
Using Labeled Data to Evaluate Change

Detectors in a Multivariate Streaming

Environment

Albert Y. Kim a Caren Marzban a,b Donald B. Percival b,a,∗
Werner Stuetzle a

aDepartment of Statistics, Box 354322,
University of Washington, Seattle, WA 98195–4322, USA

bApplied Physics Laboratory, Box 355640,
University of Washington, Seattle, WA 98195–5640, USA

Abstract

We consider the problem of detecting changes in a multivariate data stream. A
change detector is defined by a detection algorithm and an alarm threshold. A
detection algorithm maps the stream of input vectors into a univariate detection
stream. The detector signals a change when the detection stream exceeds the cho-
sen alarm threshold. We consider two aspects of the problem: (1) setting the alarm
threshold and (2) measuring/comparing the performance of detection algorithms.
We assume we are given a segment of the stream where changes of interest are
marked. We present evidence that, without such marked training data, it might not
be possible to accurately estimate the false alarm rate for a given alarm threshold.
Commonly used approaches assume the data stream consists of independent obser-
vations, an implausible assumption given the time series nature of the data. Lack
of independence can lead to estimates that are badly biased. Marked training data
can also be used for realistic comparison of detection algorithms. We define a ver-
sion of the receiver operating characteristic curve adapted to the change detection
problem and propose a block bootstrap for comparing such curves. We illustrate
the proposed methodology using multivariate data derived from an image stream.
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1 Introduction

We consider the problem of detecting changes in a multivariate data stream.
We want to assess whether the most recently observed data vectors (the “cur-
rent set”) differ in some significant manner from previously observed vectors
(the “reference set”). Change detection is of interest in a number of applica-
tions, including neuroscience [3], surveillance [7] and seismology [16] (see also
[14,15] and references therein for other applications).

The notion of change is often formalized in terms of distributions: vectors in
the current set are assumed to be sampled from some multivariate distribution
Q, whereas those in the reference set are assumed to come from a (possibly
different) distribution P . The task of a change detector then is to test the
hypothesis P = Q given the two samples. We obtain a new value of the test
statistic every time a new observation arrives. We flag a change as soon as the
test statistic exceeds a chosen alarm threshold [8,10,12].

In a concrete application of this recipe we face a number of choices. We have
to pick a two-sample test that is sensitive toward changes of interest; we have
to choose the sizes of the current and reference sets; and we have to choose an
alarm threshold that results in the desired tradeoff between false alarms and
missed changes.

More complicated schemes are possible. We can use multiple two-sample tests
and multiple sizes of current and reference sets in parallel and summarize
the resulting values of the test statistics. We can even adopt a more complex
notion of “change”. No matter what the details, ultimately we will end up
with a univariate stream that we call the “detection stream”. We flag a change
whenever the detection stream exceeds a chosen alarm threshold. Abstracting
away details, a change detector can be defined as a combination of a detection
algorithm mapping the multivariate input stream xt into a univariate detection
stream dt, and an alarm threshold τ . The only fundamental restriction is that
dt can only depend on input observed up to time t.

In this paper we focus on two problems: (i) choosing between different de-
tection algorithms; and (ii) selecting an alarm threshold to obtain a desired
false alarm rate. We assume that we have labeled training data, i.e., a segment
of the stream where changes of interest have been marked. To quantify the
performance of a detection algorithm, we propose an adaptation of the stan-
dard receiver operating characteristic (ROC) curve (Section 3). A resampling
method similar to the block bootstrap lets us compare the ROC curves of
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different detection algorithms on the labeled data in a statistically meaning-
ful way (Section 5). The labeled data also allow us to determine the alarm
threshold for a desired false alarm rate without the usual assumption that
vectors in the stream are observations of independent random variables. The
independence assumption seems implausible when we are observing a time
series. If the assumption is violated, estimates of the false alarm rate based
on this assumption can be wildly off the mark (Section 4). We illustrate our
main points using a multivariate data stream derived from a series of images
of Portage Bay in Seattle (Sections 2 and 6). Section 7 with a summary and
some ideas for future work concludes the paper.

2 Data

To illustrate the ideas in this paper, we created a multivariate data stream
from a sequence of images recorded with a web camera operated by the Sound
Recording for Education (SORFED) project at the Applied Physics Labora-
tory, University of Washington. The camera is mounted on a barge several
feet above the water of Portage Bay, Seattle, and monitors natural (e.g., rain
and wind) and man-made (e.g., boats) processes that can cause sound in the
water. It takes images at two second intervals (usually). We use 5002 images
recorded on June 27, 2007. To eliminate a bridge and a portion of the sky
with little activity, we crop the tops of the images, leaving us with a sequence
of 168× 280 pixel images focused on the water of Portage Bay. We divide the
pixels in each (cropped) image into a 14 × 20 grid of bins, with each of the
280 bins containing 12× 14 = 168 pixels. We summarize each of the 280 bins
of an image by its average grey level, resulting in a stream of 280-dimensional
data vectors.

Motivated by potential applications of change detection to surveillance, we
decided to regard the appearance of boats in the image stream as changes
of interest. We looked at each of the 5002 images and manually marked the
bins in each image containing a boat passing through Portage Bay. Figure 1
shows one such image, with four bins marked as containing a boat. Figure 2
shows the number of marked bins for each image plotted against image index.
We define a boat event as a sequence consisting of two or more consecutive
images with at least one marked bin. There are 19 boat events in all, with
the shortest consisting of 6 images, and the longest, of 151 images. The black
rectangles at the bottom of Figure 2 show where these events occur. There
are 20 quiescent periods surrounding the boat events. The shortest (longest)
consists of 2 (1030) images. The images during the quiescent periods are quite
variable, due to light variations on the water from cloud movement, ducks
moving around in the water close to the camera, wind-driven ripples in the
water, wakes from boats no longer in view of the camera, and other sources
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of noise.

We emphasize that we use the images primarily as a means for constructing a
multivariate data stream with characteristics that one would expect in actual
applications of change detection, but that are not typically present in sim-
ulated data (e.g., correlated and heterogeneous noise). We do not make use
of the fact that there is a neighborhood structure among the 280 variables;
in fact, all of the results we present would be exactly the same if we were
to randomly reorder the variables. In short, the methods we propose are not
specific to image streams.

3 Quantifying the Performance of a Change Detector

Defining a general measure quantifying the performance of a change detector
for streams is a nontrivial problem. Generally there are two kinds of errors,
missed changes and false alarms, but appropriate definitions for these errors
can depend on the application. Even in the simplest scenario – a stream xt

consisting of stretches during which the vectors are independent and identi-
cally distributed (IID) – there appears to be no obvious way to distinguish
between a late alarm, and a missed change followed by a false alarm. Another
problem is that the detection stream dt is typically correlated, even if obser-
vations in the input stream xt are independent. This autocorrelation causes
false alarms to occur in bursts, and we have to choose between counting indi-
vidual false alarms or counting bursts. Moreover, the piecewise IID scenario
might not be appropriate: in our boat detection problem, as presumably in
other surveillance applications, it makes more sense to think of the stream as a
concatenation of “quiescent periods” (without boats), interrupted by “events”
(where boats appear and move across the scene). During the events, the distri-
bution of the observation vectors is not constant because the boat (or boats)
move.

In a surveillance context raising an alarm soon after a change caused by the
transition from a quiescent period to an event is obviously crucial; if the delay
is too long, the horse will have left the barn, and the alarm is no longer useful.
Changes within events or transitions from events to quiescent periods are not
of interest. We consider an event to be successfully detected if the detection
stream exceeds the alarm threshold τ at least once within a tolerance window
of width NW after the onset of the event. We define the hit rate h(τ) as
the proportion of events that are successfully detected. We define the false
alarm rate f(τ) purely in terms of the quiescent periods: it is simply the
proportion of times in those periods during which the detection stream exceeds
the alarm threshold. There is no penalty for raising multiple alarms during an
event. Our definitions for hit rate and false alarm rate are admittedly simple,
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and alternative definitions might be better adapted to scenarios not involving
surveillance. The method for comparing the performance of change detectors
proposed in Section 5 is not critically dependent on the particular definitions.

We can summarize the performance of a change detection algorithm by plot-
ting the hit rate h(τ) versus the false alarm rate f(τ) as we increase the alarm
threshold τ . Both h(τ) and f(τ) are monotonically non-increasing functions of
τ . The graph of the curve τ −→ (f(τ), h(τ)) is a monotonically non-decreasing
function of f(τ). We call this curve the ROC curve of the detection algorithm,
because of the obvious parallels to the standard ROC curve used to summarize
the performance of binary classifiers [6].

It is sometimes useful to compare the performance of a detection algorithm
with a reference algorithm that completely ignores the data and simply signals
an alarm with probability α whenever a new input observation arrives. The
ROC curve of this “null” detector is α −→ (α, 1− (1−α)NW ) as α varies from
0 to 1; it depends on the width NW of the tolerance window.

4 Setting the Alarm Threshold

A critical parameter of a change detector is the alarm threshold τ , whose vari-
ation controls the tradeoff between false alarms and missed changes. Without
training data for which changes of interest have been marked, there is no way
of realistically assessing the hit rate h(τ) for a given alarm threshold τ . The
commonly proposed approach to setting τ is therefore to choose a false alarm
rate α considered acceptable and then determine the corresponding τ . If we
are willing to accept the “piecewise IID” model, then the appropriate value
of τ can sometimes be determined analytically. If an explicit calculation is
infeasible, we can resort to a computational approach based on a permutation
argument [1,5]. Assuming there is no change at or before the current time T ,
then x1, . . . ,xT would be IID (under the piecewise IID model). To test the IID
hypothesis, we compare the current value dorig

T of the detection stream to values
d1

T , . . . , dM
T obtained by applying the detection algorithm to M random per-

mutations of x1, . . . ,xT . If dorig
T is the k-th largest among {dorig

T , d1
T , . . . , dM

T },
then we can reject the IID hypothesis at level k/(M + 1). If the level is less
than the desired false alarm rate, we signal a change and “reset the clock” by
discarding x1, . . . ,xT . (Note that in this case the detection threshold will vary
with time.)

The problem with both the analytical and the permutation-based approaches
is that their validity depends critically on the piecewise IID assumption. This
assumption seems inherently implausible, given that we are observing a time
series. If it is violated, the results can be wildly off the mark. We now illus-
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trate the problem for a simple detection algorithm based on a two-sample
test. Detection algorithms based on two-sample tests have been discussed pre-
viously in the literature (see, e.g., [8] and references therein). The idea is to
use a two-sample test for comparing the distribution P of the most recently
observed data with the distribution Q of a reference set observed earlier. The
value dT of the detection stream is the test statistic of the two-sample test,
and the (nominal) false alarm rate for detection threshold τ is the probability
that dT ≥ τ under the null hypothesis P = Q. The qualifier “nominal” is a
reminder that the significance level is derived under the IID assumption.

For our illustration we assume that the data stream is one dimensional. We
define the current set as the NC most recent observations, and the reference
set as the NR observations immediately preceding the current set. We use the
square of a two-sample t-test to form the detection stream at the current time
T :

dT =
(x̄C − x̄R)2(
1

NC
+ 1

NR

)
σ̂2

,

where x̄C and x̄R are the sample means of the current and reference sets, and

σ̂2 =
1

NC + NR − 2

NC−1∑
n=0

(xT−n − x̄C)2 +
NR−1∑
n=0

(xT−NC−n − x̄R)2



is the pooled variance estimate. Although the t-test is designed to test the
null hypothesis that the observations in the current and reference sets have
the same mean, we can still use it as a test of the IID hypothesis, recognizing
that it might have little or no power for detecting changes other than mean
shifts.

If we are willing to assume that the observations in the current and reference
sets are realizations of IID Gaussian random variables, then the threshold τ
for false alarm rate α is the square of the α/2 quantile of the t distribution
with NC + NR − 2 degrees of freedom. If we do not want to make the Gaus-
sianity assumption, we can use the permutation approach described above.
The problem in either case is that the actual false alarm rate can be vastly
different from the desired (nominal) rate if the independence assumption is
violated.

As an example, choose NC = 4, NR = 16, and let X1, . . . , X20 be a segment of
a Gaussian first-order univariate autoregressive (AR) process Xt = φXt−1 +εt,
where |φ| < 1 can be interpreted as the correlation between Xt−1 and Xt, and
the random variables εt are IID Gaussian with zero mean and unit variance.
If φ = 0, then X1, . . . , X20 are IID. If φ 6= 0, then the Xt variables are still
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φ −0.9 −0.5 0 0.5 0.9

α 0.008 0.018 0.098 0.282 0.537

Table 1
False alarm rate α for the squared two-sample t-test using a threshold level of τ = 3
and data generated from a Gaussian first-order autoregressive process with a unit-
lag autocorrelation of φ.

Gaussian and identically distributed, but no longer independent. The alarm
threshold for false alarm rate α = 0.1 under the assumption of independence
(φ = 0) is τ

.
= 3 (the square of the 5th percentile for a t distribution with 18

degrees of freedom). For five selected values of φ, we simulate 10, 000 indepen-
dent realizations of X1, . . . , X20 and compute d20 for each realization. We then
estimate the actual false alarm rate α as the fraction of times when d20 > 3
in the 10, 000 realizations. The results are shown in Table 1. Note that, as
expected, the false alarm rate is close to 0.1 when φ = 0, but is dramatically
off the mark otherwise.

To illustrate the failure of the permutation approach, we generate an addi-
tional 1000 independent realizations of X1, . . . , X20 for our selected values
of φ. For each of these realizations, we generate 1000 random permutations,
compute d20 and keep track of the proportion of times that d20 > 3 — this
proportion is what a permutation test would declare the false alarm rate to
be for τ = 3. When averaged over all 1000 realizations of the AR process,
this proportion is very close to 0.1 for all five values of φ: the permutation
approach gives the correct false alarm rate when φ = 0 (the IID case) but it
underestimates (overestimates) the correct rate α when φ > 0 (φ < 0), with
the discrepancy becoming more serious as φ approaches 1 (−1). We conclude
that the permutation-based approach for setting the alarm threshold is not
viable in the presence of correlated data (presumably this is almost always the
case when dealing with time series).

5 Comparing Change Point Detectors

In this section we propose a method for evaluating the relative performance
of change detectors that takes into account sampling variability.

Suppose we have two change detectors with ROC curves τ −→ (f1(τ), h1(τ))
and τ −→ (f2(τ), h2(τ)). There are two obvious ways to use these curves
for assessing the relative performance of the detectors. For a given hit rate
h1(τ1) = h2(τ2) ≡ h, we can compare the false alarm rates f1(τ1) and f2(τ2)
and declare the first detector to be better if f1(τ1) < f2(τ2); alternatively, for
a given false alarm rate, we can compare hit rates. More elaborate comparison
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schemes are possible [13]. In our boat example, we define the hit rate h(τ) in
terms of the onset of a small number of events, so it is easier to compare the
false alarm rates for a given hit rate. This approach yields false alarm rates for
the two detectors that are functions of h. We denote these functions as f1(h)
and f2(h) and compare them by either their difference ∆1,2(h) = f1(h)−f2(h)
or the ratio

r1,2(h) =
max(f1(h), ε)

max(f2(h), ε)
, (1)

where ε (a small number) allows for the false alarm rate to be zero (note that
∆2,1(h) = −∆1,2(h) and r1,2(h) = 1/r2,1(h)).

We use a modified version of the block bootstrap to assess if ∆1,2(h) is sig-
nificantly different from zero or if r1,2(h) is significantly different from one.
Block bootstrapping is an adaptation of the standard bootstrap that is ap-
propriate for time series [4,9,17]. In the standard bootstrap, the basic unit for
resampling is an individual observation; in a block bootstrap, the basic unit
is a block of consecutive observations, with each block having the same size.
The block size is selected such that, within a block, the dependence structure
of the original time series is preserved, while values at the beginning and end
of each block are approximately independent of each other. Our input stream
is naturally broken up into blocks of unequal size, namely, boat events and
quiescent periods. We use these blocks to define the basic unit in two modified
block bootstraps. The first modification is an “uncoupled” scheme. Given ne

boat events and nq = ne+1 quiescent periods, we resample (with replacement)
ne boat events and nq quiescent periods to form a bootstrap sample with the
same overall structure as the original input stream (i.e., nq quiescent periods
separated by ne events). The second modification is a “coupled” scheme, in
which the basic unit is taken to be an event and its preceding quiescent period.
The motivation for the second scheme is to preserve any dependence between
the quiescent period preceding an event and the event itself.

The method for comparing detectors is the same for the coupled and the
uncoupled schemes. For a given bootstrap sample, we evaluate f1(τ), h1(τ),
f2(τ) and h2(τ) over a grid of thresholds τ , from which we calculate the curves
∆1,2(h) and r1,2(h). We repeat this procedure nb times, yielding nb bootstrap
replicates of ∆1,2(h) and r1,2(h). We then construct (1 − α) two-sided non-
simultaneous confidence intervals for the difference ∆1,2(h) and for the ratio
r1,2(h) based upon the empirical distribution of the bootstrap replicates. (The
“matched pair” design by which we evaluate the difference between detectors
for each bootstrap sample and then compute confidence intervals for the dif-
ference will lead to sharper comparisons than an unmatched design in which
bootstrap samples are generated separately for each detector.) As we vary h,
the end points of these confidence intervals trace out confidence bands. If the
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confidence interval for ∆1,2(h) at a given hit rate h does not include zero, we
have evidence at the (1 − α) confidence level that one change detector out-
performs the other in that it has a smaller false alarm rate for hit rate h. The
analogous inference can be made if the confidence interval for r1,2(h) does not
include one.

6 An Illustrative Example

In this section we illustrate the methodology presented in the previous sec-
tions by considering two different change detectors that are designed to detect
the boat events described in Section 2. We define the two-sample tests behind
the change detectors in Section 6.1, after which we demonstrate the pitfalls of
using a permutation approach to determine the false alarm rate (Section 6.2).
We then illustrate how we can compare the performance of the two change de-
tectors in a manner that takes into account sampling variability (Section 6.3).

6.1 Definition of Detection Streams Based on Two-Sample Test Statistics

The two detectors we use to illustrate our methodology are quite different in
their intent, but both are based on two-sample tests. The first detector is de-
signed to be sensitive to mean changes, while the second uses a nonparametric
test with power against all alternatives. To simplify notation, we define the
tests for samples c1, . . . , cn (the current set) and r1, . . . , rm (the reference set),
with the understanding that we would obtain the values of the corresponding
detection streams at the current time T by comparing the n = NC most recent
observations with the m = NR observations immediately preceding them.

The first detection stream, denoted as d
(max)
T , is based on the largest squared

element of the vector c̄ − r̄, where c̄ is the average of c1, . . . , cn, and r̄ is
similarly defined. The detection stream will be large if there has been a recent
large change in one or more of the 280 variable in the input stream, i.e., a large
change in mean grey level for one or more of the bins in the image. Boats are
small and their appearance changes the mean grey level for a small number
of bins; therefore we want a test that is sensitive to large changes in a few
bins, rather than to small changes in a large number of bins. The top pane of
Figure 3 shows the detection stream d

(max)
T plotted against time for the case

NC = 4 and NR = 16.

The second change detector we consider is based on a so-called “energy” test
statistic that has been advocated as a nonparametric test for equality of two
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multivariate distributions [2,18,20–22]. This statistic is given by

d
(e)
T =

2

nm

n∑
i=1

m∑
j=1

‖ci − rj‖ −
1

n2

n∑
i=1

n∑
j=1

‖ci − cj‖ −
1

m2

m∑
i=1

m∑
j=1

‖ri − rj‖ ,

where ‖·‖ denotes the Euclidean norm. This test is consistent against all al-
ternatives to H0 and hence is not focused on any particular aspect of the
difference in distribution between the current and reference sets [22]. Because
it is an omnibus test, it cannot be expected have as much power for detecting
a change in means as a test specifically designed for that type of change. The
bottom pane of Figure 3 shows the detection stream d

(e)
T plotted against time.

6.2 Pitfalls of Setting the Alarm Threshold via Permutation Tests

To complement the simulated example of Section 4, we now present an empir-
ical demonstration of our assertion that we cannot expect to get reasonable
estimates of the false alarm rate using a permutation argument.

We apply the change detector based on the energy test statistic with NC = 4
and NR = 16 to the longest quiescent period in our boat data (1030 images).
For each of the 1011 segments of length 20 we calculate the permutation-
based p-value of the energy test statistic: we compare the original value of the
test statistic for the segment with a reference set of 500 “permuted” values
obtained by applying the test to a randomly shuffled version of the segment.
If the original value is the k-th largest amongst these 501 values, then the
p-value (the level of significance of the test) is α̂ = k/501 [1].

Since we are dealing with a quiescent period, the distribution of α̂ across all
1011 values in the detection stream should be uniform over the interval [0, 1]
(see Lemma 3.3.1 of [11]). The left-hand pane of Figure 4 shows a histogram
of the p-values, which clearly is not consistent with a uniform distribution.
To demonstrate that it is indeed the correlated nature of the input stream
that is causing the problem, we reran the entire procedure using the same
1030 images, but shuffling the order of the images at random. This shuffling
removes the correlation between images that are close to one another. We
now obtain the histogram in the right-hand pane, which is clearly much more
consistent with a uniform distribution. This demonstrates that we can use
a permutation argument to determine the false alarm rate if indeed the IID
assumption is valid.
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6.3 Comparison of Change Point Detectors

Here we compare the two change detectors whose detection streams are based
on the two-sample test statistics defined in Section 6.1 (again using NC = 4
and NR = 16). As discussed in Section 3, we declare that a change detector
has successfully identified a boat event if the detection stream exceeds the
alarm threshold at least once during a tolerance window of width NW . For
this example, we let NW be the same as the current set NC = 4, but other
choices could be entertained (i.e., there is no compelling reason to couple NW

with NC).

Figure 5 shows the ROC curves for the change detectors based on d
(max)
T and

d
(e)
T along with a plot of 1− (1− α)NW versus α. (As noted in Section 3, this

is the ROC curve for a statistic that rejects H0 based upon a “coin flip” with
false alarm rate α). Except at the very highest hit and false alarm rates (upper

right-hand corner), the d
(max)
T detector (sensitive to mean changes) generally

outperforms the d
(e)
T detector (sensitive to arbitrary changes) in the sense of

having a smaller false alarm rate for a given hit rate. To assess whether this
difference between the detectors is statistically significant, we use the boot-
strap procedures discussed in Section 5 to determine a 90% (non-simultaneous)
confidence band for the difference ∆max,e(h) and the ratio rmax,e(h) defined in
Equation (1) with ε = 0.001. The uncoupled and coupled bootstrap procedures
yield basically the same results, so we only present results from the uncou-
pled scheme. Figure 6 shows the confidence bands based upon 100 uncoupled
bootstrap samples. Except for a limited range of hit rates around 0.2 to 0.3,
the intervals for ∆max,e(h) include 0, and the intervals for rmax,e(h) include 1,
indicating that for most hit rates the difference between the two detectors is
not significant. A possible explanation for this inconclusive result is the small
number of events in our training data.

7 Summary and Discussion

We have proposed a method for comparing two change detectors. The method
is based on labeled data, i.e., a segment of the input stream in which we have
identified events and quiescent periods. The key element is an adaptation of
the block bootstrap. The adaptation constructs bootstrap streams by piecing
together events and quiescent periods randomly chosen (with replacement)
from those making up the original stream. The bootstrap allows us to assess
the effect of sampling variability on pairwise comparisons of ROC curves, and
thereby determine whether a particular change detector is significantly better
than another. Our example compared two change detectors whose detection
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streams are constructed using two-sample tests, but our method is not depen-
dent upon this particular construction and can be applied to other kinds of
change detectors (e.g., the output of cumulative sum statistics [19], which are
not based on the two-sample notion).

In addition, we have demonstrated the pitfalls of using a permutation approach
to assess the false alarm rate in a streaming environment. A permutation
approach is appropriate for data that is reasonably modeled as IID, which
is not likely to be the case for streams. Our experiments show that it is not
possible to assess the false alarm rate to any reasonable degree of accuracy
using a permutation approach unless the IID assumption holds.

Our proposed method can be extended to compare the performance of K > 2
change detectors. Change detectors can arise in many different ways. For ex-
ample, we could use several different choices for the sizes of the current and
references windows, as proposed by Kifer et al. [8]. We might also be inter-
ested in time-varying geometries. One obvious choice is to allow the reference
window to grow monotonically in time, while the size of the current window is
kept constant. This geometry has the potential benefit of a large sample size
in the reference window and leads to a comparison of the data in the current
window with previous long-term averages.

A problem with comparing multiple detectors is that none of them might
emerge as uniformly best for all hit rates. Even for the two detectors in our
boat example, Figure 5 shows that, if we ignore the question of statistical sig-
nificance, the d

(max)
T detector generally outperforms the d

(e)
T detector, but not

at the highest hit/false alarm rates. We could focus on a single hit rate and
then order the K detectors by their false alarm rates. The natural generaliza-
tion of the matched pairs design for comparing the false alarm rates of two
detectors is a blocked design where each bootstrap sample is a block, and the
detectors are the treatments. Detectors can then be compared using standard
multiple comparison procedures.

If we have labeled data, we can do more than just evaluate the performance
of predefined change detectors – we can use the data to design new detec-
tors. One possibility is to look for linear or nonlinear combinations of existing
change detectors that outperform any single detector. For example, suppose
that a change of interest is associated with a change in both the mean and the
variance of a distribution, and suppose that we have two change detectors, one
of which has power against changes in means, and the other, against changes
in variance. Then some combination of these two detectors is likely to be supe-
rior to either individual detector in picking up on the change of interest, and
the particular combination that is best can be determined using the labeled
data. Using labeled data to construct new “targeted” change detectors is an
interesting area for future research.
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We have assumed all along that labeled data have been collected before the
change detector is put into operation and therefore can be used in the design of
the detector. In the context of on-going surveillance, an human operator who
is responding to alarms raised by a change detector could in principle provide
feedback indicating whether an alarm is false or does indeed identify an event
of interest. This would provide additional labeled data; however, these would
be qualitatively different from the training sample in that they would provide
information on false alarms but not on missed hits. Determining how best to
make use of feedback for assessing and improving the performance of change
detectors is another problem worthy of additional research.
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Figure Captions

Figure 1. Portion of a picture taken by a web camera overlooking Portage
Bay, Seattle. The picture has been divided into a 14× 20 grid of rectangular
bins, four of which are highlighted and contain a boat passing through the
bay.

Figure 2. Number of bins (variables) marked as containing a boat versus
image index (top part of plot), along with markers for the nineteen boat
events (bottom).

Figure 3. Two detection streams plotted versus image index T , with boat
events marked as in Fig. 2. The top plot shows d

(max)
T , which is based upon

the maximum squared difference in means; the bottom is for d
(e)
T , which is

based upon the energy test statistic. The settings NC = 4 and NR = 16 are
used for both detectors at each current time T .

Figure 4. Histograms of levels of significance (p-values) as empirically de-
termined by a permutation test based upon data from a quiescent period
(left-hand plot) and upon data from the same period but randomly shuffled
(right-hand).

Figure 5. ROC curves for the detection streams d
(max)
T and d

(e)
T .

Figure 6. Comparing ROC curves using ∆max,e(h) (solid curve, top plot) and
rmax,e(h) (bottom). The dashed curves in each plot indicate non-simultaneous
90% empirical confidence intervals based upon 100 bootstrap samples.
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Fig. 1. Portion of a picture taken by a web camera overlooking Portage Bay, Seattle.
The picture has been divided into a 14× 20 grid of rectangular bins, four of which
are highlighted and contain a boat passing through the bay.
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Fig. 2. Number of bins (variables) marked as containing a boat versus image index
(top part of plot), along with markers for the nineteen boat events (bottom).
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Fig. 3. Two detection streams plotted versus image index T , with boat events
marked as in Fig. 2. The top plot shows d

(max)
T , which is based upon the maxi-

mum squared difference in means; the bottom is for d
(e)
T , which is based upon the

energy test statistic. The settings NC = 4 and NR = 16 are used for both detectors
at each current time T .
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Fig. 4. Histograms of levels of significance (p-values) as empirically determined by
a permutation test based upon data from a quiescent period (left-hand plot) and
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