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Abstract

In this paper we consider trend to be smooth deterministic changes over long scales, and

tackle the problem of trend estimation in the presence of long memory errors (slowly decaying

autocorrelations). Using the fractionally differenced (FD) process as a motivating example of

such a long memory process, we demonstrate how the discrete wavelet transform (DWT) is a

natural choice at extracting a polynomial trends from such an error process. We investigate

the statistical properties of the trend estimate obtained from the DWT, and provide pointwise

and simultaneous confidence intervals for the estimate. Based on evaluating the power in the

trend estimate relative to the estimated errors, we provide a test of nonzero trend. We finish by

applying the methods to a climatological example.

Keywords: trend assessment; long memory dependence; fractionally differenced process;

discrete wavelet transform; time series analysis.

1 Introduction

Trend assessment is an important problem in time series analysis. Even though trend is discussed

in most introductory treatments on time series analysis, the concept of trend can be confusing.

There is no commonly accepted precise definition for trend, but, to quote from Kendall (1973), “the

essential idea of trend is that it shall be smooth.” In keeping with this viewpoint, we take trend to
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be continuous slowly varying changes in a time series over long scales. These changes are presumed

to be due to nonstochastic mechanisms, and hence trend is usually modeled independently of the

stochastic portion of the series. These restrictions on the form that trend can take distinguish trend

assessment from the more general problem of signal estimation (see, e.g., Johnstone and Silverman

(1997) and Johnstone (1999) for details on the latter case).

In this paper we consider a time series Yt that can be modeled as Yt = Tt+Xt, where Tt is a non-

stochastic trend component, while Xt is stochastic. Trend assessment is the problem of determining

whether or not Tt is actually present in the time series; i.e., we wish to assess the null hypothesis

that Tt = 0. We will make this assessment under the assumption that the stochastic component Xt

is either a stationary long memory process or a nonstationary process whose backward differences of

a certain order form a stationary time series. These forms for Xt make trend assessment particularly

challenging because the stochastic component will have significant low frequency components that

will be difficult to distinguish from a smoothly varying trend. The assessment of trend within the

context of stochastic models that can produce trend-like realizations has been advocated by Smith

(1993), p.143, who notes that what is really of interest is “the separation of effects due to natural

variability, such as may for example be represented by a stationary time-series model, and those

that are due to a trend in the data” (this quote is given in reference to the investigation of global

warming, but is clearly applicable to other areas). This approach to trend assessment is conservative

in that we will not falsely declare there to be a significant trend in the data if in fact the stochastic

element is reasonably capable of generating the observed low frequency variations. This notion of

trend and its assessment clearly has application in areas such as atmospheric science, hydrology,

climatology and economics.

In what follows, we make the assumptions that the trend Tt is well approximated at least locally

by a low order polynomial (such as a linear or quadratic) and that the stochastic component Xt is

a fractionally differenced (FD) process. Under these assumptions, the discrete wavelet transform

(DWT) that is based upon the Daubechies family of wavelet filters can be used to transform the

time series Yt into components that are attributable mainly to either Tt or Xt. The ability of the

DWT to cleanly separate Yt into these components allows us to propose (a) a simple estimator for

Tt, (b) a test for its significance and (c) confidence bands for the unknown trend.
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Various aspects of the approach we take to trend estimation have been addressed previously in

the literature. Nicholls, Heathcote, and Cunningham (1986) investigate the use of smoothers and

least square estimators to evaluate trends, but do not consider the stochastic component of the time

series in detail. Künsch (1986) demonstrates it is possible using the periodogram to asymptotically

discriminate between a weakly dependent process with a small monotonic trend and a stationary

long memory process. Sibbertsen (2003) shows via Monte Carlo methods that it is possible to make

this discrimination for finite sample sizes using a tapered log periodogram estimate. In the area

of environmental statistics, Smith (1989b, 1989a) employs extreme value theory to analyze trend

in ground level ozone series. In subsequent work Smith (1993) adapts the standard least squares

estimator to test for trend (global warming) in temperature time series (we use a similar least

squares estimator as a basis for power comparisons later in this paper). Brillinger (1994, 1996)

uses the continuous Haar wavelet transform to provide pointwise confidence intervals for a trend

estimate. We conjecture that his approach can be extended to other wavelet transforms if the

associated wavelet function has bounded variation. Teverovsky and Taqqu (1997) consider tests for

long memory dependence in the presence of two types of trend (shifting means and slowly decaying

trend). By investigating the theory of cumulative sums the authors illustrate via Monte Carlo studies

that the estimation bias is larger in the presence of trend, but that the standard deviations obtained

are comparable. The authors provide no test for trend or confidence intervals. Deo and Hurvich

(1998) investigate statistical inference for a linear trend in the presence of fractionally integrated

errors with long memory parameter, d ∈ [0, 1.5). Under a moment condition on the innovations of

the process (which is stricter for d ∈ (0.5, 1.5)), they show that the ordinary least squares (OLS)

estimate of the slope parameter is asymptotically normal for d �= 0.5. This extends a result due to

Yajima (1988, 1991) for d ∈ [0, 0.5). The authors also consider two other estimators of the trend: the

sample mean of the first order differences and the tapered sample mean of the first order differences.

Asymptotic normality of these estimators is proved, and the three estimators of trend are compared

by looking at the asymptotic variances and relative efficiencies. Beran (1999) investigates trend

in the more general framework of an autoregressive fractionally integrated time series model. The

trend is removed via a variable bandwidth smoother and then standard likelihood methods are used

to estimate the parameters. The author iterates to handle the choice of bandwidth. Gilbert (1999)

also tests for the onset of trend using the DWT but restricts analysis to white noise or AR(1) error

sequences.
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Previously (Craigmile, Percival, and Guttorp (2000b, 2000a)) we considered parameter estima-

tion of polynomial trend contaminated FD processes. By assuming simplifying assumptions for the

wavelet covariance structure we were able to estimate the parameters of the error process semipara-

metrically using a standard Gaussian likelihood model. This method has some advantages, namely

flexibility to the underlying model. In this paper we consider assessment of trend using the DWT. In

section 2 we provide a background on the DWT, and in section 3 we use the DWT todecompose the

data into a trend and a stochastic component. In section 4 we investigate the statistical properties

of the trend estimate. We provide a test for trend in section 5 and compare our test to that of a

standard test of nonzero slope in a linear regression model. We consider a climatological example

in section 6, and finish with a discussion in section 7.

2 Background on the discrete wavelet transform

In this section we define the discrete wavelet transform and state some of its key properties. For

details, see, e.g., Chapter 4 of Percival and Walden (2000).

For an even positive integer L, let {hl : l = 0, . . . , L − 1} denote the Daubechies wavelet filter

of unit l2 norm and {gl = (−1)l+1h(L−1)−l : l = 0, . . . , L − 1} be the associated scaling filter. The

squared gain functions (i.e., the squared modulus of the transfer function for each filter) for the

wavelet and scaling filters are given by

H1,L(f) =

∣∣∣∣∣
L−1∑
l=0

hl e
−i2πfl

∣∣∣∣∣
2

= 2 sinL(πf)
L/2−1∑

l=0

(L/2−1+l
l

)
cos2l(πf), (1)

and G1,L(f) = H1,L(1/2−f), respectively. For a particular choice of L there are multiple filters {hl}
and {gl} that share these squared gain functions. Daubechies (1992) distinguishes between two (of

the possible) choices.

• The extremal phase, D(L), filters are the ones that exhibit the smallest delay (have maximum

cumulative energy) over other choices of the scaling filter.

• The least asymmetric, LA(L), filters (defined for L=8, 10, . . . ) are the ones closest to a linear

phase filter.
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The discrete wavelet transform (DWT) can be defined efficiently in terms of a pyramid algorithm

involving the wavelet and scaling filters (Mallat (1989)). Let N be a positive integer that is an

integer multiple by 2J for some positive integer J . Let V0,t = Yt (t = 0, . . . , N − 1) and Nj = N2−j

(j = 1, . . . , J). Then the scaling coefficients for level j are defined recursively by

Vj,k =
L−1∑
l=0

gl Vj−1,2k+1−l mod Nj−1
k = 0, . . . , Nj − 1.

These coefficients are associated with averages on scale 2j and with times spaced 2j units apart.

Similarly the wavelet coefficients for level j are defined by

Wj,k =
L−1∑
l=0

hl Vj−1,2k+1−l mod Nj−1
k = 0, . . . , Nj − 1.

These coefficients are associated with changes in averages on scale 2j−1 and with times spaced 2j

apart. The first Bj = 	(L− 2)(1− 2−j)
 wavelet coefficients are affected by circularly filtering; i.e.,

they incorporate data from the start and end of the sequence. We refer to these as the boundary

coefficients. The remaining Mj = Nj −Bj are called the nonboundary coefficients.

We can calculate the wavelet and scaling coefficients directly from Yt using (page 152 of Percival

and Walden (2000))

Vj,k =
Lj−1∑
l=0

gj,lY2j(k+1)−1−l mod N , Wj,k =
Lj−1∑
l=0

hj,lY2j(k+1)−1−l mod N , (2)

for k = 0, . . . , Nj − 1, where {gj,l} and {hj,l} denote the equivalent level j scaling and wavelet filters

respectively of length Lj = (2j − 1)(L− 1) + 1. For example the level j Haar scaling filter is (page

103 of Percival and Walden (2000))

gj,l =

 1/2j/2, l = 0, . . . , 2j − 1,

0 otherwise.
(3)

The squared gain functions for the level j scaling and wavelet filters are

Gj,L(f) =
j−1∏
k=0

G1,L(2kf) and Hj,L(f) = H1,L(2j−1f)
j−2∏
k=0

G1,L(2kf).

It can be shown (chapter 4 of Percival and Walden (2000)) that the level j scaling filter acts as an

approximate bandpass filter with passband [0, 2−(j+1)], and that the level j wavelet filter acts as an

approximate bandpass filter with passband [2−(j+1), 2−j ].
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Formally the DWT of {Yt} is defined via a matrix multiplication that yields a vector whose

elements are given by {Wj,k} and {VJ,k}. Let

W = (W1,0, . . . ,W1,N1−1,W2,0, . . . ,W2,N2−1, . . . ,WJ,0, . . . ,WJ,NJ−1, VJ,0, . . . , VJ,NJ−1)T ,

and define W to be the N ×N matrix such that W = WY (see section 4.6 of Percival and Walden

(2000) for the form of W). For the Daubechies wavelet filters used here, W is orthogonal which

implies that the inverse DWT is given by Y = WTY. We can also define the inverse transform

using a pyramid algorithm. Given the wavelet and scaling coefficients for level j, the previous level

scaling coefficients can be recovered using

Vj−1,k =
L−1∑
l=0

[
gl V

(2)
j,k+l mod Nj−1

+ hl W
(2)
j,k+l mod Nj−1

]
, k = 0, . . . , Nj − 1. (4)

where (2) denotes the upsampling operator, e.g.,

W
(2)
j,k =

 0, if k is even;

Wj,(k−1)/2, otherwise.

3 Using the discrete wavelet transform to decompose trend

Suppose we observe data, {Yt : t = 0, . . . , N − 1}, following the model

Yt = Tt +Xt, (5)

where {Tt} is a deterministic polynomial trend of order K, and {Xt} is a realization of a zero

mean Gaussian FD(d, σ2) process with difference parameter d and innovation variance σ2 > 0. By

definition {Xt} has a spectral density function, S(f), given by

S(f) = σ2|2 sin(πf)|−2d, |f | ≤ 1/2. (6)

For d ∈ (−1/2, 1/2) the process is stationary and invertible, and is a white noise (i.e., uncorrelated)

process when d = 0. When d ≥ 1/2 we obtain a class of non-stationary processes that become

stationary after differencing �d + 1/2� times. For d ∈ [−1/2, 1/2) the autocovariance sequence

(acvs) can be shown to be (Granger and Joyeux (1980))

sk(d, σ2) = σ2 (−1)k Γ(1− 2d)
Γ(1− d+ k) Γ(1− d− k) . (7)
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Beran (1994) lists further properties of FD processes.

Given an estimate of the FD process parameters (d and σ2) we are interested in providing a

wavelet estimate of {Tt}, and then testing the significance of the trend. A Daubechies wavelet

filter of order L ≥ 2max{K + 1, �d + 1/2�} can decompose {Yt} into its constituent parts. The

nonboundary coefficients contain a contribution due to {Xt} alone, while the boundary wavelet

coefficients and all the scaling coefficients contain all of {Tt} (for details see Craigmile, Percival, and
Guttorp (2000b)). In light of this it seems reasonable to use the inverse wavelet transform of these

latter coefficients as an estimate of trend. We can view this as a “kill or keep” wavelet thresholding

strategy. More precisely, let diag(x) denote the square matrix with x along the main diagonal and

zeroes on the off-diagonals. For an integer n let 0n denote a vector of n zeroes, and 1n a vector of

n ones. Let A = diag(1B1 ,0M1 ,1B2 ,0M2 , . . . ,1BJ
,0MJ

,1NJ
). Also let IN be the N × N identity

matrix. Since the DWT is an orthonormal transform, we can partition the data vector as

Y = WTW = WTAW+WT (IN −A)W = T̂+ X̂. (8)

T̂ captures the continuous changes in longer scales (the trend), in addition to long range stochastic

variability. Since we are adding in the contribution due to the boundary wavelet coefficients, the

estimate also contains some short scale variability at the start and end points and can thus be

said to have a variable bandwidth; on the other hand, X̂ will be a bandpass version of X with an

approximate bandpass frequency of [2−(J+1), 2−1] (a combination of the bandpasses [2−(j+1), 2−j ]

for each wavelet level j = 1, . . . , J .) Let us illustrate the properties of X̂ and T̂ using the following

example. Let

Yt = (20(t/512− 0.5)2 − 2) +Xt, t = 0, . . . , 511,

where {Xt} is a realization of an FD(0.4,1) process. A realization of {Yt} is shown in panel (a) of

Figure 1, with the true trend being the solid line. We decompose the data using a LA(8) wavelet

filter analyzing to level J = 7. The estimate of the trend, T̂, is the jagged line shown in panel (b),

with the true trend again being the solid line. The estimate of trend oscillates around the true value

with more variability at the ends of the series. Panels (c) and (d) show the estimated residuals, X̂

and the actual realization of the error process X. It is hard to pick up differences by comparing these

two plots, and so the periodograms for the estimated and actual errors are shown in panels (e) and

(f). The six dotted lines on each plot indicate the approximate bandpass frequencies [2−(j+1), 2−j ]
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Figure 1: (a) Simulation of a quadratic trend plus an FD(0.4,1) process (N = 512) (jagged line)

and the true trend (solid line); (b) The estimated (jagged line) and true trend (smooth line); (c)

The estimated residuals; (d) The actual errors; (e) Periodogram of the estimated residuals. The

vertical dotted lines indicate the approximate bandpass frequencies, [2−(j+1), 2j ] for each wavelet

level j = 1, . . . , 5; (f) Periodogram of the actual realization of the error process.

for the wavelet filters on level j = 1, . . . , 5. We can see that the spectral content of the estimated

and actual errors is virtually identical at the higher frequencies.

4 Statistical properties of the trend estimate

Let cov(X) denote the N × N covariance matrix for the vector X, which is multivariate Gaussian

with a mean vector of 0N . Since

T̂ = WTAW = WTAWY = RT+RX with R = WTAW,
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standard theory says that T̂ is multivariate Gaussian with mean RT and covariance cov(T̂) =

R cov(X)RT . We consider calculating these covariance matrices in some detail. For d ∈ [−1/2, 1/2),
{Xt} is a stationary FD process, and cov(X) is a symmetric Toeplitz matrix, simplifying the calcu-

lations somewhat. For d ≥ 1/2 the FD process is not stationary, but since the process is stationary

after differencing �d+ 1/2� times we can still calculate the elements of the covariance matrix as an

aggregation of the covariances in the d ∈ [−1/2, 1/2) case. As an example consider an FD process

with d ∈ [1/2, 3/2). The first order difference of this process is a stationary process and

cov(Xs, Xt) =
s∑

j=1

t∑
k=1

sj−k(d− 1, σ2), s, t = 0, . . . , N − 1,

using the acvs given by equation (7). The variance will be large as d increases above a half.

We now investigate the bias and variance properties of the trend estimator. The first proposition

deals with the bias in estimating T by T̂.

Proposition 4.1 Suppose that L ≥ 2(K + 1). Then under model (5) the bias in estimating T by

T̂ is zero.

Proof Since a Daubechies (1992) wavelet filter has L/2 embedded differencing operations (pages

105–106 of Percival and Walden (2000)), the nonboundary wavelet coefficients of a zero mean FD

process plus polynomial trend have zero mean. Thus a linear combination of the nonboundary

wavelet coefficients such as X̂ also has zero mean. Applying this to model (5),

E(T̂ − T) = E((Y − X̂)− (Y − X)) = E(X − X̂) = 0N ,

since E(X) = 0N .

Let T̂t be the tth element of the vector T̂. We shall now derive an expression for var(T̂t). From

the definition of cov(T̂) we have

var(T̂t) =
N−1∑
i=0

N−1∑
j=0

Rt,i cov(Xi, Xj) Rt,j ,

where Rt,i is the (t,i) element of the matrix R = WTAW; i.e.,

Rt,i =
N−1∑
m=0

N−1∑
n=0

Wm,t Am,n Wn,i =
N−1∑
m=0

Am,m Wm,t Wm,i,
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since A is a diagonal matrix (see section 4.6 of Percival and Walden (2000) for details on calculating

W based on the wavelet filter, hl, and the scaling filter, gl). When the FD process is stationary we

can calculate the variance from the following equation

var(T̂t) =
N−1∑

k=−(N−1)

sk(d, σ2) rt,k,

where we define rt,k =
∑N−1−|k|

i=0 Rt,iRt,i+|k|, and we calculate the acvs recursively using

sk(d, σ2) =


σ2 Γ(1− 2d)

Γ2(1− d) , k = 0;

sk−1(d, σ2)
[
k − 1 + d
k − d

]
, k ≥ 1.

Overall, this is an O(N3) calculation (given we have already calculated W), but can be calculated

as an O(N2 logN) calculation by using DFTs to calculate rt,k (for an example of how this can be

done see exercise 3.14 on page 123 of Percival and Walden (1993)).

The variance is proportional to σ2 and depends on d through a ratio of gamma functions. From

the dependence on W, the variance of the trend estimate is affected by the choice of wavelet filter

and the choice of the number J of wavelet levels to analyze. The variance also depends on the

sample size N . For the Haar wavelet filter, we can state the following explicit result.

Proposition 4.2 Suppose we analyze to J ≤ log2(N) levels using the Haar wavelet filter. Then the

variable bandwidth trend estimate at time t = 2Jr+ s for r = 0, . . . , NJ − 1 and s = 0, . . . , 2J − 1 is

given by

T̂t = 2−J
2J−1∑
l=0

Y2Jr+l.

with a variance of

var(T̂t) = 2−2J
2J−1∑
l=0

2J−1∑
l′=0

sl−l′(d, σ2),

that is constant for all t.

Proof With the Haar wavelet filter Bj = 0 for all j = 1, . . . , J . Thus there are no boundary

wavelet coefficients, and the trend estimate is the inverse DWT of the level J scaling coefficients.
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Using equations (2) and (3) the level J scaling coefficients are given by

VJ,k =
1

2J/2

2J−1∑
l=0

Y2Jk+2J−1−l mod N =
1

2J/2

2J−1∑
l=0

Y2Jk+l,

if we reverse the order of summation. By page 100 of Percival and Walden (2000), the last NJ rows

of W are circularly shifted versions of {gJ,l} periodized to length N . In particular letting t = 2Jr+s

for r = 0, . . . , NJ − 1 and s = 0, . . . , 2J − 1

WN−1−NJ+k,t =

 2−J/2, 2Jk ≤ t ≤ 2Jk + 2J − 1,

0 otherwise

=

 2−J/2, k = r,

0 otherwise.

Thus

T̂t = T̂2Jr+s =
NJ−1∑
k=0

WN−1−NJ+k,2Jr+sVJ,k = 2−J/2VJ,r = 2−J
2J−1∑
l=0

Y2Jr+l,

and hence

var(T̂t) = 2−2J
2J−1∑
l=0

2J−1∑
l′=0

sl−l′(d, σ2),

which is invariant of t.

Using the Haar wavelet filter the trend estimate is a local average of the data. As we decrease J

we increase the variance of the trend estimate. Figure 2 illustrates the variance of the trend estimate

for various N , J and d (on the log10 scale). Keeping the other parameters constant we have that

the variance increases at a very fast rate with d and decreases with increasing N and/or J .

The variance of the trend estimate is quite different for L > 2 for two reasons. First, the influence

of the boundary wavelet coefficients induces higher variability at the endpoints of the time series

(this is similar to the behavior of confidence bounds for simple linear regression, e.g. Draper and

Smith (1998), p.82, Figure 3.1). Second, the overall variability oscillates with time, dependent on

the shape of the scaling filter. As an example see Figure 3 in which we use a D(4) wavelet with

N = 256 and J = 4, 5, 6 (J = 6 is the largest wavelet level for which there are still nonboundary

wavelet coefficients). Each panel displays a different combination of d and J . We can see that as

in the Haar case, increasing the value of d increases the overall variability, but also magnifies the
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Figure 2: Plots of var(T̂t) (on the log10 scale) for the Haar wavelet filter at various values of d, J

and N . The variance of the trend estimate is constant with time, t.
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Figure 3: Plots of var(T̂t) by time index, t, for a realization of an FD(d,1) process of length 256

analyzed using a D(4) wavelet filter to level J . The solid curve is when d = 0, the broken curves is

when d = 0.25, and the dotted curve is when d = 0.45.

amplitude of the oscillations. As we decrease J we decrease the wavelength of the oscillations for the

central time points (those unaffected by the boundary wavelet coefficients) and the overall variance

level for these points increases. We can also argue this latter result using the spectral decomposition

theorem for stationary processes combined with the frequency localization result for wavelets. As

we decrease J we increase the length of the passband of the signal which we capture in the trend

estimate, and hence increase the variability of the trend estimate for the middle time points. The

variances at the endpoints is relatively unchanged (for the same reason).

Finally we investigate how the variance depends on the choice of wavelet filter. Figure 4 plots the

variances for the Haar, D(4), D(8) and LA(8) wavelet filters when N = 256 and J = 5, for various

values of d. Comparing the filters we can see for the most part the general level of the variability

increases with wavelet order (especially at the end points). We note that for fixed values of J there
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Figure 4: Plots of var(T̂t) by time index for the LA(8), D(8), D(4) and Haar wavelet filters, at

various values of d, when J = 5 and N = 256. The solid curve is when d = 0, the broken curves is

when d = 0.25, and the dotted curve is when d = 0.45.

are time indexes for which the variability is lower than the Haar, especially for the D(4) filter. Due

to the shape of the wavelet filters the oscillations differ for the least asymmetric and the extremal

phase.

In summary we have shown that the variable bandwidth estimate is an unbiased estimate of the

true trend. When we analyze the data using a Haar wavelet (L = 2) the variance of the trend

estimate is constant for all time points. For L > 2 the variance of the trend estimate changes with

time. The variance oscillates depending on the value on N and J , and is larger at the beginning

and ending time points. Regardless of the filter used, the variance of the trend estimate increases

with increasing d and σ2.

4.1 Pointwise confidence intervals

We now use the results of the previous section to derive pointwise confidence intervals (CIs) for the

underlying trend. Let qα denote the αth quantile of the standard Gaussian distribution. It follows
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that a pointwise 100(1− α)% CI for the variable bandwidth trend estimate is given by

T̂t ± q1−α
2

√
var(T̂t), t = 0 . . . N − 1. (9)

In practice we estimate the FD process parameters and do not know the true value of var(T̂t) for each

t. We will examine this via Monte Carlo simulations. We first investigate the coverage probabilities

in the case that the parameters of the FD process are considered known. Figure 5 shows a plot of

the pointwise simulated coverage probabilities for the following combinations of parameters:

• Haar, D(4) and LA(8) wavelet filters;

• d = 0, 0.25 and 0.45;

• N = 256 and J determined by picking the largest J such that MJ > 0.

In each case we simulated an FD(d, 1) process using the Davies–Harte algorithm (Davies and

Harte (1987), Wood and Chan (1994), Craigmile (2002)), calculated the estimate of trend and

associated 95% CI (assuming the known d and σ2) and determined whether or not the true trend

(a zero trend in this case) was contained in the interval for each time point. By repeating this

procedure 2048 times we can calculate an estimate, p̂t, of the pointwise coverage probability for

t = 0, . . . , N − 1. The solid curve denote these estimates, and the dotted 95% CIs are those for a

standard binomial trial, i.e.,

p̂t ± 1.96

√
p̂t(1− p̂t)

N
.

Note that the coverage probabilities are obviously correlated with time index. Although we miss

the 95% mark occasionally, on the whole the figure verifies equation (9).

In practice we estimate the FD process parameters from the data. Suppose d̂N and σ̂2
N are

estimates of the FD parameters. A CI for the trend estimate is then given by

T̂t ± q1−α
2

√
v̂ar(T̂t),

where v̂ar(T̂t) denotes the estimated variance when we plug in the estimates of the FD process

parameters into the expression for var(T̂t). We now employ a Monte Carlo simulation to investi-

gate the coverage probabilities for this situation (similar to known parameter case above). In our

14
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Figure 5: Simulated coverage probabilities for 95% pointwise CI for T̂, for Haar, D(4) and LA(8)

wavelet filters, d = 0, 0.25 and 0.45, N = 256, and J determined by picking the largest J such that

MJ > 0. We assume a zero trend and calculate var(T̂t) based on the known values of d and σ2 = 1.

The calculations are based on 2048 Monte Carlo replications.

simulations we estimate d and σ2 using the approximate white noise wavelet maximum likelihood

model of Craigmile, Percival, and Guttorp (2000b), and then build a CI using the formula above.

The results are shown in Figure 6. There is strong evidence that the coverage probabilities are not

95%. For the white noise case (d = 0) we obtain more conservative intervals, and for d = 0.25, 0.45

we have anti-conservative intervals. Indeed for d close to zero, it is more likely that we will have

estimates of d which are negative. This leads to an antipersistent FD process (i.e., having negative

autocorrelations at nonzero lags). This deflates the variance of the trend estimates, and increases

the simulated coverage probabilities. As we increase the value of d, the average coverage probability

decreases.
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Figure 6: Simulated coverage probabilities for 95% pointwise CI for T̂, for Haar, D(4) and LA(8)

wavelet filters, d = 0, 0.25 and 0.45, N = 256, and J determined by picking the largest such J that

MJ > 0. We assume a zero trend and calculate var(T̂t) based on estimating the value of d and σ2.

The calculations are based on 2048 Monte Carlo replications.

To improve the coverage probabilities we can consider schemes for providing a better estimate

of v̂ar(T̂t). One solution is to average the estimated variance of the trend estimate over a limiting

distribution for the FD process parameter estimates. One Monte Carlo approximation is to sample

d̂N and σ̂2
N from their limiting distributions. For each sampled value of the parameter estimates

we calculate v̂ar(T̂t), and then average these estimated variances under repeated sampling. Figure

7 displays the simulated coverages for samples from the asymptotic distribution of the approximate

white noise wavelet model estimates (Theorem 6.1 of Craigmile, Percival, and Guttorp (2000b)).

Comparing with Figure 6, we note that the coverages are larger in this case. Indeed for d = 0 the

coverages are more conservative.
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Figure 7: Simulated coverage probabilities for 95% pointwise CI for T̂, for Haar, D(4) and LA(8)

wavelet filters, d = 0, 0.25 and 0.45, N = 256, and J determined by picking the largest J such that

MJ > 0. We assume a zero trend, estimate d and σ2, and calculate expected variances based on the

approximate limit theory for the parameter estimates. We used 2048 Monte Carlo replications.

In summary we have shown that it possible to construct pointwise CIs for the trend estimates.

If we estimate the variance of the trend estimate using the FD process parameter estimates, the

procedure compromises the coverage probabilities for the CI. By accounting for the variability in

estimating the FD process parameters we can improve the coverage properties of the intervals.
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4.2 Simultaneous confidence intervals

We now derive simultaneous 100(1−α)% CIs for T. Let v = (
√
var(T̂1),

√
var(T̂2), . . . ,

√
var(T̂N ))T

and U = T − T̂. We want to calculate the value of δ such that

1− α = Pr
(
T̂ − δv ≤ T ≤ T̂+ δv

)
= 1− 2 Pr(U > δv),

by the symmetry and continuity of the multivariate normal distribution. Hence we want δ such that

α/2 = Pr(U > δv). Suppose we know the FD process parameters. Then U ∼ N (0, R cov(X)RT ),

and we have α/2 = Pr(a RN (0, cov(X)) r.v. > δv) = p(δ), say. Clearly evaluation of δ in this case

is not simple. We use a Monte Carlo approach. For some positive integer, I, and some fixed set of

δj , j = 1, . . . , nδ

• Set nj = 0. For i = 1, . . . , I:

– Simulate an FD(d,σ2) process and calculate T̂;

– If T̂ > δj v increment nj by one.

• Let p̂(δj) = nj/I.

Now choose the value of δj such that p̂(δj) is closest to α/2. We can use a divide and conquer

algorithm since p(δj) increases with δj for fixed values of R, cov(X) and hence v.

5 A test for trend

In this section we explore a test for nonzero trend based on the DWT coefficients. Our hypotheses

are

H0 : Tt = 0 for all t = 0, . . . , N − 1, versus H1 : not H0.

In keeping with the idea of assessing a trend in terms of the natural stochastic variability in a time

series (Smith 1993), we propose a test for trend based upon a comparison of the variability in T̂

and in X̂. We define

P ∗(d) =
||T̂||2
||X̂||2

=
||AW||2

||(IN −A)W||2 , (10)
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by the analysis of variance relationship for the DWT coefficients (Percival andWalden (2000), section

4.6). Under H0 we expect the variable bandwidth estimate to be close to zero, and thus we reject

the null hypothesis for large values of P ∗(d). Using the analysis of variance relationship again

P ∗(d) =
||Y||2 − ||(IN −A)W||2

||(IN −A)W||2 =
||Y||2

||(IN −A)W||2 − 1.

Consequently we reject the null hypothesis for large values of the sum of squares of the trend relative

to the sum of the squared nonboundary wavelet coefficients. Since the −1 term is unimportant to

the outcome of the test, we let

P (d) = P ∗(d) + 1 =
||Y||2

||(IN −A)W||2 , (11)

be our test statistic. An equally valid pair of hypotheses to consider is

H0 : Tt = some constant for all t = 0, . . . , N − 1, versus H1 : not H0.

In this case we do not test whether the trend is significant relative to zero, but relative to the mean

of the signal. An obvious test statistic in this case is to center the data in the numerator yielding

Pc(d) =
||Y − 1N ȲN ||2
||(IN −A)W||2 .

This version of the statistic is often of more use in practice. While the sample mean is not as efficient

an estimator of the process mean as the best linear unbiased estimator, it is asymptotically nearly

as efficient as the latter for long memory processes and is much easier to compute (see section 8.2

of Beran (1994) for a comparison of different estimates of the process mean).

5.1 Distribution of the test statistic

The distribution of P (d) (and Pc(d)) under the null hypothesis depends on the FD parameter, d,

but is independent of σ2, since both the numerator and denominator of the statistics have a factor

of σ2 which cancels out. Let χ2
k denote a chi-squared random variable with k degrees of freedom.

For Gaussian IID noise (d = 0),
∑N−1

t=0 Y 2
t ∼ σ2χ2

N , and since the DWT of a realization of a white

noise process is itself a white noise process
∑J

j=1

∑Nj−1
k=Bj

W 2
j,k ∼ σ2χ2

M . Here the numerator and

denominator are not independent random variables. The denominator depends on M which is

defined in terms of N , J and L, so the distribution of P (d) is dependent on these factors in addition
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to d. For d ∈ (0, 1/4], we can appeal to Beran (1994), Theorem 3.1 to obtain a Gaussian limit for

the numerator of P (d) (for large N), but clearly this is not general enough a result for all d. In

practice a simple testing framework is to use a Monte Carlo test. We simulate a large number of

FD(d,1) processes with no trend, and calculate the resulting test statistic. For any given time series

the proportion of times the observed test statistic exceeds the simulated values is the P-value or

observed level of significance.

Table 1 lists the upper quantiles of the distribution of Pc(d) for various values of N , L and d. In

each case we picked the maximum value of J such that there were a nonzero number of nonboundary

wavelet coefficients on level J . The evaluation of the distribution was based on 10000 simulations of

an FD process using the Davies–Harte algorithm and standard errors for a quantile at probability

p, F−1(p) were calculated using the equation

se(F−1(p)) =

√
p (1− p)

10000 [f(p)]2
.

Here f(p) denotes the density of the test statistic. We used the density command in S-PLUS to

evaluate the density using a Gaussian window smoother. The value of Pc(d) increases with d, and

decreases with N . We see the same for the standard errors. As we increase L from 4 to 8, we

increase the value of the test statistic. This is intuitive as we decrease the number of nonboundary

wavelet coefficients that are included in the denominator sum.

5.2 Power comparisons for a simple linear regression model

We now investigate the power of our test in the simple case of linear trend plus an FD process. The

model is

Yt = βt+Xt, t = 0, . . . , N − 1,

where {Xt} is a realization of an FD(d,1) process. The power of the test for trend was calculated via
a Monte Carlo method based on 2048 random samples. Letting qP,α denote the αth quantile of the

test for trend statistic evaluated under H0 by simulation (such as displayed Table 1), we estimated

Pr(reject H0|β = β1) = Pr(Pc(d) > qP,0.95|β = β1),

for a range of slopes, β1, until we reached a power of 1.
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N L d p = 0.90 se p = 0.95 se p = 0.99 se

0.0 1.089 0.001 1.101 0.001 1.126 0.001

0.2 1.205 0.001 1.240 0.002 1.316 0.006

256 4 0.4 1.612 0.006 1.741 0.008 2.055 0.020

0.6 2.991 0.024 3.540 0.033 4.783 0.065

0.8 7.353 0.092 9.533 0.151 14.887 0.329

0.0 1.048 0.001 1.054 0.001 1.067 0.001

0.2 1.131 0.001 1.151 0.001 1.193 0.003

512 4 0.4 1.472 0.004 1.571 0.007 1.799 0.015

0.6 2.766 0.020 3.255 0.030 4.275 0.055

0.8 7.159 0.082 9.061 0.139 14.02 0.291

0.0 1.03 0.001 1.029 0.001 1.035 0.001

0.2 1.09 0.001 1.098 0.001 1.128 0.002

1024 4 0.4 1.38 0.003 1.455 0.005 1.657 0.012

0.6 2.63 0.018 3.073 0.028 4.075 0.061

0.8 7.10 0.083 9.064 0.134 13.695 0.266

0.0 1.202 0.001 1.222 0.001 1.262 0.002

0.2 1.414 0.002 1.455 0.002 1.556 0.005

256 8 0.4 2.098 0.007 2.260 0.011 2.677 0.030

0.6 4.646 0.033 5.462 0.052 7.375 0.142

0.8 14.790 0.168 18.731 0.260 28.857 0.730

0.0 1.109 0.001 1.118 0.001 1.136 0.001

0.2 1.257 0.001 1.281 0.002 1.336 0.004

512 8 0.4 1.811 0.005 1.928 0.007 2.184 0.013

0.6 4.130 0.029 4.783 0.045 6.424 0.111

0.8 14.001 0.155 17.757 0.258 26.756 0.517

0.0 1.059 0.001 1.063 0.001 1.072 0.001

0.2 1.163 0.001 1.179 0.001 1.212 0.002

1024 8 0.4 1.622 0.004 1.712 0.006 1.929 0.012

0.6 3.809 0.026 4.380 0.034 5.893 0.094

0.8 13.632 0.152 17.444 0.242 26.407 0.683

Table 1: Table of the 90th, 95th and 99th quantiles of the centered test for trend distribution for

various values of N , L and d. We picked the maximum value of J such that there was at least one

nonboundary wavelet coefficient on level J . The evaluation of the distribution was based on 10000

simulations of an FD process using the Davies–Harte algorithm.
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We compared the power of the DWT based test for trend with that of the standard linear

regression test adjusted for long memory (see, e.g., Yajima (1988, 1991) and Deo and Hurvich

(1998)). The OLS estimate of β (in the absence of an intercept) is given by

β̂ =
∑N−1

t=0 (t− t̄)Yt∑N−1
t=0 (t− t̄)2 ,

where t̄ = N−1
∑N−1

t=0 t. By Theorem 1 of Deo and Hurvich (1998), for d ∈ [0, 1.5)\{0.5}

N3/2−d(β̂ − β) →d N (0, σ2
OLS,d), as N → ∞,

where

σ2
OLS,d =

72σ2

π

∫ ∞

−∞
sin2(x/2)

[
2
x2

− cos(x/2)
x sin(x/2)

]2

|x|−2d dx.

The hypotheses of the test in this case are H0 : β = 0 versus H1 : β > 0. Letting qα denote the αth

quantile of the standard Gaussian distribution, the asymptotic power for this one-sided test is

Pr
(
β̂ > qα σOLS,d/N

3/2−d
∣∣∣β = β1

)
where β̂ has aN (β1, σ

2
OLS,d/N

3−2d) distribution. We could see no appreciable difference in the power

of the test based on a asymptotic distribution of β̂ compared with the Monte Carlo distribution of

β̂ when N = 1024.

Figure 8 displays the power curves for the following situations: (1) the OLS test adjusted for

long memory (solid line); (2) the DWT based test for trend using a D(4) wavelet analyzing to J = 8

levels (dashed line); (3) the DWT based test for trend using a LA(8) wavelet analyzing to J = 7

levels (dotted line). In each case the time series was of length N = 1024. As d increases towards 0.6,

the power of both wavelet tests improve relative to the OLS test. For d = 0 and d = 0.2 the Haar

based test performs better than the D(4) test. For d ≥ 0.4 the D(4) and LA(8) tests have similar

power curves. The power is uniformly less for the wavelet tests compared with to the OLS test.

This is not suprising since the wavelet based test for trend is nonparametric and has the potential

to handle other types of trends.

In practice, estimating d will decrease the effectiveness of these tests. To counteract this we can

alter our Monte Carlo testing scheme as follows. When we calculate the Monte Carlo distribution of

P (d), at each iteration we sample d from its limit distribution thus providing a test statistic which

incorporates the variability in estimating the process parameters. A bootstrap sample estimate for

d (Sabatini (1999)) could also be used.
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Figure 8: A comparison of the power curves for two wavelet based tests for trend (dashed line: D(4)

wavelet filter; dotted line: LA(8) wavelet filter) and the least squares test (solid line) for various

values of the slope, β, and difference parameter, d. The sample size used was 1024.

6 An example

Charles, Hunter, and Fairbanks (1997) present a 150 year record of the sea surface temperature

(SST) from the Seychelles, in the Indian Ocean. Cores were collected from a coral colony growing at

a depth of 7m, and the δ18O oxygen isotope was measured in annual bands. The resulting monthly

time series is shown in Figure 9. Following practice in the field we show the negative value of the

isotope value. A decrease in the oxygen value corresponds to a increase in the SST temperature

(roughly -0.24% corresponds to 1oC). Charles, Hunter, and Fairbanks (1997) suggest that there is

a significant decadal variability in this series which is commonly observed in areas with a monsoon

climate. Thus, in this analysis we shall test for an interdecadal trend in the precense of what we will

indicate is strong long range dependence. Our analysis will involve both a harmonic and wavelet

based analysis of the time series. Concerning other prominent features in the data, Charles, Hunter,

and Fairbanks (1997) attribute the peak in the data around 1878 to a monsoon failure in 1877. As
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Figure 9: Time series of the negative monthly values of δ18O oxygen isotope. The core sample was

collected from a coral colony growing at a depth of 7m in the Seychelles, in the Indian Ocean.
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Figure 10: Left panel is a periodogram (in decibels) of the isotope series (after centering the series).

Right panel shows the same periodogram on the log2 frequency scales. The dotted lines indicate

the three significant periodicities in the data.

a consequence we would expect a local temperature increase in this period.

The left panel of Figure 10 shows a periodogram of the isotope series (in decibels). We can see

significant peaks in the spectrum at f = 1, 2 and 3 corresponding to yearly, half-yearly and quarterly

oscillations. The right panel of Figure 10 shows the periodogram of the data on the log-log scale.

Using harmonic analysis, we remove the periodicities using harmonic regression. Remembering that

this series has sample rate one month, i.e. ∆t = 1/12, the log spectral density function is

logS(f) = log(2σ2∆t)− 2d log |2 sin(πf∆t)|, |f | < 1
2∆t

.

Since sin(πf) ≈ πf for small f , an FD process is a good model for the data if the log spectrum
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Figure 11: DWT of the data (after harmonic regression) using an LA(8) wavelet filter, analyzing to

6 wavelet scales (i.e., scaling coefficients correspond to averages over 64 months). Dashed vertical

lines separate the boundary coefficients (outside) and nonboundary coefficients (inside). Note the

monsoon failure in 1877.

versus log frequency is approximately a straight line, as in this case. By estimating the slope of

the regression line we obtain an estimate of d. The estimate of d̂ = 0.780 based on a regression for

f ∈ [1/8, 5] indicates evidence of nonstationary long memory dependence.

We now study the series using the DWT. Figure 11 shows a DWT analysis of the data (after

harmonic analysis) using a LA(8) wavelet filter. This filter allows for the possibility of a fourth

order polynomial trend. We analyze to 6 scales so that the scaling coefficients correspond to aver-

ages over 64/12 = 5.33 years. Thus the variability trend estimate approximately isolates the half

decade and interdecadal variations. The vertical dotted lines on the plots denote the boundary

between the nonboundary (inner) and boundary (outer) wavelet coefficients. Using the methods of
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Figure 12: Solid smoothed line is a plot of the variable bandwidth estimate using an LA(8) wavelet

filter analyzing to J = 6 wavelet levels. The dotted lines are a plot of the series after the 3

periodocities were removed using harmonic regression.
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Figure 13: Distribution of the test for trend statistic. The solid line denotes the observed statistic.

Craigmile, Percival, and Guttorp (2000b) we obtain parameter estimates of d̂ = 0.84 with a 95%

CI of [0.78,0.89]. The estimate of σ2 is 0.005. This supports the idea of strong nonstationary long

memory dependence.

We now investigate the half-decade and interdecadal variations, via the variable bandwidth trend

estimate. Figure 12 shows the estimate as the solid line, along with the dotted lines which denote

the series after harmonic regression. We can see that the monsoon failure affects the trend estimate

locally around 1877. Overall, the trend estimate seems to adequately represent the large scale

variations in the series. If we apply our test for trend (adapted to take into account the nonzero

mean of the time series), we find that we cannot reject the null hypothesis of no trend. Figure 13

compares the value of the test statistic Pc(d) for the time series (the solid vertical line) with the
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distribution of the statistic under the null hypothesis. Since we would reject the null hypothesis when

the observed Pc(d) is in the upper tail of this distribution, there is no evidence for a trend. We can

conclude that the large scale variations in the isotope series can be attributed to stochastic variations

rather than to a deterministic trend. This conclusion is not surprising given the nonstationary value

for d. Differencing the time series to make the error process stationary does not affect the conclusion

of the test for trend.

Cole, Dunbar, McClanahan, and Muthiga (2000) analyze a 194 year record of the sea surface

temperature (SST) based on a measurement of the δ18O oxygen isotope from a coral sample in

Malinda, Kenya. It would be of interest to compare the trend estimates for this series with the

Seychelles trend estimates. We could also contrast these trend estimates to the El Niño Southern

Oscillation 3.4 index. This will require modeling the correlations present between the three time

series.

7 Discussion

In this paper we have considered DWT based methods of trend estimation and trend assessment. A

clear advantage over traditional trend estimation methods for long memory processes is that it can

be used simultaneously with DWT based methods of long memory estimation such as presented in

Craigmile, Percival, and Guttorp (2000b, 2000a).

We have only considered a trend estimate based on a DWT of the data with Daubechies wavelet

filters. Such wavelet filters are well suited to decomposing trend because of the inherent differencing

and averaging operations. It would be possible to use other filters, but this would we compromise on

the number of differencing operations. For example, the family of coiflets wavelet filters (Daubechies

(1992), Percival and Walden (2000)) has L/3 differencing operations compared to the L/2 differenc-

ing operations of the Daubechies family. Also for L > 2, the Daubechies wavelet filters we use are

not symmetric. This induces an asymmetry in the trend estimate which is not appealing in practice.

One way to reduce artifacts attributable to asymmetric filters would be to average the estimate with

the estimate obtained if we reversed the time series.

We can consider extensions to the methodology. All these results extend to autoregression frac-
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tionally integrated moving average error processes (see section 2.5 of Beran (1994)). We induce

more variability in the testing scheme as a result of estimating more parameters in the model. Even

though in practice our scheme is designed to deal with low order polynomials, which are good ap-

proximations to many trends of practical interest, we conjecture the scheme can handle departures

from this assumption using some appropriate asymptotic arguments. It is also possible to handle

jumps in the time series. By noting that we can associate specific wavelet coefficients with time

points we can remove the coefficients around the jump from the error process estimate X̂ and in-

stead add them to the trend component, T̂. In estimating the parameters of the FD process, we

also remove the wavelet coefficients around the jump points. To do this efficiently, we must know

the location of the jump with some accuracy, and as a result make the trend estimate more erratic

(with increased variability) about the jump point. See Wang (1998) for wavelet based methodology

on change point detection.

We finish by noting that it is possible to obtain smoother estimates of trend either by increasing

the number of wavelet scales we analyze (i.e., increase the value of J in the DWT) or by increasing

the order of the wavelet filter (i.e., increase L). In the latter case we compromise on the accuracy

of estimates of the parameters of the FD process because there will be fewer nonboundary wavelet

coefficients (Craigmile, Percival, and Guttorp (2000b, 2000a)).
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