
1

Wavelet Variance Analysis for Random Fields
Debashis Mondal and Donald B. Percival

Abstract

There has been considerable recent interest in using wavelets to analyze time series and images that

can be regarded as realizations of certain one- and two-dimensional stochastic processes. Wavelets give

rise to the concept of the wavelet variance (or wavelet power spectrum), which decomposes the variance

of a stochastic process on a scale-by-scale basis. The wavelet variance has been applied to a variety

of time series, and a statistical theory for estimators of this variance has been developed. While there

have been applications of the wavelet variance in the two-dimensional context (in particular in works by

Unser, 1995, on wavelet-based texture analysis for images and by Lark and Webster, 2004, on analysis of

soil properties), a formal statistical theory for such analysis has been lacking. In this paper, we develop

the statistical theory by generalizing and extending some of the approaches developed for time series,

thus leading to a large sample theory for estimators of two-dimensional wavelet variances. We apply our

theory to simulated data from Gaussian random fields with exponential covariances and from fractional

Brownian surfaces. We also use our methodology to analyze images of four types of clouds observed

over the south-east Pacific ocean.

Index Terms

analysis of variance, cloud data, Daubechies filters, fractional Brownian surface, semi-variogram.

I. INTRODUCTION

Two-dimensional versions of the wavelet transform have been used extensively in the past to address

problems such as image compression and segmentation, edge detection, deconvolution and denoising;

see, for example, [12]. The application of statistical methodology to images has largely been devoted to
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extending the pioneering work of Donoho, Johnstone and co-workers [7], [8] on wavelet shrinkage for

one-dimensional signals to the two-dimensional case; see, for example, [9]. A statistical theory for the

wavelet variance (or wavelet spectrum) of time series has been developed in the literature [14], but to date

little work has been done on extending this theory to the two-dimensional case, which would facilitate

the study of the second-order properties of random fields. Despite this lack of a theoretical basis, the

two-dimensional wavelet variance has already been used in the literature. In pioneering work appearing in

this journal, Unser [22] used a localized version of the sample wavelet variance and covariance to extract

second-order features related to textures for the purposes of classification and segmentation. Lark and

Webster [11] used a two-dimensional version of the wavelet variance to analyze soil thickness and related

variables. These works do not consider issues related to sampling variability. In this paper, we develop

a basic statistical theory for the two-dimensional wavelet variance that – to some degree – mimics the

theory already developed for the one-dimensional case. A key contribution of the paper (Theorem 3 in

Section VI) gives the large-sample distribution for estimators of two-dimensional wavelet-based variances,

thus providing a firm basis for statistical inference for the work of Unser [22], Lark and Webster [11]

and related applications.

The remainder of this paper is organized as follows. We review the basic theory for the wavelet

transform of a random field in Section II, after which we go over the theory for the two-dimensional

version of the wavelet variance in Section III. We note here that the wavelet variance offers a decom-

position of the process variance for stationary random fields. In Section IV we present examples of the

theoretical wavelet variance for two classes of Gaussian random fields, namely, a stationary field with an

exponential covariance struture and an intriniscally stationary field known in the literature as a fractional

Brownian surface. We show through examples how the parameters that specify these fields manifest

themselves in plots of wavelet-based variances. As we note in Section V, the sample two-dimensional

wavelet variance for any image decomposes the sample variance for the image on a scale-by-scale basis, a

result that parallels the wavelet-based decompositon of the process variance for stationary random fields.

In Section VI we present the key theory that allows us to make large-sample inferences from estimators

of the two-dimensional wavelet variance. We demonstrate that this asymptotic theory is applicable even

for random fields of modest size (e.g., 32 × 32) in Section VII. We devote Section VIII to an analysis

of some cloud data off the Chilean coast over the south-east Pacific ocean. We conclude the paper with

a summary and discussion (Section IX).
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II. WAVELET TRANSFORM OF A RANDOM FIELD

Let {Xu,v, u, v = 0,±1,±2 . . .} be a random field on the two-dimensional integer lattice Z2. We

are interested in its two-dimensional wavelet transform. For j = 1, 2, . . ., let {hj,l, l = 0, 1, . . . Lj − 1}

be the jth level Daubechies wavelet filter normalized such that
P

l h
2
j,l = 1/2j , and let {gj,l} be the

corresponding scaling filter [6], [15]. We use a tensor product of the one-dimensional wavelet filters

to define the two-dimensional wavelet filters. This is in agreement with the existing literature in image

processing (see, for example, [11], [12], [22]), but we note that an alternative approach is to use a

genuine two-dimensional wavelet filter (i.e., one that is not based directly on applying a one-dimensional

transform in two directions). A wavelet transform consists of filtering the random field by scaling or

wavelet filters along the rows and the columns of the two-dimensional lattice process. Accordingly we

define

Wj,j0,u,v =
Lj−1X

l=0

Lj0−1X

l0=0

hj,lhj0,l0Xu−l,v−l0 , (1)

Uj,j0,u,v =
Lj−1X

l=0

Lj0−1X

l0=0

gj,lhj0,l0Xu−l,v−l0 , (2)

Vj,j0,u,v =
Lj−1X

l=0

Lj0−1X

l0=0

hj,lgj0,l0Xu−l,v−l0 (3)

and

Zj,j0,u,v =
Lj−1X

l=0

Lj0−1X

l0=0

gj,lgj0,l0Xu−l,v−l0 , (4)

which we refer to as, respectively, the wavelet-wavelet, scaling-wavelet, wavelet-scaling and scaling-

scaling coefficient processes. By definition the wavelet-wavelet process {Wj,j0,u,v} is associated with

changes at the scale τj ≡ 2j−1 along the x direction of the random field and τj0 along its y direction.

On the other hand the scaling-wavelet process {Uj,j0,u,v} is associated with changes in scale τj0 of the

row averages corresponding to scale 2τj , and {Vj,j0,u,v} corresponds to changes at the scale τj of the

column averages associated with the scale 2τj0 . The final process {Zj,j0,u,v} corresponds to averages

of the random field at the scales 2τj and 2τj0 in the x and y directions respectively. As in the one

dimensional case, a pyramid algorithm can be used for fast computations of all these coefficients.

III. BASIC THEORY FOR WAVELET VARIANCE

The wavelet transform provides an analysis of variance for a stationary random field and a related

decomposition for fields that are nonstationary but are intrinsically stationary of order d (see [3], [20]

for background on the latter). For both cases we need to define the wavelet variance in two dimensions.
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We set aside the scaling-scaling coefficients because they correspond to the scaling coefficients in time

series analysis and are usually the least interesting part of a variance decomposition. Note that, if the

underlying random field {Xu,v} is stationary (a sufficient but not necessary condition) with spectral

density function (SDF) SX(f, f 0), then the coefficients {Wj,j0,u,v}, {Uj,j0,u,v} and {Vj,j0,u,v} are also

realizations of stationary random fields. First we define a wavelet-wavelet variance by

ν2
X,h,h(τj , τj0) = var (Wj,j0,u,v).

If {Xu,v} is intrinsically stationary of order d, then SX(f, f 0) has a pole of order d at the origin, and

ν2
X,h,h(τj , τj0) is well-defined and finite if L ≥ d. When {Xu,v} is stationary with autocovariance sequence

(ACVS)

sX,τ,τ 0 = cov(Xu,v,Xu+τ,v+τ 0),

we can rewrite the above as

ν2
X,h,h(τj , τj0) =

Lj−1X

l,l0=0

Lj0−1X

k,k0=0

hj,lhj,l0hj0,khj0,k0sX,l−l0,k−k0 . (5)

When {Xu,v} is intrinsically stationary of order 1, the increment Xu,v − X0,0 has finite variance, in

which case the above equation can be replaced by one involving the ACVS for Xu,v−Xu−1,v−1 and the

cumulative sum of hj,l [4]. Alternatively, let

γX,k,k0 = 1
2var (X0,0 −Xk,k0)

denote the semi-variogram of {Xu,v}. Then the wavelet-wavelet variance can be expressed as

ν2
X,h,h(τj , τ

0
j) = −

Lj−1X

l,l0=0

Lj0−1X

k,k0=0

hj,lhj,l0hj0,khj0,k0γX,l−l0,k−k0 . (6)

The above equation also holds when {Xu,v} is stationary.

The scale-based decomposition of the process variance can be summarized in the following theorem,

which generalizes an analogous result for time series [15].

Theorem 1: Let {Xu,v} be a stationary random field with SDF SX(f, f 0). Then

var (Xu,v) =
∞X

j=1

∞X

j0=1

ν2
X,h,h(τj , τj0) (7)

(the proof is in Appendix A).

Since Daubechies wavelet filters are approximate band-pass filters, the decomposition given by Theo-

rem 1 corresponds to a partitioning of the frequency domain. Figure 1 depicts this partition. For simplicity

we only look at f and f 0 frequencies ranging from 0 to 1/2.
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Fig. 1. Frequency partition of a random field.

Next we turn to the scaling-wavelet and wavelet-scaling coefficient processes. We define a scaling-

wavelet variance as the variance of the scaling-wavelet coefficient process:

ν2
X,g,h(τj , τj0) = var (Uj,j0,u,v).

If {Xu,v} is intrinsically stationary of order d, then SX(f, f 0) has a pole of order d at the origin, and

ν2
X,g,h(τj , τj0) is finite if L ≥ 2d. Depending on the choice of wavelet filter, the scaling-wavelet variance

might not be finite for certain processes, even though the wavelet-wavelet variance is. When {Xu,v} is

stationary, we can rewrite the above as

ν2
X,g,h(τj , τj0) =

Lj−1X

l,l0=0

Lj0−1X

k,k0=0

gj,lgj,l0hj0,khj0,k0sX,l−l0,k−k0 . (8)

When {Xu,v} is intrinsically stationary of order 1, the above equation can be replaced by

ν2
X,g,h(τj , τj0) = −

Lj−1X

l,l0=0

Lj0−1X

k,k0=0

gj,lgj,l0hj0,khj0,k0γX,l−l0,k−k0 . (9)

In a similar manner, the wavelet-scaling variance is given by

ν2
X,h,g(τj , τj0) = var (Uj,j0,u,v)
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and satisfies

ν2
X,h,g(τj , τj0) =

Lj−1X

l,l0=0

Lj0−1X

k,k0=0

hj,lhj,l0gj0,kgj0,k0sX,l−l0,k−k0

when the ACVS exists and

ν2
X,h,g(τj , τj0) = −

Lj−1X

l,l0=0

Lj0−1X

k,k0=0

hj,lhj,l0gj0,kgj0,k0γX,l−l0,k−k0

when the semi-variogram exists.

Although the scaling-wavelet and wavelet-scaling variances do not appear in equation (7), they have

a close connection to wavelet-wavelet variances and are important factors in an alternative variance

decomposition. The properties of the Daubechies wavelet filters imply that both

ν2
X,g,h(τj , τj0) =

∞X

k=j+1

ν2
X,h,h(τk, τj0), j ≥ j0,

and

ν2
X,h,g(τj , τj0) =

∞X

k=j0+1

ν2
X,h,h(τj , τk), j ≤ j0,

allowing us to rewrite equation (7) as

var (Xu,v) =
∞X

j=1

ν2
X,h,h(τj , τj) +

∞X

j=1

ν2
X,g,h(τj , τj) +

∞X

j=1

ν2
X,h,g(τj , τj). (10)

Note that the above can be interpreted as a tri-diagonal representation and is a simplification of (7). As

illustrated in Figure 2, the main diagonal involves the wavelet-wavelet variances, while the first diagonal

above (below) this involves the scaling-wavelet (wavelet-scaling) variances. In practice, this tri-diagonal

representation enables both faster computations and the use of graphical displays already developed for

time series.

The variance decompositions given by (7) and (10) provide scale-based analyses of variance that are

useful alternatives to the one given by SDFs for stationary and intrinsic random fields. The decompositions

can serve as a diagnostic tool for checking inhomogeneity and are also useful for estimating space-

varying SDFs for locally stationary and certain intrinsically stationary random fields (for related work in

the frequency domain see [10], [16]). They can be used to investigate directionality effects as well. In

particular, if {Xu,v} is isotropic on Z2, then

ν2
X,h,h(τj , τj0) = ν2

X,h,h(τj0 , τj),

and

ν2
X,g,h(τj , τj0) = ν2

X,h,g(τj0 , τj)
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Fig. 2. Tri-diagonal frequency partition of a random field.

for all (j, j0). In practice, given a realization of a random field, we can estimate these quantities and

apply large sample results to test if there is significant departure from equality in the above equations.

Any departure will provide evidence against the rotational symmetry of the process

IV. EXAMPLES OF THEORETICAL WAVELET VARIANCES

Here we look at the theoretical wavelet variance for two classes of Gaussian random fields. The first

class is stationary and is based on exponential covariances. The second class – fractional Brownian

surfaces – is first order intrinsic. Both classes are simple in that their members depend on just two

parameters.

A. Gaussian Random Fields with Exponential Covariance

Let Xu,v be a Gaussian stationary random field with exponential covariances

sX,k,k0 = φd(k,k0), d2(k, k0) = k2 + k02,

where 0 < φ < 1. As a stochastic process on the Euclidean plane, this random field finds wide use

in various geostatistical applications (see, e.g., [5]). Its SDF is proportional to (φ2 + |ω|2)−3/2, with
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!=0.625 !=0.875

!=0.125 !=0.375

Fig. 3. Plot of simulated Gaussian random fields with exponential covariances for four values of φ.

|ω|2 = ω2
1 + ω2

2 and 0 < {ω1, ω2} < ∞. When restricted to the integer lattice, the SDF takes a slightly

different form:

SX(f, f 0) =
≥
φ2 + sin2(f

2 ) + sin2(f 0

2 )
¥−3

2 .

Nearby observations from a realization of this random field are similar, but widely separated observations

are almost independent because the correlation decreases exponentially. Here the parameter φ determines

the practical range of dependence between two observations. In particular, at a lag distance d(k, k0) = 3φ,

the correlation decreases by 95% from its value at the origin. Figure 3 provides four realizations of random

fields with four different values of φ on 128× 128 grids. As φ increases, there is substantial growth in

dependence, and the realizations become much smoother in appearance.

We apply equations (5) and (8) to compute Haar wavelet-wavelet and scaling-wavelet variances for

the exponential covariance model. Figures 4 and 5 plot these values for diagonal scales indexed by

j = 1, . . . , 7 with φ ranging from 0.125 to 0.875. The effect of φ is visible only through the small scale

variability, whereas, at the larger scales, the variances fall off exponentially (linear on the log scale) and

have a pattern characteristic of a white noise random field.

B. Fractional Brownian Surfaces

Fractional Brownian surfaces (FBSs) are a class of Gaussian random fields that can represent many

physical processes; see, for example, [13] and [23]. FBSs produce realizations that are continuous but not

differentiable at any point. An FBS is a Gaussian random field with constant mean and semi-variogram

structure given by

γX,u,v = 2κ(u2 + v2)α,

where α ∈ (0, 1) [17]. The parameter κ is a scale parameter, and α is a smoothness (or persistence)

parameter that controls the roughness of the surface. An α close to one (zero) corresponds to a smooth
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Fig. 4. Plot of log Haar wavelet-wavelet variance versus level j for exponential covariance model with values of φ ranging

from 0.125 to 0.875 in steps of 0.125.
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Fig. 5. Plot of log Haar scaling-wavelet variance versus level j for exponential covariance model with values of φ ranging

from 0.125 to 0.875 in steps of 0.125.

(very rough) surface. Figure 6 shows images of simulated FBSs for four values of α generated using the

R package RandomFields [19]. As α increases, the image gets smoother. Moreover, α is linearly related

to the fractal dimension D of an FBS, namely, D = 3− α [5].
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Fig. 6. Plot of simulated fractional Brownian surfaces for four values of α.

There has been considerable interest in investigating the statistical properties of estimators of α using

the empirical semi-variogram of the random field observed on a rectangular array; see, for example, [25]

and the references therein. The wavelet variance is in a sense a generalization of the semi-variogram

and hence provides another way of determining α. Near zero frequencies, the FBS obeys a generalized

power spectral density approximately of the form

SX(f1, f2) ∝ |f2
1 + f2

2 |−β,

where the spectral decay is characterized by the spectral exponent β, and β = 2 + 2α. In the one-

dimensional case, known as fractional Brownian motion, it is well known that the log of the wavelet

variance satisfies a linear relationship with the logarithm of the scale. Thus an estimate of α is readily

available by looking at the slope of log2(ν2
X(τj)) versus log2(τj). This is also the case for FBSs.

Theorem 2: Let {Xu,v} be a fractional Brownian surface. Then, for large j and j0, we have

log2

≥
ν2

X,h,h(τj , τj0)
¥
≈ C − j − j0 − (1 + α) log2

≥
2−2j0

+ 2−2j
¥

and

log2

≥
ν2

X,g,h(τj , τj0)
¥
≈ C − j − j0 − (1 + α) log2

≥
9 · 2−2j0

+ 2−2j
¥

,

where C in the above equations stands for a generic constant that does not depend on j or j0 (the proof

is in Appendix B).

When j0 = j, we have

log2

≥
ν2

X,h,h(τj , τj)
¥
≈ C + 2αj

and

log2

≥
ν2

X,g,h(τj , τj)
¥
≈ C + 2αj
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also. Using equations (6) and (9), we can compute Haar wavelet-wavelet and scaling-wavelet variances

exactly for fixed values of κ and α to assess the efficacy of these approximations. Figure 7 plots the

exact wavelet-wavelet variance at levels j = 1, . . . , 7 for values of α ranging from 0.125 to 0.875,

while Figure 8 does the same for the scaling-wavelet variance. The approximations are very good except

for small levels j with small values of α, and the approximation gets better for all α as the value of j

increases. We can thus use the wavelet-wavelet and scaling-wavelet variances to assess the scale exponent

α of an FBS.
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Fig. 7. Plot of log Haar wavelet-wavelet variance versus level j for fractional Brownian surfaces with values of α ranging

from 0.125 to 0.875 in steps of 0.125.

V. DECOMPOSITION OF SAMPLE VARIANCE

Given a realization of a random field Xu,v on a finite array {(u, v) : u = 0, . . . , N−1, v = 0, . . . ,M−

1}, let us now consider the decomposition of its sample variance. Define

W̃j,j0,u,v =
Lj−1X

l=0

Lj0−1X

l0=0

hj,lhj0,l0Xu−l mod N,v−l0 mod M ,

which is similar in form to Wj,j0,u,v as defined in (1), but involves circular filtering to avoid using

elements of the random field outside of the finite array. If Lj−1 ≤ u ≤ N−1 and Lj0−1 ≤ u ≤M−1,

then W̃j,j0,u,v = Wj,j0,u,v, but equality need not hold otherwise. Define Ũj,j0,u,v, Ṽj,j0,u,v and Z̃j,j0,u,v

analogously by using Xu−l mod N,v−l0 mod M as a replacment for Xu−l,v−l0 in (2), (3) and (4). Let W̃j,j0
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Fig. 8. Plot of log Haar scaling-wavelet variance versus level j for fractional Brownian surfaces with values of α ranging from

0.125 to 0.875 in steps of 0.125.

denote an N ×M array whose (u, v)th element is W̃j,j0,u,v, and define Ũj,j0 , Ṽj,j0 and Z̃j,j0 in a similar

way. Consider W̃1,1, Ũ1,1, Ṽ1,1 and Z̃1,1, which are obtained by circularly filtering Xu,v with unit level

Daubechies wavelet and scaling filters in appropriate orders. Letting X denote the N ×M array with

elements Xu,v, it follows that

kXk2 = kW̃1,1k2 + kŨ1,1k2 + kṼ1,1k2 + kZ̃1,1k2,

where k.k2 denotes sum of squares of all the elements. Proof of the above is analogous to one given in

[15] for the time series case and makes use of the fact that the unit level Daubechies wavelet and scaling

filters are orthogonal to each other and to their even shifts. Because the level j filters hj,l and gj,l can

be formed from the level j− 1 filter gj−1,l using the unit level wavelet and scaling filters, we can derive

W̃j,j , Ũj,j , Ṽj,j and Z̃j,j by circularly filtering Z̃j−1,j−1, thus leading to the decomposition

kZ̃j−1,j−1k2 = kW̃j,jk2 + kŨj,jk2 + kṼj,jk2 + kZ̃j,jk2,

j = 2, 3 . . .. On the other hand, we can circularly filter the rows of Ũj,j0 to obtain W̃j+1,j0 and Ũj+1,j0 ,

which gives

kŨj,j0k2 = kW̃j+1,j0k2 + kŨj+1,j0k2,

j ≥ j0, j, j0 = 1, 2 . . .. A similar argument leads to

kṼj,j0k2 = kW̃j,j0+1k2 + kṼj,j0+1k2,

November 23, 2009 DRAFT
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for j ≤ j0, j, j0 = 1, 2 . . .. Collecting these decompositions together, we find that kXk2 is equal to
J,J 0X

j=1,j0=1

kW̃j,j0k2 +
JX

j=1

kṼj,J 0k2 +
J 0X

j0=1

kŨJ,j0k2 + kZ̃J,J 0k2,

where J, J 0 are usually chosen such that 2J ≤ N and 2J 0 ≤ M . Thus we can decompose the sample

variance σ̂2
X = N−1M−1kXk2 − X̄2 as

σ̂2
X =

1
NM




X

j,j0

kW̃j,j0k2 +
X

j

kṼj,Jk2 +
X

j0

kŨJ,j0k2 + kZ̃J,J 0k2 − X̄2



 . (11)

so that kW̃j,j0k2/(NM), kŨJ,j0k2/(NM), kṼj,Jk2/(NM) are the contributions to the sample variance

due to the respective scale pairs (τj , τj0), (τJ , τj0), (τj , τJ 0). In addition, the sample mean of Z̃J,J 0 is equal

to X̄ and hence that the sample variance of Z̃J,J 0 is given by kZ̃J,J 0k2/(NM)− X̄2. This decomposition

is useful for defining a discrete power spectrum for random fields.

As we have already noted in (10), there is an alternative form of the variance decomposition involving

only the diagonal terms. This corresponds to an alternative analysis of variance given by

σ̂2
X =

1
NM




J0X

j=1

≥
kW̃j,jk2 + kŨj,jk2 + kṼj,jk2

¥
+ kZ̃J0,J0k2 − X̄2



 . (12)

VI. ESTIMATION AND LARGE SAMPLE INFERENCE FOR WAVELET VARIANCE

In this section, we consider statistical estimation and inference for wavelet variances of a random field.

We therefore assume that we have a realization of a stationary or an intrinsically stationary random field

{Xu,v} on a finite array {(u, v) : u = 0, . . . , N − 1, v = 0, . . . ,M − 1}. We can then estimate the

wavelet-wavelet variance by the unbiased estimator

ν̂2
X,h,h(τj , τj0) =

1
NjMj0

N−1X

u=Lj−1

M−1X

v=Lj0−1

W 2
j,j0,u,v, (13)

where Nj = N −Lj + 1 and Mj = M −Lj + 1. Similarly we estimate the scaling-wavelet and wavelet-

scaling variance as follows:

ν̂2
X,g,h(τj , τj0) =

1
NjMj0

N−1X

u=Lj−1

M−1X

v=Lj0−1

U2
j,j0,u,v (14)

and

ν̂2
X,h,g(τj , τj0) =

1
NjMj0

N−1X

u=Lj−1

M−1X

v=Lj0−1

V 2
j,j0,u,v. (15)

The following theorem gives the large sample properties of estimators (13), (14) and (15) when the

process {Xu,v} is Gaussian.
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Theorem 3: Let {Cj,j0,u,v} stand for either the wavelet-wavelet {Wj,j0,u,v}, scaling-wavelet {Uj,j0,u,v}

or wavelet-scaling {Vj,j0,u,v} coefficients. Suppose that {Cj,j0,u,v} is a mean zero Gaussian stationary

random field satisfying the squared integrability condition

σ2
C,j,j0 = 2

X

t,t0
cov2°Cj,j0,0,0, Cj,j0,t,t0

¢
<∞.

Then, as min(Nj ,Mj0) → ∞, the corresponding coefficient variance ν̂2
X,·,·(τj , τj0) is asymptotically

normal with mean ν2
X,·,·(τj , τj0) and large sample variance 2σ2

C,j,j0/(NjMj0).

Proof of Theorem 3. Take Yu,v = Cj,j0,u,v and P (Yu,v) = Y 2
u,v −E(Y 2

u,v) so that P is the second order

Hermite polynomial. Note that conditions of Theorem 2 of [2] are trivially satisfied, and hence the central

limit theorem follows.

Theorem 3 enables us to construct approximate confidence intervals for the purpose of statistical

inference. As an example, let us consider the wavelet-wavelet variance ν2
X,h,h(τj , τj0). By Theorem 3,

the true ν2
X,h,h(τj , τj0) lies within

ν̂2
X,h,h(τj , τj0)± Φ−1(1− p)

° σ2
W,j,j0

NjMj0

¢ 1
2 (16)

asymptotically with probability (1 − 2p), where Φ is the cumulative distribution function of a standard

Gaussian random variable. However σ2
W,h,h is generally unknown, and we need to estimate it from the

observed data. Since

σ2
W,j,j0 = 2

X

t

X

t0
cov2°Wj,j0,0,0,Wj,j0,t,t0

¢
,

we can estimate cov
°
Wj,j0,t,t0 ,Wj,j0,0,0

¢
by its sample covariance

ŝW,j,j0(t, t0) =
1

NjMj0

N−|t|−1X

u=0

M−|t0|−1X

v=0

Wj,j0,u,vWj,j0,t+u,t0+v.

Using the argument given in p. 312 of [15], we can estimate σ2
W,j,j0 by

σ̂2
W,j,j0 = 1

2

Nj−1X

t=−(Nj−1)

Mj0−1X

t0=−(Mj−1)

ŝ2
W,j,j0(t, t0). (17)

Moreover the argument in p. 537 of [15] shows that σ̂2
W,j,j0 is asymptotically an unbiased estimator of

σ2
W,j,j0 . Finally we obtain an approximate confidence interval for ν2

X,h,h(τj , τj0) by replacing σ2
W,j,j0 in

(16) with σ̂2
W,j,j0 . The construction of large sample confidence intervals for wavelet-scaling and scaling-

wavelet variances is similar to that for the wavelet-wavelet variance.
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An undesirable consequence of the above approach is that the lower confidence limit constructed from

(16) can be negative. Since the estimator ν̂2
X,h,h(τj , τj0) is quadratic in Gaussian-distributed wavelet-

wavelet coefficients, its exact distribution is amenable to approximation by a scaled χ2 distribution. A

moment matching scheme yields the approximation

ν̂2
X,h,h(τj , τj0) ∼ ν2

X,h,h(τj , τj0)η−1
j,j0χ2

ηj,j0 , (18)

where the effective degrees of freedom ηj,j0 can be estimated by

η̂j,j0 =
NjMj0 ν̂4

X,h,h(τj , τj0)
σ̂2

W,j,j0
.

Confidence intervals based upon this χ2 approximation are guaranteed to have a nonnegative lower limit

and are asymptotically equivalent to ones based upon the Gaussian distribution.

VII. MONTE CARLO EXPERIMENTS

Here we report on a simulation study to assess the approximations described in section VI. We consider

two examples. In the first, we generate 1000 realizations of a Gaussian random field from an exponential

covariance model with φ = 0.875, each on a 32× 32 grid. For each realization (indexed by r), we use

the Haar wavelet transform to obtain estimates of the wavelet-wavelet variance ν̂2
X,r,h,h(τj , τj) for four

diagonal scales indexed by j = 1, 2, 3, 4. We compute their Monte Carlo averages and standard deviations.

In addition, for each realization, we obtain estimates of the standard deviation (SD) of ν̂2
X,r,h,h(τj , τj)

using both σ̂W,r,j,j0 from (17) and the χ2 approximation from (18). The latter is in fact equal to σ̃W,r,j,j =
√

(2ν̂4
X,r,h,h(τj , τj)/ηr,j,j), where ηr,j,j denotes the effective degrees of freedom.

Table I summarizes the study for the first example. The Monte Carlo averages of the wavelet-wavelet

variance estimates (row 2) match very well with the true variances (row 1). Similarly, the Monte Carlo

averages of SDs obtained from (17) and (18) (rows 4 and 5) match well with the Monte Carlo SDs of

the wavelet-wavelet variance estimates (row 3) for scales indexed by j = 1, 2, but not for j = 3, 4. There

is significant drop in the effective degrees of freedom for these two scales (row 6), which is undoubtedly

what causes the observed downward bias (an image larger than 32 × 32 would be needed to correct

this bias). Consequently, the confidence intervals described in section VI would approximately achieve

the desired coverage probabilities for j = 1, 2, but would results in an undercoverage for j = 3, 4. The

χ2 approximation (row 5) performs better than the normal approximation (row 4) at the highest scale

(j = 4). (A simulation study using scaling-wavelet coefficients yielded similar results.)

For the second example, we replicate the first, but now using 1000 realizations of FBSs on 32 × 32

grids with α = 0.0875. Table II summarizes this second study, which leads to conclusions similar to
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TABLE I

SUMMARY OF MONTE CARLO STUDY FROM EXPONENTIAL COVARIANCE MODEL

j 1 2 3 4

ν2
X,h,h(τj , τj) 0.0195 0.0160 0.0233 0.0355

mean of ν̂2
X,r,h,h(τj , τj) 0.0195 0.0160 0.0232 0.0350

SD of ν̂2
X,r,h,h(τj , τj) 0.0012 0.0015 0.0050 0.0176

mean of σ̂W,r,j,j 0.0012 0.0016 0.0038 0.0075

mean of σ̃W,r,j,j 0.0012 0.0014 0.0037 0.0106

mean of ηr,j,j 491.8 278.7 83.4 24.1

TABLE II

SUMMARY OF MONTE CARLO STUDY USING FRACTIONAL BROWNIAN SURFACES

j 1 2 3 4

ν2
X,h,h(τj , τj) 0.0415 0.0754 0.2234 0.7317

mean of ν̂2
X,r,h,h(τj , τj) 0.0417 0.0759 0.2239 0.7324

SD of ν̂2
X,r,h,h(τj , τj) 0.0023 0.0080 0.0533 0.4225

mean of σ̂W,r,j,j 0.0032 0.0085 0.0400 0.1735

mean of σ̃W,r,j,j 0.0025 0.0071 0.0388 0.2470

mean of ηr,j,j 552.3 233.8 70.4 20.5

those stated for the first example. Our methodology is thus capable of handling fields with both short-

and long-range dependence.

VIII. APPLICATION TO CLOUD DATA

In this application, we focus on south-east Pacific stratocumulus clouds near the Chilean coast. Known

as one of world’s driest oceanic regions, the stratocumulus clouds here reflect sunlight back into space

and thereby check the temperature in the Pacific ocean off of Chile. Consequently, these clouds account

for much of the variations associated with the seasonal cycles of the east Pacific ocean. Past studies

undertaken by the East Pacific Investigation of Climate (EPIC) have identified the cloud dynamics in

this region as complex, and driven partly by atmospheric aerosol produced from industrial activities. The

EPIC studies also found pockets of seemingly cloud-free air existing in an otherwise homogenous strato-
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cumulus cloud field. These pockets of open cells (POCs) are primarily characterized by low-aerosol air

mass and are responsible, in the form of light drizzles, for most of the precipitation that occurs in this

region [1], [21], [24].

Figure 9 shows a brightness temperature image from Geo-stationary Operational Environmental Satel-

lites (GOES) Imagery collected on 17 October 2001. The image is of the highest clouds of the entire study

region and has been preprocessed using a median filter to weed out outliers and other data aberrations.

The red square boxes indicate four cloud regions identified by atmospheric scientists, namely, (1) a POC

around longitude −85.2◦ and latitude −12.5◦, (2) uniform stratocumulus clouds at about longitude −78◦

and latitude −18◦, (3) broken clouds near longitude −94◦ and latitude −16◦, and finally (4) a cloud region

where a POC is forming. We use these four regions to demonstrate wavelet-based analysis of variance,

with a focus on extracting statistical features that might usefully characterize the different clouds in these

regions.

GOES IR4 − Study Areas − 20011017.084500

Longitude

La
tit

ud
e

1

2

3

4

1

2

3

4

−95 −90 −85 −80 −75
−20

−15

−10

Fig. 9. Image plots of clouds at four different regions

Figure 10 shows Haar wavelet-wavelet variance estimates (13) up to level j = j0 = 4 in a grey-scale

scheme that indicates lower values by darker shades. The wavelet-wavelet variance decreases slowly

in region 1 (the POC region) as the level (j, j0) increases at each direction. The evident symmetry in

the image about (j, j0) suggests that the clouds in this region are homogeneous. Moreover, the ratio of

the effective degrees of freedom η̂j,j0 to the actual number of coefficients NjMj0 varies between 0.07

to 0.23. This variability indicates that the strength of dependence between wavelet-wavelet coefficients

varies considerably across scales. The ratio attains its maximum at level (j = 2, j0 = 2) and minimum at

level (j = 3, j0 = 4), whereas its value at level (j = 4, j0 = 3) is about 0.14. The discrepancy between

the values at levels (j = 3, j0 = 4) and (j = 4, j0 = 3) indicates that, despite the evident symmetry,

there might be some differences in behavior at the paired scales. Turning now to region 2 (uniform

clouds), the wavelet-wavelet variances are a magnitude smaller than those for the POC region. Here the
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variability does not decrease much as the scale increases. The ratio of effective degrees of freedom to

the actual number of coefficients varies between 0.05 to 0.19. Interestingly, the strength of dependence

between wavelet-wavelet coefficients at the higher scales has the same pattern for regions 1 and 2. In

particular, the maximum is attained again at level (j = 2, j0 = 2), and the minimum, at (j = 4, j0 = 2).

For region 3 (broken clouds) the wavelet-wavelet variances are larger than for the POC region. There is

now a slight discrepancy between the variances at levels (j = 4, j0 = 2) and (j = 4, j0 = 2). In addition,

the ratio between the effective degrees of freedom and the actual number of wavelet-wavelet coefficients

traces an asymmetric pattern. It attains its maximum at level (j = 2, j0 = 1) and takes smaller values

at levels (j = 4, j0 = 1, 2, 3) compared to levels (j = 1, 2, 3, j0 = 4. For region 4 (forming POC), the

wavelet-wavelet variances mostly lie between the estimates for the POC and the broken cloud regions (1

and 3). There is a hint of inhomogeneity as the values at levels (j = 2, j0 = 1) and (j = 1, j0 = 2) and

at levels (j = 4, j0 = 2) and (j = 2, j0 = 4) differ considerably. The ratio between the effective degrees

of freedom and the actual number of wavelet-wavelet coefficients in this region varies between 0.064 to

0.19.

1 2 3 4 1 2 3 4
j j

1
2

3
4

1
2

3
4

j’
j’

(3) (4)

(1) (2)

Fig. 10. Wavelet-wavelet variance of cloud image for four regions.

Next we consider an analysis of variance based on the diagonal decomposition (10), which involves

use of scaling-wavelet and wavelet-scaling variances in addition to the wavelet-wavelet variances dictated

November 23, 2009 DRAFT



19

−8
−6

−4
−2

wavelet−wavelet
PO

C
scaling−wavelet wavelet−scaling

−8
−6

−4
−2

Un
ifo

rm
−8

−6
−4

−2

Br
ok

en

1 2 3 4

−8
−6

−4
−2

level

Fo
rm

in
g 

PO
C

1 2 3 4

level
1 2 3 4

level

Fig. 11. Wavelet variances of cloud image for, from top to bottom rows, POC region, uniform clouds, broken cloud region

and forming POC region.

by decomposition (7). Estimates of the three types of variances – along with 95% confidence intervals

– are shown in Figure 11 on a log/log scale, one row for each region. For the POC region (top row),

the three variances follow a very similar pattern, although the values of the wavelet-wavelet variances

are somewhat smaller than the other two variances. There is no indication of directionality in the POC

region since the scaling-wavelet and the wavelet-scaling variances are so similar. For the uniform stratus

clouds (second row), all three variances are now much smaller, with somwhat similar values and patterns

for all scales. For the broken cloud (third row) and forming plot regions (fourth), the three types of

variances do not have the same degree of similarity in their patterns as they do for the POC region.

The values of the wavelet-wavelet variances for the broken clouds are somewhat bigger than those for

the forming POC region. In addition, there is some evidence of anisotropy in the broken clouds because
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the scaling-wavelet and wavelet-scaling patterns are somewhat different. In particular, at scale τ4, the

wavelet-scaling variance is very small and has a much smaller confidence interval in comparison to the

scaling-wavelet variance. The wavelet-scaling variances clearly decrease with increasing scale, which is

not the case for the scaling-wavelet variances.

Let us now concentrate on just the wavelet-wavelet variances (first column of Figure 11). For the POC

region, the log of these variances decreases approximately linearly as the log of the scale increases, which

is different from the patterns for the other three cloud regions. This enables us to use the wavelet-wavelet

variances as a potential criterion for distinguishing the POC region from the other three cloud types. The

wavelet-wavelet variances for the uniform stratus clouds are very small in comparison to the other three

cloud types, which again gives us a way of distingushing this cloud type from the others. However, the

wavelet-wavelet variances for the broken clouds and the forming POC regions are not easy to distinguish

because they assume similar values and follow a similar pattern across all four scales.

Finally let us compare the patterns of the wavelet-wavelet variances observed in the first column of

Figure 11 with those for exponential covariance models in Figure 4 and FBSs in Figure 7 (recall that both

models have a parameter that controls the level of the wavelet-wavelet variances, so only a comparison

of the overall patterns is meaningful). The φ = 0.75 and 0.875 exponential covariance models exhibit

an upturn between scales τ3 and τ4, which does not agree with any of the patterns in the cloud data.

The φ = 0.125 and 0.25 models show overall drops from scale τ1 to τ4 (> 2 in log space) that are

inconsistent with the observed data (< 2); here the fact that the confidence intervals for the wavelet-

wavelet variances in Figure 11 are quite small helps convince us that the inconsistency is not just due

to sampling variability. Models with 0.375 ≤ φ ≤ 0.625, on the other hand, might be viable for some

of the cloud types. Turning now to FBSs, none of the observed patterns exhibit an upturn at the large

scales, which would rule out FBSs with α ≥ 0.25 as viable models; however, the α = 0.125 model might

be tenable for all but the POC region since it matches the overall declines rather well (about 1.5 in log

space). A comparison of the patterns of the scaling-wavelet variances in the second column of Figure 11

with those for exponential covariance models in Figure 5 and FBSs in Figure 8 leads to much the same

evaluation of the tenability of the various models.

IX. SUMMARY AND DISCUSSION

This paper presents a statistical theory for wavelet-based analysis of variance for random fields on

the two-dimensional plane. Unlike in one dimension, the variance decomposition for a random field

can take more than one form; in particular one form (7) uses wavelet-wavelet coefficients exclusively,
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while another (10) uses wavelet-wavelet, scaling-wavelet and wavelet-scaling coefficients. These variance

decompositions are useful for exploratory analysis of the behavior of random fields, as demonstrated

through exact computations (Figures 4, 5, 7 and 8); in particular, they are useful for identifying which

scales are the dominant contributors to the overall variability. We demonstrated the efficacy of our

sampling theory for the various wavelet-based variances via simulations of fields that obey an exponential

covariance model and a fractional Brownian surface (Tables I and II). We also applied our methodology

to the analysis of cloud data from the south-east Pacific ocean and demonstrated that there is potential for

discriminating amongst some cloud types using wavelet-based variances. The cloud data also demonstrates

the ability of our theory to provide confidence intervals for the unknown true wavelet-based variances,

which is vital for assessing the effect of sampling variability on the variance estimates. We also noted

that we can assess the degree of correlation in an image through a comparison of the effective degrees of

freedom (needed to construct confidence intervals) with the actual number of wavelet-based coefficients

used to estimate the variance.

While we noted in the previous section that some of the patterns of wavelet-based variances for

exponential covariance models and FBSs are consistent with those observed in the cloud data, we have

not considered how such models can be fit to images with the help of wavelet-based variances. There is

thus further scope to investigate how the range parameter φ of exponential covariance models or the shape

parameter α of FBSs can be estimated based upon some combination of wavelet-wavelet, scaling-wavelet

and wavelet-scaling variances. Use of these variances might lead to interesting alternatives to previously

proposed methodology for estimating α [25].

Other extensions to our work are possible. One direction would be to look at multiple images on a

more formal basis, i.e., above and beyond how we treated the four subimages of cloud data. Development

of a multivariate theory would provide a statistical underpining for the pioneering work of Unser [22] on

classification of image textures based on wavelet variances. In a multivariate setting involving more than

one dependent random field, different decompositions of a wavelet-based variance-covariance matrix

could in principle lead to scale-based classification rules, clustering or principal component analysis.

Finally, although not considered here, some theory for non-Gaussian random fields can be derived along

the lines of Serroukh et al. [18].
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APPENDIX A

PROOF OF THEOREM 1

Let Hj and Gj be the squared gain functions for, respectively, Daubechies wavelet and scaling filters

{hj,l} and {gj,l}. It then follows that, for any J ≥ 1, we have the identity
JX

j=1

Hj(f) + GJ(f) = 1. (19)

The above allows us to rewrite SX(f, f 0) as

SX(f, f 0) =
JX

j=1

JX

j0=1

Hj(f)Hj0(f 0)SX(f, f 0) + CJ(f, f 0), (20)

where

CJ(f, f 0) =
≥
GJ(f) + GJ(f 0)− GJ(f)GJ(f 0)

¥
SX(f, f 0).

Since Hj(f)Hj(f 0)Sx(f, f 0) is the SDF of the wavelet-wavelet coefficient process {Wj,j0,u.v}, integration

of both sides of (20) yields

var (Xu,v) =
Z 1/2

−1/2

Z 1/2

−1/2
Sx(f, f 0) dfdf 0

=
JX

j=1

JX

j=1

var (Wj,j0,u,v) + cJ ,

where

cJ =
Z 1/2

−1/2

Z 1/2

−1/2
CJ(f, f 0) dfdf 0.

It then suffices to show that cJ → 0 as J →∞. When SX(f, f 0) is bounded by, say, cS = maxSX(f, f 0) <

∞, we use the fact that GJ integrates to 2−J to obtain the following bounds:
Z 1/2

−1/2

Z 1/2

−1/2
GJ(f)SX(f, f 0) dfdf 0 ≤ cS2−J (21)

and Z 1/2

−1/2

Z 1/2

−1/2
GJ(f)GJ(f 0)SX(f, f 0) dfdf 0 ≤ cS2−2J . (22)

Clearly, 0 ≤ cJ ≤ cS2−J(2 + 2−J), and hence cJ → 0 as J → ∞. On the other hand, if SX(f, f 0) is

unbounded, we use the fact that var (Xt) <∞ to find, for any given ≤ > 0, a constant c≤ such that
Z

A≤

SX(f, f 0) df df 0 < ≤,

where A≤ = {(f, f 0) : SX(f, f 0) ≥ c≤}. We evaluate cJ by dividing the entire frequency range into A≤

and its complement B≤ = {(f, f 0) : SX(f, f 0) < c≤}. Since GJ(f) is bounded by 1, it follows that

integrals of GJ(f)SX(f, f 0) and GJ(f)GJ(f 0)SX(f, f 0) over A≤ are each less than ≤. Since SX(f, f 0) is
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bounded by c≤ in the range of frequencies in B≤, we obtain slight modifications of equations (21) and

(22), namely, Z

B≤

GJ(f)SX(f, f 0) df df 0 < c≤2−J

and Z

B≤

GJ(f)GJ(f)SX(f, f 0) df df 0 < c≤2−2J .

Thus letting J tend to infinity, we obtain cJ to be less than 3≤. Since ≤ is an arbitrarily small positive

number, this completes the proof.

APPENDIX B

PROOF OF THEOREM 2

The generalized SDF for a continuous parameter two-dimensional FBS is given by

Sc(f1, f2) =
1

(f2
1 + f2

2 )β/2
, −∞ < {f1, f2} <∞,

where 2 < β < 4 [17]. The corresponding SDF for a discrete parameter FBS is

S(f1, f2) =
∞X

k=−∞

∞X

l=−∞

1
([f1 + k]2 + [f2 + l]2)β/2

,

−1/2 ≤ f1, f2 ≤ 1/2. Now

1
(f2

1 + f2
2 )β/2

< S(f1, f2)

<
1

(f2
1 + f2

2 )β/2

+4
∞X

k=1

∞X

l=1

1
([k − 1/2]2 + [l − 1/2]2)β/2

+4
∞X

k=1

1
[k − 1/2]β

.

The double and single sums converge to finite values, and hence Sc(f1, f2) ≈ 1/(f2
1 + f2

2 )β/2 at low

frequencies. The Daubechies wavelet filter hj,l is approximately a bandpass filter with a passband given

by |f | ∈ [1/2j+1, 1/2j ], so we have

ν2
X,h,h(τj , τj0) ≈ 4

Z 1/2j

1/2j+1

Z 1/2j0

1/2j0+1
S(f1, f2) df1 df2.

Hence, at large scales,

ν2
X,h,h(τj , τj0) ≈ 4

Z 1/2j

1/2j+1

Z 1/2j0

1/2j0+1

1
(f2

1 + f2
2 )β/2

df1 df2.
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The mean value theorem suggests
Z b

a
g(x) dx ≈ (b− a)g

µ
a + b

2

∂
,

with the approximation improving as b− a shrinks to zero. Elementary manipulations yield

ν2
X,h,h(τj , τj0) ≈ 2−j−j0

µ4
3

∂β ≥
2−2j0

+ 2−2j
¥−β/2

,

from which the stated result follows readily.

For the scaling-wavelet variance,

ν2
X,g,h(τj , τj0) ≈ 4

Z 1/2j+1

0

Z 1/2j0

1/2j0+1

1
(f2

1 + f2
2 )β/2

df1 df2

since the Daubechies scaling filter gj,l is approximately a lowpass filter with a passband given by

[−1/2j+1, 1/2j+1]. Elementary manipulations yield

ν2
X,g,h(τj , τj0) ≈ 2−j−j0

4β
≥
9 · 2−2j0

+ 2−2j
¥−β/2

,

from which the desired result follows easily.
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