
Introduction to Wavelets: Overview

• wavelets are analysis tools for time series and images

• as a subject, wavelets are

− relatively new (1983 to present)

− a synthesis of old/new ideas

− keyword in 50, 000+ articles and books since 1989
(an inundation of material!!!)

• broadly speaking, there have been two waves of wavelets

− continuous wavelet transform (1983 and on)

− discrete wavelet transform (1988 and on)

• will introduce subject via CWT & then concentrate on DWT
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What is a Wavelet?

• sines & cosines are ‘big waves’
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• wavelets are ‘small waves’ (left-hand is Haar wavelet ψ(H)(·))
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Technical Definition of a Wavelet: I

• real-valued function ψ(·) defined over real axis is a wavelet if

1. integral of ψ2(·) is unity:
R∞
−∞ψ2(u) du = 1

(called ‘unit energy’ property, with apologies to physicists)

2. integral of ψ(·) is zero:
R∞
−∞ψ(u) du = 0

(technically, need an ‘admissibility condition,’ but this is al-
most equivalent to integration to zero)
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Technical Definition of a Wavelet: II

•
R∞
−∞ψ2(u) du = 1 &

R∞
−∞ψ(u) du = 0 give a wavelet because:

− by property 1, for every small ≤ > 0, have
Z −T

−∞
ψ2(u) du +

Z ∞

T
ψ2(u) du < ≤

for some finite T

− ‘business’ part of ψ(·) is over interval [−T, T ]

− width 2T of [−T, T ] might be huge, but will be insignificant
compared to (−∞,∞)

− by property 2, ψ(·) is balanced above/below horizontal axis

• matches intuitive notion of a ‘small’ wave
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Two Non-Wavelets and Three Wavelets

• two failures: f(u) = cos(u) & same limited to [−3π/2, 3π/2]:
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• Haar wavelet ψ(H)(·) and two of its friends:
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What is Wavelet Analysis?

• wavelets tell us about variations in local averages

• to quantify this description, let x(·) be a ‘signal’

− real-valued function of t defined over real axis

− will refer to t as time (but it need not be such)

• consider ‘average value’ of x(·) over [a, b]:

1

b− a

Z b

a
x(t) dt

WMTSA: 5 I–6



Approximating Average Value of a Signal

• can approximate integral using Riemann sum

− break [a, b] into N subintervals of equal width (b− a)/N

− sample x(·) at midpoint of each subinterval:

xj = x
≥
a + [j + 1

2]
b−a
N

¥
, j = 0, 1, . . . , N − 1

− Riemann sum = sum of xj’s × width (b− a)/N

− yields approximation to average value of x(·) over [a, b]:

1

b− a

Z b

a
x(t) dt ≈ 1

b− a



b− a

N

N−1X

j=0

xj



 =
1

N

N−1X

j=0

xj

• average value of x(·) ≈ sample mean of sampled values
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Example of Average Value of a Signal

• let x(·) be step function taking on values x0, x1, . . . , x15 over
16 equal subintervals of [a, b]:
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• here we have

1

b− a

Z b

a
x(t) dt =

1

16

15X

j=0

xj = height of dashed line
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Average Values at Different Scales and Times

• define the following function of λ and t

A(λ, t) ≡ 1

λ

Z t+λ
2

t−λ
2

x(u) du

− λ is width of interval – refered to as ‘scale’

− t is midpoint of interval

• A(λ, t) is average value of x(·) over scale λ centered at t

• average values of signals have wide-spread interest

− one second average temperatures over forest

− ten minute rainfall rate during severe storm

− yearly average temperatures over central England
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Defining a Wavelet Coefficient W

• multiply Haar wavelet & time series x(·) together:
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• integrate resulting function to get ‘wavelet coefficient’ W (1, 0):Z ∞

−∞
ψ(H)(t)x(t) dt = W (1, 0)

• to see what W (1, 0) is telling us about x(·), note that

W (1, 0) ∝ 1

1

Z 1

0
x(t) dt− 1

1

Z 0

−1
x(t) dt = A(1, 1

2)−A(1,−1
2)
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Defining Wavelet Coefficients for Other Scales

• W (1, 0) proportional to difference between averages of x(·) over
[−1, 0] & [0, 1], i.e., two unit scale averages before/after t = 0

− ‘1’ in W (1, 0) denotes scale 1 (width of each interval)

− ‘0’ in W (1, 0) denotes time 0 (center of combined intervals)

• stretch or shrink wavelet to define W (τ, 0) for other scales τ :
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Defining Wavelet Coefficients for Other Locations

• relocate to define W (τ, t) for other times t:
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Haar Continuous Wavelet Transform (CWT)

• for all τ > 0 and all −∞ < t <∞, can write

W (τ, t) =
1√
τ

Z ∞

−∞
x(u)ψ(H)

µ
u− t

τ

∂
du

− u−t
τ does the stretching/shrinking and relocating

− 1√
τ needed so ψ(H)

τ,t(u) ≡ 1√
τψ(H)

°u−t
τ

¢
has unit energy

− since it also integrates to zero, ψ(H)

τ,t(·) is a wavelet

• W (τ, t) over all τ > 0 and all t is Haar CWT for x(·)
• analyzes/breaks up/decomposes x(·) into components

− associated with a scale and a time

− physically related to a difference of averages
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Other Continuous Wavelet Transforms: I

• can do the same for wavelets other than the Haar

• start with basic wavelet ψ(·)
• use ψτ,t(u) = 1√

τψ
°u−t

τ

¢
to stretch/shrink & relocate

• define CWT via

W (τ, t) =

Z ∞

−∞
x(u)ψτ,t(u) du =

1√
τ

Z ∞

−∞
x(u)ψ

µ
u− t

τ

∂
du

• analyzes/breaks up/decomposes x(·) into components

− associated with a scale and a time

− physically related to a difference of weighted averages
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Other Continuous Wavelet Transforms: II

• consider two friends of Haar wavelet

    
 

  

 

 

    
 

    
 

ψ(H)(u) ψ(fdG)(u) ψ(Mh)(u)

0

−3 0 3−3 0 3−3 0 3
u u u

• ψ(fdG)(·) proportional to 1st derivative of Gaussian PDF

• ‘Mexican hat’ wavelet ψ(Mh)(·) proportional to 2nd derivative

• ψ(fdG)(·) looks at difference of adjacent weighted averages

• ψ(Mh)(·) looks at difference between weighted average and sum
of weighted averages occurring before & after
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First Scary-Looking Equation

• CWT equivalent to x(·) because we can write

x(t) =

Z ∞

0

∑
1

Cτ2

Z ∞

−∞
W (τ, u)

1√
τ
ψ

µ
t− u

τ

∂
du

∏
dτ,

where C is a constant depending on specific wavelet ψ(·)
• can synthesize (put back together) x(·) given its CWT;

i.e., nothing is lost in reexpressing signal x(·) via its CWT

• regard stuff in brackets as defining ‘scale τ ’ signal at time t

• says we can reexpress x(·) as integral (sum) of new signals,
each associated with a particular scale

• similar additive decompositions will be one central theme
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Second Scary-Looking Equation

• energy in x(·) is reexpressed in CWT because

energy =

Z ∞

−∞
x2(t) dt =

Z ∞

0

∑
1

Cτ2

Z ∞

−∞
W 2(τ, t) dt

∏
dτ

• can regard x2(t) versus t as breaking up the energy across time
(i.e., an ‘energy density’ function)

• regard stuff in brackets as breaking up the energy across scales

• says we can reexpress energy as integral (sum) of components,
each associated with a particular scale

• function defined by W 2(τ, t)/Cτ2 is an energy density across
both time and scale

• similar energy decompositions will be a second central theme
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Example: Atomic Clock Data

• example: average daily frequency variations in clock 571
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• t is measured in days (one measurement per day)

• plot shows Xt versus integer t

• Xt = 0 would mean that clock 571 could keep time perfectly

• Xt < 0 implies that clock is losing time systematically

• can easily adjust clock if Xt were constant

• inherent quality of clock related to changes in averages of Xt
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Mexican Hat CWT of Clock Data: I
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Mexican Hat CWT of Clock Data: II
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Mexican Hat CWT of Clock Data: III
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Mexican Hat CWT of Clock Data: IV
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Beyond the CWT: the DWT

• can often get by with subsamples of W (τ, t)

• leads to notion of discrete wavelet transform (DWT)
(can regard as discretized ‘slices’ through CWT)
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Rationale for the DWT

• DWT has appeal in its own right

− most time series are sampled as discrete values
(can be tricky to implement CWT)

− can formulate as orthonormal transform
(makes meaningful statistical analysis possible)

− tends to decorrelate certain time series

− standardization to dyadic scales often adequate

− generalizes to notion of wavelet packets

− can be faster than the fast Fourier transform

• will concentrate primarily on DWT for remainder of course

WMTSA: 13–19 I–24



Addendum on First Scary-Looking Equation: I

• can synthesize signal x(·) from its CWT W (·, ·):

x(t) =

Z ∞

0

∑
1

Cτ2

Z ∞

−∞
W (τ, u)

1√
τ
ψ

µ
t− u

τ

∂
du

∏
dτ, (∗)

where C is a constant depending on specific wavelet ψ(·)
• Q: what is the constant C all about?

• as mentioned on overhead I–3, for a function ψ(·) to be a
wavelet, it must satisfy a so-called ‘admissibility condition’

• to state admissibility condition, let Ψ(·) denote Fourier trans-
form of ψ(·) (assumed to be a square-integrable function):

Ψ(f) =

Z ∞

−∞
ψ(u)e−i2πfu du
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Addendum on First Scary-Looking Equation: II

• admissibility condition says that

C ≡
Z ∞

0

|Ψ(f)|2
f

df must be such that 0 < C <∞

(note: above implies that ψ(·) must integrate to zero)

• C above is same C appearing in (∗)
• as to why C appears, need to work through proof of (∗), which

is not trivial

− see Mallat, 1998, §4.3 for a clear proof

− proof in the wavelet literature due to Grossman and Morlet,
1984, who discuss why admissibility condition is needed

− Grossman and Morlet’s result actually appeared earlier in
1964 paper by Calderón
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