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Abstract

A new Ricean parameter estimator is considered in the context of wireless communications. In comparison to existing methods,

the proposed estimator is especially useful in low signal-to-noise environments. It is less reliant on knowledge of the transmitted

signal frequency than existing methods, and it performs well in communications environments where the frequency is varying in

time.
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Ricean Parameter Estimation Using Phase

Information in Low SNR Environments

I. INTRODUCTION AND PROBLEM FORMULATION

THE Ricean distribution occurs frequently in the applied sciences. It has been studied in many papers [1]–[4], often in

the context of wireless communications, as we do here. If we model a communication system as a transmitter sending

a single tone to a receiver, which is also exposed to additive uncorrelated Gaussian noise, the complex version of the received

signal can then be represented as:

X [n] = sej(ω0n+φ0) + Z[n] (1)

Z[n] ∼ Complex Gaussian
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where s2 is related to the transmitter power, ω0 is the transmitted signal frequency, φ0 is some fixed phase offset, σ2 is the power

of the ambient noise, and n is the time index. We can define two additional parameters: K = s2/(2σ2) and Ω = s2+2σ2. Here

K is one definition of the signal-to-noise ratio (SNR), and Ω is related to the total system power. The envelope, R[n] ≡ |X [n]|,

is then Ricean distributed [5], and its probability density function can be parameterized by any two of the four parameters s2,

σ2, K, and Ω.

II. EXISTING METHODS

The K parameter, useful in assessing how well a channel is performing as well as in diversity combining techniques for

detection schemes, is generally the parameter targeted by most Ricean estimation procedures. The method of moments estimator

(MOME) based upon the 2nd and 4th moments of the Ricean data is a reasonable estimator in that its performance approaches

the Cramér–Rao lower bound (CRB) [6].

Estimators of K based solely on the envelope of X such as MOME have fundamentally poor variance performance at low

values of K [4]. This problem can be overcome by also using the phase information in X when estimating K. The CRB for

estimating K from X strictly dominates the CRB of purely Ricean data, especially at low values of SNR [1], [4]. A technique

that uses phase information was also put forward by [4] and estimates K using estimates of Ω and s2. The estimate of Ω is

its maximum likelihood estimator (MLE):

Ω̂MLE =
1

N

N
∑

k=1

|X [k]|
2 (3)

The estimate of s2 requires an estimate of ω0, which is based on finding the Fourier frequency with the maximum contribution

to power. Defining the empirical spectral density function (SDF) of X as

XSDF [ω] =
1

N
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TABLE I
COMPARISON OF ω̂0 ESTIMATORS (ω0 = 0.7447, N IS SAMPLE SIZE, 100 SIMULATIONS FOR EACH N , s = 4, σ2 = 1).

Method N = 10 N = 100 N = 1, 000
Fourier Grid 0.6283 0.7540 0.7477
Zero Padding 0.6503 0.7540 0.7446
Newton–Raphson 0.7257 0.7446 0.7447

we can estimate ω0 as

ω̂0 = arg max
ωk

XSDF [ωk], ωk =
2πk

N
. (5)

Then an estimate of s2 is formed as

ŝ2 =
1

N
XSDF [ω̂0]. (6)

The estimate of K is then formed:

K̂IQ =
ŝ2

Ω̂MLE − ŝ2
(7)

We have found that the performance of K̂IQ is heavily dependent on the estimation of ω0. The technique of estimating

ω0 can be improved by zero padding the data, creating a finer grid in the Fourier domain. Padding with N zeros creates a

grid twice as fine as the one associated with the Fourier frequencies, but the estimate can be further refined by using the

Newton-Raphson algorithm [7]. Table I summarizes a comparison of the three ω0 estimation techniques.

III. NEW TECHNIQUE

We propose another method of estimating K that uses the phase information from X but is more robust against estimation

of ω0. The key idea is to estimate σ2 directly rather than indirectly via Ω− s2. Recognizing that the SDF is a partitioning of

the process variance over frequency [7], its values should be equal to 2σ2 in frequency bins that do not contain signal power

(this ignores possible complications due to spectral leakage, but leakage is not a real concern in the low SNR scenarios we

are considering). We estimate σ2 as:

σ̂2 =
1

2Nω

∑

ω∈A

XSDF (ω) (8)

where A defines the range of frequencies we are using for estimation, and Nω is the number of frequencies used. We choose

A to exclude ω0 by selecting a certain percentage of the spectrum centered at a frequency π radians away from ω̂0, which

is determined by Equation 5. In the computer experiments reported below, a percentage of 80% provides enough sample

bandwidth to estimate σ2 very well at low values of K (low SNR) and still perform comparably with other estimators at high

values of K (high SNR). We also consider 70% and 90% to illustrate that, at low SNR, performance improves as the percentage

increases, whereas the opposite is true at high SNR because A then includes frequencies damaged by spectral leakage from

the tone frequency. Once σ2 has been estimated, K is then estimated as:

K̂SDF =
Ω̂MLE

2σ̂2
− 1 (9)
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Figure 1 shows how the performance of K̂IQ degrades drastically as ω̂0 moves away from the true value of ω0, which

happens in challenging environments when few data points are available. Our estimation technique, however, does not depend
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Fig. 1. K̂ as ω̂0 varies (ω0 = 0.7447) via Monte Carlo simulation (80% of spectrum being used, Ω = 6, K = 2, N=1,000, and 100 simulations).

as strongly on ω̂0, correctly estimating K over the full range of ω0 searched.

Figure 2 compares the performance of K̂SDF with the other estimators mentioned by plotting their mean squared error

(MSE) vs. K. We see that the SDF technique dominates both IQ and MOME in the challenging environment of few available

sample points and low SNR when enough spectrum is used in estimating σ2 (80% or 90%). When the SNR is higher, the

SDF technique performs comparably to the other estimators presented when 80% of the spectrum is used. Note that the low

SNR performance of K̂SDF increases as the percentage of spectrum used increases from 70% to 90% but at the expense of

decreasing its high SNR performance. We also note that the three techniques are comparable in computational complexity.

When run in a MATLABTM Monte Carlo simulation of 10,000 trials containing 1,000 data points each, MOME completed in

58 seconds, IQ in 70 seconds, and SDF in 77 seconds.

IV. BROADBAND EXTENSION

We now consider an alternate model of the received signal. Suppose that instead of the single tone model of Equation 1,

the data is modeled as:

X [n] = sej(f [n]+φ0) + Z[n] (10)

which is to say that the signal can have some time-varying frequency content. As long as the signal is bandlimited and

the sampling rate is high enough, then some amount of the estimated SDF will represent frequencies with noise dominated

content (assuming that the spectrum has free bandwidth somewhere in the range of sampled frequencies) and can be used for

K̂SDF . In practice, the actual percentage of bandwidth chosen for use will depend on several factors including SNR, sampling

bandwidth, signal bandwidth, and any tapering that may be applied to improve spectral estimates. Table II shows the results

of the estimation techniques applied to these bandlimited signals. We see that the IQ estimation breaks down for this data

no matter which technique for estimating ω0 is used. MOME fails in this situation as well because we are dealing with low

SNRs. K̂SDF performs well at 80% of the spectrum used but appears to degrade with more spectrum used. This is likely to
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TABLE II
K̂ COMPARISON WHEN THE DATA IS BANDLIMITED AS IN EQUATION 10 (1,000 SIMULATIONS / TECHNIQUE, Ω = 2.1, K = 0.05, AND N = 1, 000).

Estimate Mean Std Dev
Ω̂MLE 2.1021 0.0669
K̂MOME 0.1426 0.1715
K̂IQ, FG 0.0077 0.0013
K̂IQ, ZP 0.0084 0.0014
K̂IQ, NR 0.0086 0.0017
K̂SDF , 80% 0.0564 0.0345
K̂SDF , 85% 0.0218 0.0308
K̂SDF , 90% 0.0176 0.0240

due to non-empty spectrum being used to create a larger estimate of σ̂2 and thus lower estimate of K̂SDF .
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Fig. 2. MSE of K estimators via Monte Carlo simulation (ω0 = 0.7447, ω̂0 = 0.7257, N = 10, and 3,000 simulations)

V. CONCLUSION

We have presented a new technique for estimating the Ricean K parameter, utilizing the phase information of the complex

Gaussian data from which it arises. The technique performs comparably to or better than (depending on how much of the

spectrum is used) IQ estimation but allows for much imprecision in estimating ω0. It is also easily applied to signals with

time-varying frequency content of either a deterministic or stochastic nature. More detailed information can be found in [8]

including analysis of estimator performance over varying sample sizes and varying percentages of spectrum used in the SDF

technique.
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