proportional to 1st derivative of Gaussian PDF
e ‘Mexican hat’” wavelet ¢®"(+) proportional to 2nd derivative
e )"9(.) looks at difference of adjacent weighted averages

e )™ (.) looks at difference between weighted average and sum
of weighted averages occurring before & after
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First Scary-Looking Equation

e CWT'T equivalent to xz(-) because we can write

()
:z:(t):/o [CT/ Wm;T (t_“) du] dr,

where C'is a constant depending on specific wavelet 1) (-)

e can synthesize (put back together) x(-) given its CW'T;
i.e., nothing is lost in reexpressing signal z(-) via its CW'T

e regard stuff in brackets as defining ‘scale 7’ signal at time ¢

e says we can reexpress x(-) as integral (sum) of new signals,
each associated with a particular scale

e similar additive decompositions will be one central theme
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Second Scary-Looking Equation

e energy in x(-) is reexpressed in CW'T because

eneroy = - 204) dt = L OOW2 £)dt| d
gy_ X () T 0 07_2 (T7 ) T
— 0 — OO

o can regard z°(t) versus t as breaking up the energy across time
(i.e., an ‘energy density’ function)

e regard stuff in brackets as breaking up the energy across scales

e says we can reexpress energy as integral (sum) of components,
each associated with a particular scale

o function defined by W?2(7,t)/C7? is an energy density across
both time and scale

e similar energy decompositions will be a second central theme
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Example: Atomic Clock Data

e example: average daily frequency variations in clock 571
—12t

Xi

512
t (days)

L Lo
768 1024

T e
e t is measured in days (one measurement per day)
e plot shows X} versus integer ¢
e X; = 0 would mean that clock 571 could keep time perfectly
e X; < 0 implies that clock is losing time systematically
e can easily adjust clock if X} were constant

e inherent quality of clock related to changes in averages of X3
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Mexican Hat CWT of Clock Data: 1
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Mexican Hat CWT of Clock Data: 11
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Mexican Hat CWT of Clock Data: 111
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Mexican Hat CWT of Clock Data: IV
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Beyond the CWT: the DWT

e can often get by with subsamples of W (r,t)

e leads to notion of discrete wavelet transform (DW'T)
(can regard as discretized ‘slices’” through CWT)
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Rationale for the DWT

e DWT'T has appeal in its own right
— most time series are sampled as discrete values
(can be tricky to implement CWT)

— can formulate as orthonormal transform
(makes meaningful statistical analysis possible)

— tends to decorrelate certain time series
— standardization to dyadic scales often adequate
— generalizes to notion of wavelet packets

— can be faster than the fast Fourier transform

e will concentrate primarily on DW'T' for remainder of course
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Addendum on First Scary-Looking Equation: I

e can synthesize signal z(-) from its CWT W (-, -):

;I;(t):/O [CT/ WTu;T (t_“) du] dr, (%)

where C'is a constant depending on specific wavelet 1) (-)

e (): what is the constant C' all about?

e as mentioned on overhead 1-3, for a function ¥(-) to be a
wavelet, it must satisty a so-called ‘admissibility condition’

e to state admissibility condition, let W(-) denote Fourier trans-
form of ¥(-) (assumed to be a square-integrable function):

_ /_O;Wu)e—mfu o

WMTSA: 11, 4 125



Addendum on First Scary-Looking Equation: II

e admissibility condition says that

00 2
C = / |q;(}f)| df must be such that 0 < C' < o0
0

(note: above implies that 1 (-) must integrate to zero)

e (' above is same C' appearing in ()

e as to why C appears, need to work through proof of (), which
is not trivial

— see Mallat, 1998, 84.3 for a clear proof

— proof in the wavelet literature due to Grossman and Morlet,
1984, who discuss why admissibility condition is needed

— Grossman and Morlet’s result actually appeared earlier in
1964 paper by Calderon
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