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SUMMARY

The wavelet variance decomposes the variance of a time series into components

associated with different scales. We consider two estimators of the wavelet vari-

ance, the first based upon the discrete wavelet transform and the second, called

the maximal-overlap estimator, based upon a filtering interpretation of wavelets.

We determine the large sample distribution for both estimators and show that the

maximal-overlap estimator is more efficient for a class of processes of interest in

the physical sciences. We discuss methods for determining an approximate con-

fidence interval for the wavelet variance. We demonstrate through Monte Carlo

experiments that the large sample distribution for the maximal-overlap estimator is

a reasonable approximation even for the moderate sample size of 128 observations.

We apply our proposed methodology to a series of observations related to vertical

shear in the ocean.

Some key words: Confidence interval; Fractional difference; Time series analysis;

Wavelet transform



    

1. INTRODUCTION

The use of wavelets as a tool for time series analysis and signal processing

has increased in recent years due to their potential for solving a number of practi-

cal problems; for background on wavelets, see, e.g., Mallat (1989), Strang (1989),

Rioul & Vetterli (1991), Daubechies (1992), Press et al. (1992), Donoho (1993),

Meyer (1993), Strang (1993), Strichartz (1993) and Vaidyanathan (1993). In par-

ticular, wavelets can decompose the variance of a physical process across different

scales and have been used in this way in a number of scientific and engineering

disciplines; see Gamage (1990), Bradshaw & Spies (1992), Flandrin (1992), Gao &

Li (1993), Hudgins, Friehe & Mayer (1993), Kumar & Foufoula-Georgiou (1993),

Tewfik, Kim & Deriche (1993) and Wornell (1993). The widespread interest in

wavelet-based analysis of variance can be explained by comparing the wavelet de-

composition of variance with a similar decomposition given by the spectrum SY of

a real-valued stochastic process Yt, t = 0,±1, . . ., with variance var (Yt). A funda-

mental property of SY is that

∫ 1
2

− 1
2

SY (f) df = var (Yt); (1)

i.e., SY decomposes the process variance with respect to a continuous independent

variable f , which is known as frequency and has units of, say, cycles per second.

The analog of the above equation for the wavelet decomposition is

∞∑
l=0

ν2
Y (2l) = var (Yt), (2)

where ν2
Y (λ) is the wavelet variance associated with the discrete independent vari-

able λ = 2l; see Equation (10) for a precise definition. Thus, just as the spectrum

decomposes var (Yt) across frequencies, the wavelet variance decomposes var (Yt)
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with respect to λ, a variable known as scale and having units of, say, seconds.

Roughly speaking, ν2
Y (λ) is a measure of how much a weighted average with band-

width λ of the process {Yt} changes from one time period of length λ to the next.

A plot of ν2
Y (λ) versus λ indicates which scales are important contributors to the

process variance; see Figure 2 for an example. If we specialize to the simplest ex-

ample of a wavelet variance, namely, one based upon the Haar wavelet filter of

length 2, the wavelet variance is equal to half the Allan variance, a well-known

measure of the performance of atomic clocks (Allan, 1966; Flandrin, 1992; Percival

& Guttorp, 1994). Plots of the Allan variance versus λ have been used routinely for

nearly 30 years to characterize how well clocks keep time over various time periods;

however, the Allan variance can be misleading for interpreting certain geophysical

processes, for which wavelet variances based upon a higher order wavelet filter are

more appropriate (Percival & Guttorp, 1994).

The wavelet variance is also of interest because it provides a way of regularizing

the spectrum. The notions of frequency and scale are closely related so that, under

certain reasonable conditions,

ν2
Y (λ) ≈ 2

∫ 1
2λ

1
4λ

SY (f) df ; (3)

see Equation (10) for the precise relationship between ν2
Y (λ) and SY . The wavelet

variance summarizes the information in the spectrum using just one value per octave

frequency band and is particularly useful when the spectrum is relatively feature-

less within each octave band. For example, a model that commonly arises in the

physical sciences is that the spectrum obeys the power law SY (f) ∝ |f |α over a

certain interval of frequencies (Beran, 1992), which, using the above approxima-

tion, translates into the statement that ν2
Y (λ) ∝ λ−α−1 over a corresponding set of
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scales. A region of linear variation on a plot of log ν2
Y (λ) versus log λ indicates the

existence of a power law behavior, and the slope of the line can be used to deduce

the exponent α. For this simple model, there is no information lost in using the

summary given by the wavelet variance. If we again specialize to the Haar wavelet

variance, the pilot spectrum analysis of Blackman & Tukey (1958, Sec. 18) is iden-

tical to using (3) with this wavelet variance. Higher order wavelet variances are a

useful generalization because the approximation in (3) improves as the length of the

wavelet filter increases.

Because the wavelet variance is a regularization of the spectrum, estimation of

the wavelet variance is more straightforward than nonparametric estimation of the

spectrum. Suppose for the moment that we have a time series of length N = 2K

that can be regarded as a realization of a portion Y1, . . . , YN of the stochastic

process Yt. The discrete Fourier transform produces a basic estimator of SY called

the periodogram, which is given by

ŜY (fj) ≡
1

N

∣∣∣∣∣
N∑
t=1

(Yt − Y )e−i2πfjt

∣∣∣∣∣
2

with fj ≡
j

N
and Y ≡ 1

N

N∑
t=1

Yt.

The periodogram satisfies a sampling version of Equation (1), namely,

1

N

N
2∑

j=−N
2 +1

ŜY (fj) =
1

N

N∑
t=1

(Yt − Y )2.

A fast Fourier transform algorithm can compute ŜY using just O(N log2(N)) mul-

tiplications (Strang, 1993), but the periodogram is not a useful estimator of SY

because it can be badly biased and is an inconsistent estimator. To deal with these

deficiencies, a practitioner must decide if bias is present and, if so, compensate

for it using prewhitening and/or tapering, after which the resulting approximately
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unbiased estimator must be smoothed across frequencies to produce a consistent es-

timator of SY . In contrast, the discrete wavelet transform of Y1, . . . , YN produces

a useful estimator of the wavelet variance. As defined, e.g., in Press et al. (1992,

Ch. 13.10), this transform uses a wavelet filter h0, . . . , hL−1 of even length L to

produce K new series, say, Dt,λ, t = 1, . . . , N
2λ with λ = 1, 2, 4, . . . , 2K−1. The

wavelet variance for scale λ can be estimated using

ν̃2
Y (λ) ≡ 1

N

N
2λ∑
t=1

D2
t,λ,

which leads to a sampling version of Equation (2) given by

K−1∑
l=0

ν̃2
Y (2l) =

1

N

N∑
t=1

(Yt − Y )2.

The discrete wavelet transform can be computed ‘faster than the fast Fourier trans-

form’ in the sense of requiring just O(N) multiplications (Strang, 1993). Whereas

the periodogram can be badly biased, an unbiased estimator of ν2
Y (λ) can easily

be constructed based upon the Dt,λ terms uninfluenced by boundary conditions;

moreover, whereas the periodogram is inconsistent, Theorem 2 below can be used

to establish consistency for this unbiased estimator. For processes with relatively

featureless spectra, the wavelet variance is an attractive alternate characterization

that is easy to interpret and estimate.

The purpose of this paper is show how confidence intervals for the wavelet vari-

ance can be produced based upon estimators of the wavelet variance. We consider

two such estimators, both of which are unbiased. The first is based upon the recog-

nition that ν̃2
Y (λ) is a biased estimator of ν2

Y (λ) due to a fixed number of terms

(≤ L − 2) in the series Dt,λ that are influenced by boundary conditions. Let Vt,λ

represent the subseries of Dt,λ uninfluenced by boundary conditions; for example,
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if λ = 1, there will be N
2 − L

2 + 1 terms in Vt,1 as compared to N
2 terms in Dt,1.

If the process Yt can be assumed to have stationary increments of a certain order,

the series Vt,λ is a portion of a stationary process whose variance is proportional

to the wavelet variance. We refer to the estimator of ν2
Y (λ) based upon Vt,λ as

the wavelet-transform estimator. In Section 3, however, we find that the wavelet

variance can be more efficiently estimated by another estimator that make uses of

a nonsubsampled version of the discrete wavelet transform. The motivation for this

estimator, which we call the maximal-overlap estimator, is based upon the fact that

the series Vt,λ can be obtained by filtering Yt with a wavelet filter hl,λ, l = 0, . . . ,

(2λ − 1)(L − 1), and then subsampling every 2λth value of the filter output; here

hl,1 ≡ hl, and the wavelet filters for λ > 1 depend on just hl. The maximal-overlap

estimator is based upon the sample variance of the output from the wavelet filter

without any subsampling. Because the wavelet filter for scale λ can be regarded

as an approximation to a band-pass filter with a passband defined by the set of

frequencies f such that 1
4λ ≤ |f | ≤ 1

2λ , a heuristic argument can be made that

nothing much is to be gained by using the maximal-overlap estimator instead of

the easily computed wavelet-transform estimator; see the discussion immediately

following Equation (4). A main thrust of this paper is that in fact the asymptotic

relative efficiency of the wavelet-transform estimator with respect to the maximal-

overlap estimator is always less than unity and can in fact approach one half for

certain processes of interest in the physical sciences. Moreover, there exists a ‘pyra-

mid’ algorithm for computing the terms needed for the maximal-overlap estimator

(Percival & Guttorp, 1994). This algorithm requires O(N log2(N)) multiplications

and is not restricted to sample sizes N that are powers of two, so computation of

the maximal-overlap estimator is certainly feasible.
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Section 3 gives the large sample distribution of the maximal-overlap estimator,

while Section 4 discusses four ways to obtain confidence intervals for the wavelet

variance based upon this estimator. Section 5 summarizes some Monte Carlo exper-

iments that indicate only a moderate sample size of 128 observations is needed for

the large sample theory of Section 3 to be a reasonable approximation. To simplify

and focus our discussion, Sections 2 to 5 discuss the wavelet variance for scale λ = 1

only, so in Section 6 we indicate how the unit scale results can be adapted to larger

scales. Finally we demonstrate in Section 7 how our results can be used to attach a

measure of uncertainty to estimates of the wavelet variance for a time series related

to vertical shear in the ocean. Proofs of Theorems 1 and 2 below are omitted to

conserve space, but can be obtained upon request from the author via traditional

mail or electronic mail to the Internet address dbp@apl.washington.edu.

2. THE WAVELET VARIANCE

Suppose that Yt is a stochastic process whose dth order backward difference

Zt ≡ (1 −B)dYt =

d∑
j=0

(
d

j

)
(−1)jYt−j

is a second-order stationary process with zero mean and spectrum SZ ; here d is a

nonnegative integer, and B is the backward shift operator defined by BYt ≡ Yt−1

so that BjYt = Yt−j . If Yt were itself stationary with spectrum SY , the theory

of linear filters says that SY and SZ would be related by SY (f) = SZ(f)/Dd(f),

where D(f) ≡ 4 sin2(πf) is the squared modulus of the transfer function for a first

order backward difference filter; if Yt is not stationary, then SY (f) is defined as

SZ(f)/Dd(f) (Yaglom, 1958). Note that, if d = 0, then Yt is necessarily stationary,

in which case the processes Yt and Zt are identical.
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Let h0, . . . , hL−1 denote the coefficients of a compactly supported Daubechies

wavelet filter of even length L (Daubechies, 1992, Ch. 6). We assume the normal-

ization
∑

h2
l = 1. Let

H(f) ≡
L−1∑
l=0

hle
−i2πfl

be the transfer function for hl. The wavelet filter hl can be regarded as an approx-

imation to a high-pass filter with a passband defined by 1
4 < |f | ≤ 1

2 . The modulus

squared of H can be written explicitly as

H(f) ≡ |H(f)|2 = D L
2 (f)C(f) where C(f) ≡ 1

2L−1

L
2 −1∑
l=0

(L
2 − 1 + l

l

)
cos2l(πf)

(Daubechies, 1992, Ch. 6.1). We can thus regard hl as a two-stage filter, the first

stage of which is an L
2 th order backward difference filter, and the second of which

uses a filter whose modulus squared transfer function is C. Different factorizations of

C lead to wavelet filters with necessarily the same modulus squared transfer function

but with different phase properties (Daubechies, 1992, Ch. 6.4 and 8.1.1).

Let

Wt ≡
L−1∑
l=0

hlYt−l

represent the output obtained from filtering Yt using the wavelet filter.

Theorem 1. If L ≥ 2d, then Wt is a stationary process with zero mean and

spectrum defined by SW (f) = H(f)SY (f).

The wavelet variance of unit scale is just half the variance of Wt, i.e.,

ν2 ≡ E(W 2
t )/2.

Since the variance of a stationary process is equal to the integral of its spectrum,

we have

ν2 =
1

2

∫ 1
2

− 1
2

SW (f) df =
1

4d

L
2 −1∑
l=0

(L
2 − 1 + l

l

)∫ 1
2

− 1
2

cos2l(πf) sinL−2d(πf)SZ(f) df.
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The condition L ≥ 2d of Theorem 1 ensures that the product cos2l(πf) sinL−2d(πf)

in the integrand is bounded by unity and hence that the integral is finite.

3. ESTIMATION OF THE WAVELET VARIANCE

Suppose now that we are given a time series that can be regarded as a realiza-

tion of one portion Y1, . . . , YN of the process Yt and that we want to estimate the

wavelet variance ν2 initially for unit scale only. We consider two estimators, both of

which are based upon Wt, t = L, . . . , N . The first estimator is the maximal-overlap

estimator

ν̂2
W ≡ 1

2NW

N∑
t=L

W 2
t with NW ≡ N − L + 1,

i.e., the sample variance of the Wt’s under the assumption that E(Wt) = 0. The

terminology ‘maximal-overlap’ was used by Greenhall (1991) in a study of the Allan

variance. The second estimator is the wavelet-transform estimator

ν̂2
V ≡ 1

2NV

�N
2 �∑

t=L
2

V 2
t , where Vt ≡ W2t and NV ≡ �N

2 � − L
2 + 1,

i.e., the sample variance of the Wt’s after subsampling every other observation; here

�x� refers to the greatest integer less than or equal to x. As discussed in Section 1,

ν̂2
V is the ‘natural’ estimator of the wavelet variance that we would obtain from

the discrete wavelet transform after discarding all terms influenced by boundary

conditions.

Under the assumption that Wt and hence Vt are Gaussian processes, we wish

to compare the variances var (ν̂2
W ) and var (ν̂2

V ) of ν̂2
W and ν̂2

V for large samples.

A standard result in spectral analysis (Anderson, 1971, p. 388) tells us that the

subsampled process Vt is a stationary process with spectrum SV given by

SV (f) ≡ SW ( f2 ) + SW ( f2 + 1
2 )

2
, − 1

2 ≤ f ≤ 1
2 ,
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where the spectrum SW is defined for |f | > 1
2 by periodic extension.

Theorem 2. If SW is finitely square integrable and strictly positive almost

everywhere, then the estimators ν̂2
W and ν̂2

V are asymptotically normally distributed

with mean ν2 and large sample variances AW /(2NW ) and AV /(2NV ), respectively,

where

AW ≡
∫ 1

2

− 1
2

S2
W (f) df and AV ≡

∫ 1
2

− 1
2

S2
V (f) df.

To compare var (ν̂2
W ) and var (ν̂2

V ), we use the asymptotic relative efficiency of

ν̂2
V with respect to ν̂2

W , which by definition is

E ≡ lim
N→∞

var (ν̂2
W )

var (ν̂2
V )

=
AW

2AV
=

⎛
⎝1 +

∫ 1
2

− 1
2

SW ( f2 )SW ( f2 + 1
2 ) df

∫ 1
2

− 1
2

S2
W (f) df

⎞
⎠

−1

. (4)

The last expression for E tells us that E < 1 because, under the assumptions for

Theorem 2, SW is strictly positive almost everywhere and hence

∫ 1
2

− 1
2

SW ( f2 )SW ( f2 + 1
2 ) df > 0.

Heuristic use of the above also indicates why it might be argued there is little to be

gained in using the maximal-overlap estimator ν̂2
W in place of the wavelet-transform

estimator ν̂2
V . Recall that the wavelet filter is regarded as an approximation to a

high-pass filter with passband defined by 1
4 < |f | ≤ 1

2 . If it were perfectly so, we

would have

SW (f) =

{
0, |f | ≤ 1

4 ;
SY (f), 1

4 < |f | ≤ 1
2 ;

so that
∫
SW ( f2 )SW ( f2 + 1

2 ) df = 0 and hence E = 1; however, as shown in Table 1

below, E is in fact considerably less than unity for certain processes, indicating that

the shortness of the wavelet filter yields a rather imperfect high-pass filter.
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We can evaluate E analytically for certain choices of SY . As a simple example,

suppose that SY (f) ∝ | sin(πf)|α so that SY varies as |f |α for frequencies close to

zero. Processes with such spectra occur in a wide range of applications (Beran,

1992). Note that the process Yt corresponding to SY is stationary if α > −1; if

in addition α < 1, then Yt corresponds to a stationary and invertible fractional

difference process (Granger & Joyeux, 1980; Hosking, 1981). Table 1 shows E for

three ‘blue noise’ processes α = 1, 1
2 and 1

4 , a white noise process α = 0, and

two stationary and three nonstationary ‘red noise’ processes α = − 1
4 , − 1

2 , −1, −2

and −3, all in combination with wavelet filters of length L = 2, i.e., the Haar

wavelet filter, 4, 6 and 8. The dash in the ‘α = −3, L = 2’ entry indicates that the

assumptions of Theorem 2 do not hold. The tabulated values have been obtained via

straightforward, but tedious, analytical computations and verified using numerical

integration. Note that the efficiency decreases as α decreases because the proportion

of variance attributable to frequencies outside the passband 1
4 < |f | ≤ 1

2 increases

as α decreases, whereas the efficiency increases as L increases because the wavelet

filter becomes a better approximation to a high-pass filter as L increases.

4. CONFIDENCE INTERVALS FOR THE WAVELET VARIANCE

In order to use Theorem 2 in practical applications to determine a confidence

interval for ν2 based upon ν̂2
W , we must estimate AW , which is the integral of S2

W .

Since AW will be dominated by large values of SW , we can just use the periodogram

ŜW of the Wt’s as our estimator of SW since spectral leakage is not a concern.

Standard statistical theory suggests that, for large N , the ratio 2ŜW (f)/SW (f) is

distributed as a χ2 random variable with two degrees of freedom if 0 < |f | < 1
2 , from
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Table 1. Asymptotic relative efficiencies E of the wavelet-transform estimator ν̂2
V

with respect to the maximal-overlap estimator ν̂2
W for processes with a spectrum

proportional to | sin(πf)|α and compactly supported Daubechies wavelet filters of

length L = 2, 4, 6 and 8. Note that E < 1 implies that ν̂2
W has smaller large sample

variance than ν̂2
V .

α L = 2 L = 4 L = 6 L = 8

1 0·85 0·89 0·91 0·92

1
2 0·81 0·86 0·89 0·90

1
4 0·78 0·84 0·87 0·89

0 0·75 0·82 0·85 0·87

− 1
4 0·72 0·80 0·83 0·86

− 1
2 0·68 0·77 0·81 0·84

−1 0·61 0·72 0·77 0·80

−2 0·50 0·61 0·67 0·71

−3 — 0·52 0·58 0·62
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which we obtain E(Ŝ2
W (f)) ≈ 2S2

W (f). Since the contribution due to the special

frequencies f = 0 and ± 1
2 becomes insignificant as N get large, we can take

ÂW ≡ 1

2

∫ 1
2

− 1
2

Ŝ2
W (f) df

to be an approximately unbiased estimator of AW for large N . Finally we can use

Parseval’s theorem to obtain the convenient computational formula

ÂW =
ŝ2
0,W

2
+

NW−1∑
τ=1

ŝ2
τ,W ,

where ŝτ,W is the usual biased estimator of the autocovariance sequence sτ,W cor-

responding to SW (Priestley, 1981, p. 322). Under the restrictive assumption that

the estimator ÂW is close to AW , an approximate 100(1− 2p)% confidence interval

for ν2 would be given by

[
ν̂2
W − Φ−1(1 − p)(ÂW /2NW )

1
2 , ν̂2

W + Φ−1(1 − p)(ÂW /2NW )
1
2

]
,

where Φ−1(p) is the p × 100% percentage point for the standard Gaussian dis-

tribution. Alternatively, we can use an ‘equivalent degrees of freedom’ argument

(Priestley, 1981, p. 466) to claim that ην̂2
W /ν2 is approximately equal in distribution

to a χ2 random variable with η degrees of freedom for large N , where

η ≡ 2
{
E(ν̂2

W )
}2

var (ν̂2
W )

≈ 4NW ν4

AW
. (5)

An approximate 100(1 − 2p)% confidence interval for ν2 would be given by

[
ην̂2

W

Qη(1 − p)
,
ην̂2

W

Qη(p)

]
, (6)

where Qη(p) is the p× 100% percentage point for the χ2
η distribution. The degrees

of freedom η would be estimated using 4NW ν̂4
W /ÂW .
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Another approach to obtaining a confidence interval for ν2 is to assume that

SY , and hence SW , is known to within a multiplicative constant; i.e., we suppose

that, say, SW (f) = hS0(f), where S0 is a known function and h is an unknown

constant. This assumption is used to obtain the confidence intervals for the Allan

variance discussed in Greenhall (1991). By Parseval’s theorem we have

ν̂2
W =

1

2NW

NW−1∑
k=0

ŜW (fk) ≈
1

NW

M∑
k=1

ŜW (fk) +
1

2NW
ŜW ( 1

2 )INW
, (7)

where fk ≡ k/NW ; M ≡ �NW

2 − 1
2�; and INW

is unity if NW is even and zero

if NW is odd. The approximation above merely says that ŜW (0)/NW = W
2

is

negligible, where W is the sample mean of the Wt’s. Under the usual large sample

approximations that 2ŜW (fk)/SW (fk) with 0 < fk < 1
2 and ŜW ( 1

2 )/SW ( 1
2 ) are

equal in distribution to χ2 random variables with, respectively, two and one degrees

of freedom and that the random variables in the right-hand side of Equation (7) are

independent, we can again use an equivalent degrees of freedom argument to claim

that ην̂2
W /ν2 is approximately equal in distribution to a χ2 random variable with η

degrees of freedom for large N , where now

η =

(
2
∑M

k=1 S0(fk) + S0(
1
2 )INW

)2

2
∑M

k=1 S
2
0(fk) + S2

0( 1
2 )INW

. (8)

An approximate 100(1−2p)% confidence interval for ν2 would again be given by (6).

A further simplification is to recall that the wavelet filter hl can be regarded

as an approximate band-pass filter with passband defined by 1
4 < |f | ≤ 1

2 . This

fact suggests that it might be reasonable to assume in certain practical problems

that SW is band-limited and flat over its nominal passband. The validity of this
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assumption can readily be assessed by examining an estimate of SW . The equation

for the equivalent degrees of freedom then simplifies to

η = 2(M − �NW

4 �) + INW
≈ NW

2 . (9)

If the sample size NW is large enough (the next section suggests that NW =

128 is often sufficient), a confidence interval based upon (6) with η estimated by

4NW ν̂4
W /ÂW is likely to be reasonably accurate, and we would recommend this

as the method of choice. For smaller sample sizes, this method can yield overly

optimistic confidence intervals in some instances, in which case a confidence interval

based on η from (8) or (9) is a useful check and should be preferred if it is markedly

wider than the one based on 4NW ν̂4
W /ÂW . Use of (8) requires a reasonable guess

at the shape of SW ; if such a guess is not available, η should be based upon (9).

5. MONTE CARLO EXPERIMENTS

We performed Monte Carlo experiments to assess whether the large sample

variance stated for ν̂2
W in Theorem 2 is reasonably accurate for sample sizes of in-

terest in practical applications. We generated 105 realizations of lengths NW = 128

for each of the 9 processes indexed by α in Table 1. For stationary processes Yt,

each realization was produced by multiplying the Cholesky factorization of the in-

verse of the covariance matrix for the Yt’s times a vector containing a realization

of a Gaussian white noise process; for nonstationary processes, the stationary dif-

ferenced process Zt was so produced, and then Yt was generated via cumulative

summation. The wavelet variance was estimated for each of these realizations using

the maximal-overlap estimator ν̂2
W with the Daubechies extremal phase wavelet fil-

ters of lengths L = 2, 4, 6 and 8. Let ν̂2
j,W be the estimate from the jth realization.

The ratio of the sample variance of the ν̂2
j,W ’s to the large sample approximation for
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var (ν̂2
W ), i.e., 2NW

∑
(ν̂2

j,W − ν2)2
/
(105AW ), was found to quite close to unity in

all cases, with the smallest ratio being 0·982 for α = 1
4 and L = 8, and the largest

being 1·017 for α = −2 and L = 4. This result indicates that the large sample

variance quoted in Theorem 2 is a reasonable approximation even for the moderate

sample size NW = 128.

We also considered how well we can estimate AW using ÂW from a given

realization. Let Âj,W be the estimate from the jth realization. The ratio of the

sample mean of the Âj,W ’s to AW , i.e.,
∑

Âj,W

/
(105AW ), was again quite close to

unity, with the smallest ratio being 0·994 for α = 0 and L = 8, and the largest being

1·005 for α = −2 and L = 2. This result indicates that ÂW is an approximately

unbiased estimator of AW . Finally we considered how well we can estimate the

equivalent degrees of freedom η of Equation (5). Let η̂j represents the estimate

from the jth realization. Even though η varies from 68 for α = 1 and L = 8 to

128 for α = −2 and L = 2, the ratio of the sample mean of the η̂j to η was fairly

constant and indicates a small positive bias in η̂; e.g., the ratio ranged from 1·02

to 1·07 for L = 2 and from 1·05 to 1·06 for L = 8. The coefficient of variation,

i.e., ratio of the sample standard deviation to the sample mean of the η̂j ’s, was

also fairly constant, with values ranging from 0·09 to 0·15 for L = 2 and from 0·12

to 0·14 for L = 8. These values indicate that some caution must be exercised in

interpreting confidence intervals based upon estimation of η from moderate sample

sizes.

6. EXTENSION TO HIGHER SCALES

Here we sketch briefly how the material in Sections 2 to 4 can be extended to

handle a higher scale λ = 2Λ, where Λ is a positive integer. Given the wavelet filter

hl of unit scale, let gl be the corresponding so-called scaling filter, which is defined
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as gl ≡ (−1)
l+1

hL−l−1 for l = 0, . . . , L − 1. The scaling filter gl can be regarded

as an approximation to a low-pass filter with a passband defined by − 1
4 ≤ |f | ≤ 1

4 .

Let G denote the transfer function for gl, and let G be the squared modulus of G,

which can be written explicitly as

G(f) = 2 cosL(πf)

L
2 −1∑
l=0

(L
2 − 1 + l

l

)
sin2l(πf)

(Daubechies, 1992, Ch. 6.1). The wavelet and scaling filters hl,λ and gl,λ for scale

λ are both of length Lλ ≡ (2λ− 1)(L− 1) + 1 and have transfer functions Hλ and

Gλ satisfying

Gλ(f) =
Λ∏

l=0

G(2lf) and Hλ(f) = H(λf)
Λ−1∏
l=0

G(2lf) = H(λf)Gλ
2

(f),

where G1 ≡ G. The wavelet filter hl,λ for scale λ can be regarded as an approx-

imation to a band-pass filter with passband given by 1
4λ < |f | ≤ 1

2λ , whereas the

scaling filter gl,λ approximates a low-pass filter with passband − 1
4λ ≤ f ≤ 1

4λ . The

squared moduli of Hλ(f) and Gλ(f) obey the relationships Hλ(f) = H(λf)Gλ
2

(f)

and Gλ(f) =
∏Λ

l=0 G(2lf) with G1 ≡ G.

Let

Wt,λ ≡
Lλ−1∑
l=0

hl,λYt−l

represent the output obtained from filtering Yt using the wavelet filter of scale λ.

The analogy of Theorem 1 for scale λ is that, if L ≥ 2d, then Wt,λ is a stationary

process with zero mean and spectrum defined by SWλ
(f) ≡ Hλ(f)SY (f). The

wavelet variance at scale λ for the process Yt is defined as

ν2
Y (λ) ≡

E(W 2
t,λ)

2λ
=

1

2λ

∫ 1
2

− 1
2

Hλ(f)SY (f) df. (10)
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Given Y1, . . . , YN , the maximal-overlap estimator of ν2
Y (λ) is defined as

ν̂2
Y (λ) ≡ 1

2λNWλ

N∑
t=Lλ

W 2
t,λ with NWλ

≡ N − Lλ + 1.

Under the same conditions as given in Theorem 2, the estimator ν̂2
Y (λ) is asymptot-

ically normal with mean ν2
Y (λ) and large sample variance AWλ

/(2λ2NWλ
), where

AWλ
≡

∫
S2
Wλ

(f) df . Similar results can be stated for the wavelet-transform esti-

mator. Limited calculations to date indicate that, at higher scales, the asymptotic

relative efficiency E of the wavelet-transform estimator with respect to the maximal-

overlap estimator assumes the same range of values as displayed in Table 1; i.e.,

the maximal-overlap estimator is the more efficient of the two estimators, with

E dropping close to 0·5 for some processes. Finally the methods given in Sec-

tion 4 for generating a confidence interval for the wavelet variance can be readily

adapted to the scale λ case, with Equations (5) and (9) now becoming, respectively,

η = max{1, 4λ2NWλ
ν4/AWλ

} and η ≈ max{1, NWλ
/(2λ)}.

7. AN EXAMPLE

Here we illustrate the methodology of the previous sections by considering

a ‘time’ series related to vertical ocean shear. This series was collected by an

instrument that was dropped over the side of a ship and then descended vertically

into the ocean. As it descended, the probe collected measurements concerning the

ocean as a function of depth, one of which is the x component of the velocity of

water. This velocity was measured every ∆ = 0·1 meter, first differenced over an

interval of 10 meters, and then low-pass filtered to obtain the series of N = 4096

values extending from a depth of 489·5 meters down to 899·0 meters shown in

Figure 1.
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0

7
   

489.5 899.0
meters

Fig. 1. Plot of measurements related to vertical shear in the ocean versus depth

in meters. This series was collected and supplied by Mike Gregg, Applied Physics

Laboratory, University of Washington. As of 1995, this series could be obtained

via electronic mail by sending a message with the single line ‘send lmpavw from

datasets’ to the Internet address statlib@lib.stat.cmu.edu, which is the ad-

dress for StatLib, a statistical archive maintained by Carnegie Mellon University.
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(a) (b) (c)

Fig. 2. 95% confidence intervals for the wavelet variance of series in Figure 1

based upon the maximal-overlap estimate using a χ2 approximation with degrees of

freedom determined by (a) estimation of 4λ2NWλ
ν4/AWλ

, (b) the nominal model

SY (f) ∝ |f |− 8
3 and (c) the simple approximation NWλ

/(2λ).
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The wavelet variance was estimated for scales λ = 1, 2, 4, . . . , 512 using

the Daubechies extremal phase D4 wavelet filter, for which h0 ∝ 1 − √
3, h1 ∝

−3 +
√

3, h2 ∝ 3 +
√

3 and h3 ∝ −1−√
3 with the constant of proportionality 4

√
2

insuring that
∑

h2
l = 1. Figure 2 shows these estimates plotted versus physical

scale λ∆ up to 51·2 meters, along with three 95% confidence intervals for the true

wavelet variance. This figure indicates that the variance in the series is mainly

due to fluctuations at scales 6·4 meters and longer, which can be associated with

deep jets and internal waves in the ocean. Note that log ν̂2
Y (λ) versus log λ varies

approximately linearly over low scales 0·1 to 0·4 meter and also over intermediate

scales 0·8 to 6·4 meters. The low scales are influenced mainly by turbulence, and the

slope of log ν̂2
Y (λ) versus log λ indicates that turbulence rolls off at a rate consistent

with a power law of exponent α = −1·8, a result that can be compared to physical

models. The power law rolloff of α = −3·4 at intermediate scales can be interpreted

as a transition region between the internal wave and turbulent regions.

The three confidence intervals in Figure 2 are based upon the maximal-overlap

estimate and a χ2 approximation with degrees of freedom η determined by (a) esti-

mation of 4λ2NWλ
ν4/AWλ

, (b) Equation (8) with the nominal model SY (f) ∝ |f |− 8
3

suggested by a very crude spectral analysis for the time series (Percival & Guttorp,

1994), and (c) the simple approximation NWλ
/(2λ). At scales 6·4 meters and below,

the confidence intervals for the three methods are interchangeable from a practi-

tioner’s point of view, but, not surprisingly, the agreement breaks down at larger

scales. The equivalent degrees of freedom for methods (b) and (c) are, respec-

tively, only 22·0 and 13·0 at scale 12·8 meters; 8·3 and 5·0 at scale 25·6 meters; and

2·0 and 1·0 at scale 51·2 meters. Because the degrees of freedom are so small for

these scales, the large sample approximation (a) cannot be trusted, but, whereas
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the lengths of the confidence intervals for methods (b) and (c) are within a fac-

tor of two of each other for scales 12·8 and 25·6 meters, the same cannot be said

at 51·2 meters. Thus, the three methods yield quite similar confidence intervals

when the number of equivalent degrees of freedom is large, with approximations (b)

and (c) being more valuable for smaller degrees of freedom. The confidence intervals

can be used to assess whether or not fluctuations at, e.g., scale 25·6 meters for this

particular series agree with other sets of measurements taken at different locations

in the ocean.
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