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Abstract

We consider the problem of testing for homogeneity of variance in a time series with
long memory structure. We demonstrate that a test whose null hypothesis is designed
to be white noise can in fact be applied, on a scale by scale basis, to the discrete
wavelet transform of long memory processes. In particular, we show that evaluating
a normalized cumulative sum of squares test statistic using critical levels for the null
hypothesis of white noise yields approximately the same null hypothesis rejection rates
when applied to the discrete wavelet transform of samples from a fractionally differ-
enced process. The point at which the test statistic, using a non-decimated version of
the discrete wavelet transform, achieves its maximum value can be used to estimate
the time of the unknown variance change. We apply our proposed test statistic on a
time series of Nile River yearly minimum water levels covering 622 to 1284 AD. The
test confirms an inhomogeneity of variance at short scales and identifies the change
point around 720 AD, which coincides closely with the construction of a new device

around 715 AD for measuring these water levels.

Some key words: Cumulative sum of squares; Discrete wavelet transform; Fractional

difference process; Variance change.



1 Introduction

Suppose we have a time series that we are considering to model as a realization of one portion
Yo, ..., Yn_1 of a stationary Gaussian fractionally differenced (FD) process Y;. This process

can be represented as

& T(k+d)
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where —% < d < 3, and ¢ is a Gaussian white noise process with mean zero and variance

oZ. The spectral density function or this process is given = oZ|2sin(nf)|”
2. The spectral density function (SDF) for this p is gi by S(f) 2|2 sin(m f)| 7
for |f| < %, while its autocovariance sequence sy, can be obtained using
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(for 7 < 0, we have sy, = sy_,). When 0 < d < %, the SDF has a pole at zero, in which
case the process exhibits slowly decaying autocovariances and constitutes a simple example
of a long memory process; see Granger and Joyeux (1980), Hosking (1981), and Beran (1994,
Sec. 2.5). In this case, d is called the long memory parameter.

An important assumption behind any stationary process is that its variance is a constant
independent of the time index ¢. In the context of short memory models, such as stationary
autoregressive and moving average (ARMA) processes, a number of tests has been proposed
for homogeneity of variance. For a time series consisting of either independent Gaussian
random variables with zero mean and possibly time-dependent variances o? or a moving
average of such variables, Nuri and Herbst (1969) proposed to test the hypothesis that o?
is constant for all ¢ by using the periodogram of the squared random variables. Wichern,
Miller, and Hsu (1976) proposed a moving block procedure for detecting a single change of
variance at an unknown time point in an autoregressive model of order one. Hsu (1977, 1979)
looked at detecting a single change in variance at an unknown point in time in a series of
independent observations. Davis (1979) studied tests for a single change in the innovations

variance at a specified point in time in an autoregressive process. Abraham and Wei (1984)

used a Bayesian framework to study changes in the innovation variance of an ARMA process.



Tsay (1988) looked at detecting several types of disturbances in time series — among them
variance changes — by analyzing the residuals from fitting an ARMA model. Srivastava
(1993) found a cumulative sum of squares procedure to perform better than an exponentially
weighted moving average procedure for detecting an increase in variance in white noise
sequences. Incldn and Tiao (1994) investigated the detection of multiple changes of variance
in sequences of independent Gaussian random variables by recursively applying a cumulative
sum of squares test to pieces of the original series. As discussed in Section 3.1, the test we
propose can be regarded as an adaptation of the work of Hsu (1977, 1979) and Inclén and
Tiao (1994) to handle long memory processes, but, except for the tests with a null hypothesis
of white noise with constant variance, it is not an easy matter to adapt the other tests.

In this paper we demonstrate how the discrete wavelet transform (DWT) can be used
to construct a test for homogeneity of variance in a time series exhibiting long memory
characteristics. The DW'T is a relatively new tool for time series analysis, but has already
proven useful for investigating other types of nonstationary events. For example, Wang
(1995) tested wavelet coefficients at fine scales to detect jumps and sharp cusps of signals
embedded in Gaussian white noise, and Ogden and Parzen (1996) used wavelet coefficients
to develop data-dependent thresholds for removing noise from a signal. The key property of
the DWT that makes it useful for studying possible nonstationarities is that it transforms
a time series into coefficients that reflect changes at various scales and at particular times.
For FD and related long memory processes, the wavelet coefficients for a given scale are
approximately uncorrelated; see, e.g., Tewfik and Kim (1992), McCoy and Walden (1996),
Wornell (1996) and our discussion in Section 3.2. We show here that this approximation is
good enough that a test designed for a null hypothesis of white noise can be used for testing
homogeneity of variance in a long memory process on a scale by scale basis. An additional
advantage of testing the output from the DWT is that the scale at which the inhomogeneity
occurs can be identified. Using a variation of the DW'T, we also investigate an auxiliary test

statistic that can estimate the time at which the variance of a time series changes.



An outline of the remainder of this paper is as follows. Section 2 provides a brief descrip-
tion of the DWT and points out some key properties we use later on. Section 3 defines the
test statistic for detecting sudden changes of variance in a sequence of independent Gaussian
random variables, summarizes some simulation results for the DWT of FD processes, and
applies our proposed test to a time series of Nile River minimum water levels. Section 4
introduces a procedure for determining the location of a variance change, presents simula-
tion results for FD processes with a known variance change, and demonstrates the procedure

using the Nile River data. Section 5 gives some concluding remarks.

2 Discrete wavelet transforms

Let hy = (hig,...,h1r-1,0...,0)7 denote the wavelet filter coefficients of a Daubechies
compactly supported wavelet for unit scale (Daubechies 1992, Ch. 6), zero padded to length
N by defining hy; =0 for [ > L. Let

N-1
Hip=Y hye N k=0,...,N—1,
=0

be the discrete Fourier transform (DFT) of hy. Let g1 = (91.0,---,91.0-1,0,...,0)T be the
zero padded scaling filter coefficients, defined via g;; = (=1)*hy ;4 for i =0,...,L —1,
and let Gy denote its DFT. Now define the length N wavelet filter h; for scale 7; = 2771 as

the inverse DFT of
j—2
Hj,k::H1,2j*1km0dNHG1,21kmodN7 k2077N_1
1=0
When N > L; = (2/ —1)(L — 1) + 1, the last N — L; elements of h; are zero, so the wavelet
filter h; has at most L; non-zero elements.

Let Yo, ..., Yn_1 be a time series of length N. For scales such that N > L;, we can filter

the time series using h; to obtain the wavelet coefficients

Wj’t = 2j/217[//j72j(t+1)_1, [(L — 2) (1 — 2%)—‘ <t< [% — 1J ’



where
1 Lt

Wit = 37 %hjm,l, t=L;—1,...,N—1.

The W, coefficients are associated with changes on a scale of length 7; and are obtained by
subsampling every 27th value of the Wj,t coefficients, which forms a portion of one version
of a ‘non-decimated” DWT called the ‘maximal overlap” DWT (see Percival and Guttorp
(1994) and Percival and Mofjeld (1997) for details on this transform; other versions of the
non-decimated DWT are discussed in Shensa (1992), Beylkin (1992), Coifman and Donoho
(1995), Nason and Silverman (1995) and Bruce and Gao (1996)). In practice the DWT is
implemented via a pyramid algorithm (Mallat 1989) that, starting with the data Y}, filters
a series using h; and g¢;, subsamples both filter outputs to half their original lengths, keeps
the subsampled output from the h; filter as wavelet coefficients, and then repeats the above
filtering operations on the subsampled output from the g; filter. A simple modification,
namely, not subsampling the output at each scale and inserting zeros between coefficients in

hi and gy, yields the algorithm for computing Wj,t described in Percival and Mofjeld (1997).

3 Testing for homogeneity of variance

If Yy, ..., Yy_1 constitutes a portion of an FD process with long memory parameter 0 < d <
%, and with possibly nonzero mean, then each sequence of wavelet coefficients W;; for Y; is
approximately a sample from a zero mean white noise process. This enables us to formulate

our test for homogeneity of variance using wavelet coefficients for FD processes, as follows.

3.1 The test statistic

Let Xy, ..., Xy_1 be atime series that can be regarded as a sequence of independent Gaussian
(normal) random variables with zero means and variances o3, ...,0%_;. We would like to
test the hypothesis Hy : 02 = -+ = 0%_;. A test statistic that can discriminate between

this null hypothesis and a variety of alternative hypotheses (such as Hy : 02 = -+ = 0} #



Oi4q =+ = Oa_1, where k is an unknown change point) is the normalized cumulative sums
of squares test statistic D, which has previously been investigated by, among others, Brown,

Durbin, and Evans (1975), Hsu (1977) and Inclan and Tiao (1994). To define D, let

kX2
I0°J. D= max (ﬂ—ﬂg> and D™ = max <73 —L> (2)

Y X T o<k<N—2\ N —1 0<k<N-—2 N -1

Py

The desired statistic is given by D = max(D*, D). For N > 2 there is no known tractable
closed form expression for the critical levels for D under the null hypothesis. Brown, Durbin,
and Evans (1975) obtained critical levels by an interpolation scheme that makes use of the
fact that, if N is even and if we group the squared deviates by pairs, then D reduces to the
well-known cumulative periodogram test for white noise (Bartlett 1955), for which critical
levels are available (Stephens 1974). Hsu (1977) used two methods, Edgeworth expansions
and fitting the first three moments to a beta distribution, in order to obtain small sample
critical levels for a statistic equivalent to D. The results in Inclan and Tiao (1994) indicate

that, for large N and = > 0,
Pr {(N/Q)% D < :L‘} ~ Pr (sup )Bf’ < w) =14+ 22(_1)1672121‘2’
¢ =1

where B is a Brownian bridge process, and the right-hand expression is equation (11.39)
of Billingsley (1968). Critical levels for D under the null hypothesis can be readily ob-
tained through Monte Carlo simulations and are shown in Table 1 for comparison with levels

determined by the Brownian bridge process.

3.2 Simulation study

Here we investigate whether in fact the DWT of an FD process is a good approximation to

white noise as far as performance of the test statistic D is concerned. We first note that

L;—1 Lj—|m|-1
cov{VVN, VV]-,HT} = Z SY,2i74+m Z hj,lhj,l+|ﬂ%l> (3)
m:—(Lj—l) =0

where sy, is given in (1). Using this equation, we can compute the unit lag correlations

corr{ W, W; 41} given in Table 2 for the Haar, D(4) and LA(8) wavelet filters and scales 1,
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2, 4 and 8; here ‘D(4)” and ‘LA(8)’ refer to the Daubechies extremal phase filter with four
nonzero coefficients and to her least asymmetric filter with eight coefficients (Daubechies
1992). Note that all unit lag correlations are negative, with departures from zero increas-
ing somewhat as j increases. Computations indicate that |corr{W;;, W;,12}| < 0.033 and
|corr{W, 4, W;+3}| < 0.009 for all three wavelet filters, and corr{W;;, W;,,} is negligible
for 7 > 4. To ascertain the effect of these small remaining correlations on D, we determined
the upper 10%, 5% and 1% quantiles for the distribution of D based upon a large num-
ber of realizations of white noise for sample sizes commensurate with time series of length
N € (128,256,512,1024, 2048, 2'%). Using these quantiles, we then generated a large num-
ber of realizations of length N from FD processes with d € (0.05,0.25,0.4,0.45); computed
wavelet coefficients for scales 1, 2, 4 and 8 using the three wavelet filters; computed the test
statistic D for all four scales based on the wavelet coefficients; and compared the resulting
D’s to the white noise critical levels. We found the deviations between the actual rejection
rates and the rates established for white noise to be generally around 10%, with the agree-
ment decreasing somewhat with increasing scale (this is consistent with Table 2). We can
thus conduct an approximate « level test for variance homogeneity of an FD process, on a
scale by scale basis, by simply using critical levels determined under the assumption of white
noise (details about this Monte Carlo study are given in Whitcher (1998)).

One may not want to perform Monte Carlo studies in order to obtain critical values for
the test statistic D. The simulation study described above was run again substituting the
asymptotic critical values (last column of Table 1) for the Monte Carlo critical values. For
sample sizes greater than 128, the percentage of times D exceeded the asymptotic critical
levels was within 10% of the theoretical quantile. The Haar wavelet filter was found to be
conservative for all sample sizes; i.e., the percentage of times D exceeded the asymptotic
critical levels was below the nominal percentile. Hence, wavelet coefficients of length 128 or
greater using asymptotic critical values will give reasonable results if Monte Carlo critical

values have not been computed.



3.3 Application to the Nile River water levels

As an example of a time series exhibiting both long memory and possible inhomogeneity
in variance, we consider the Nile River minimum water level time series (Toussoun (1925);
for an interesting recent analysis of this series, see Eltahir and Wang (1999)). This time
series consists of N = 663 yearly values from 622 AD to 1284 AD and is plotted in the top
panel of Figure 3. Beran (1994, p. 118) found an FD model to be fit this time series well
and obtained an estimate of d = 0.40 using an approximate maximum likelihood approach.
Visually there seems to be greater variability in the first part of this series. Beran (1994,
Sec. 10.3) investigated the question of a change in the long memory parameter in this time
series by partitioning the first 600 observations into two sub-series containing, respectively,
the first 100 and the remaining 500 measurements. Maximum likelihood estimates of the
long memory parameter d were quite different between the two sub-series, 0.04 and 0.38
respectively. This analysis suggests a change in d, a conclusion also drawn in Beran and
Terrin (1996) using a procedure designed to test for change in the long memory parameter.

We can perform a similar analysis using the wavelet variance, which decomposes the
variance of Y; on a scale by scale basis. The wavelet variance V]? for scale 7; = 2771 is defined

to be the variance of W/jyt and can be estimated by

2 1 Nz‘l =
! N — Lj +1 I=L;—1 ”

see Percival (1995) for a discussion of the statistical properties of this estimator. The es-
timated wavelet variances, given a partitioning scheme similar to the one used by Beran
(1994), are displayed in Figure 1. The 95% confidence intervals for scales of 1 and 2 years do
not overlap, suggesting that the greater variability seen in the first one hundred years might
be attributable to changes in variance at just these two scales.

For an FD process we have ij x szd_l approximately, so we can estimate d by regressing

log 17]2 on log 7; and using the estimated slope B to form d = %(B + 1). This yields estimates

of d = 0.38, 0.42 and —0.07 for the whole time series, the last 563 observations and the first



100 observations. These compare favorably with Beran’s values of 0.40, 0.38 and 0.04, but
Figure 1 says that the smaller value for d in the first 100 years is due to increased variability
at scales of 2 years or less. The observed difference in ﬁf at longer scales between the first
and last portions of the time series is consistent with sampling variability.

Let us now apply the methodology developed in this paper to the Nile River minima.
Using all N = 663 values in the time series, we computed our test statistic for scales of 1, 2, 4
and 8 years based, respectively, on 331, 115, 57 and 28 wavelet coefficients. The results from

the test, shown in Table 3, confirm an inhomogeneity of variance at scales of 1 and 2 years,

but fail to reject the null hypothesis of variance homogeneity at scales of 4 and 8 years.

4 Locating the change in variance

4.1 Auxiliary test

We shift our attention to determining the location of a variance change in the original time
series. A naive choice of location can be based on the test statistic D; i.e., on the location
of the wavelet coefficient at which the cumulative sum of squares at level j achieves its
maximum. Since the wavelet coefficient is a linear combination of observations from the
original series, this procedure will yield a range of times trapping the variance change. The
subsampling inherent in the DW'T, however, causes a loss of resolution in time at each scale.
We thus propose to use the non-decimated coefficients I/T/N to more accurately determine

the location of a variance change after detection by the DWT.

4.2 Simulation study

A study was conducted to investigate how well the test statistic D, now using the Wj,t
coefficients, locates a single variance change in a series with long memory structure. To
do this, we implemented a setup motivated by the Nile River example by (i) generating a

realization of length N = 663 from an FD process with a specified long memory parameter d



= 0.4; (ii) adding Gaussian random variables with o2 = 2.07§ to the first 100 observations of
the FD process, where 2.07 is the variance sy of an FD process with d = 0.4 and 02 = 1 as
given by Equation (1); (iii) computing the ijt coefficients for j = 1,...,4, using the Haar,
D(4) and LA(8) wavelet filters; and (iv) recording the location of the wavelet coefficient from
which the test statistic D attains its value, adjusting for the phase shift of the filter output
W, by shifting the location 1 L; units to the left. The above was repeated 10,000 times each
for § = 0.5, 1, 2 and 3. Those estimated locations of the variance changes are displayed in
Figure 2. The estimates are roughly centered around the 100th wavelet coefficient for j = 1,2
with the spread narrowing as the variance ratio increases. There is a very slight difference
between wavelet filters, the broader spread being associated with the longer wavelet filters.
However, for variance ratios of 2:1 or greater all three wavelets appear to perform equally
well. The estimates from the j = 1 level have a median value closer to the truth with much
less spread at every combination of variance ratio and wavelet filter, when compared to the
second level. We therefore recommend using the unit scale estimate when trying to locate

an sudden change of variance in a time series.

4.3 Application to the Nile River water levels

We apply the above procedure to locate the variance change in the Nile River minimum water
levels. Figure 3 displays the normalized cumulative sum of squares as a function of wavelet
coefficient for the first two scales. We see a sudden accumulation of variance in the first
100 years and a gradual tapering off of the variance (by construction the series must begin
and end at zero). The maximum is actually attained in 720 AD for the level 1 coefficients
and 722 AD for level 2. The subsequent smaller peaks occurring in the ninth century are
associated with large observations, as seen in the original series, not changes in the variance.

The source document for this series (Toussoun 1925) and studies by Popper (1951) and
Balek (1977) all indicate the construction in 715 AD (or soon thereafter) of a ‘nilometer’ in a

mosque on Roda Island in the Nile River. After its construction, the yearly minimum water



levels up to 1284 AD were measured using this device, or a reconstruction of it in 861 AD.
How measurements were made prior to 715 AD is unknown, but most likely devices with
less accuracy than the Roda Island nilometer were used. Our estimated change point at 720
or 722 AD coincides well with the construction of this new instrument, and it is reasonable

that this new nilometer led to a reduction in variability at the very smallest scales.

5 Discussion

The discrete wavelet transform has been shown to adequately decorrelate time series with
long memory structure for the purpose of evaluating a normalized cumulative sum of squares
test statistic. It provides a convenient method for detecting and locating inhomogeneities
of variance in such time series. The DWT produces a test statistic that can be evaluated
under the assumption of white noise while the non-decimated coefficients If/lv/j,t offer good
time domain resolution for locating a variance change. This methodology should be a useful
analysis tool applicable to a wide variety of physical processes.

Ogden and Parzen (1996) use a test statistic, similar to D, as a solution to a change-
point problem for nonparametric regression. Their statistic involves estimating the standard
deviation of the squared wavelet coefficients. We avoid this estimation by dividing the
cumulative sum by the total sum of squares (see Whitcher (1998) for a discussion on the
relative merits of these two approaches). Whereas we are looking for changes in the variance,
they looked at changes in the mean of a process in order to determine an appropriate level-
dependent wavelet threshold. The similarities between the Ogden—Parzen test statistic and
D indicate that, while we have discussed D in the context of detecting changes in variance, in
fact D can pick up others kinds of nonstationarities, a fact that must be taken into account
before drawing any conclusion when D rejects the null hypothesis of variance homogeneity.

Beran and Terrin (1996) looked at the Nile River minimum water levels and used a test

statistic to argue for a change in the long memory parameter in the time series. The results
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from our analysis, in conjunction with an examination of the historical record, suggest an
alternative interpretation. There is a decrease in variability at scales of 2 years and less after
about 720 AD and that this decrease is due to a new measurement instrument, rather than
a change in the long term characteristics of the Nile River.

Finally, we note that, while we have concentrated on FD processes in order to validate
our proposed homogeneity of variance test, in fact our test is by no means limited to just
these processes. The key to the methodology proposed here is the decorrelation property of
the DWT, which can be verified for other processes by using Equation (3) and comparing the
results with Table 2. Alternatively, because the DWT yields an octave band decomposition
of the SDF, we can expect the decorrelation property to hold for level j wavelet coefficients
as long as there is relatively little change in the SDF over the octave band [1/27%1 1/27],
as is true for FD processes. Other processes for which the decorrelation property holds
include first order autoregressive processes with nonnegative lag one autocorrelations, frac-
tional Gaussian noise, stationary long memory power law processes, and certain fractionally
integrated autoregressive, moving average processes (i.e., extensions to FD processes that do

not exhibit rapid variations within octave bands).
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Sample size

o} 8 16 32 64 128 256 512 1024 00

0.10 1.109 1.135 1.157 1.182 1.193 1.197 1.206 1.209 1.224
SE  0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
0.06 1.232 1.265 1.293 1.313 1.326 1.329 1.345 1.341 1.358
SE 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
0.01 1.459 1.508 1.553 1.584 1.596 1.596 1.630 1.617 1.628
SE  0.007 0.008 0.008 0.009 0.008 0.010 0.008 0.007

Table 1: Monte Carlo critical values for the test statistic (N/2)z D, using the Haar wavelet
filter, for a level « test. These values are based upon 10,000 replicates. The standard error
(SE) is provided for each estimate, and was computed via SE = {a(1 — «)/(10,000f2)}z
where f is the histogram estimate of the density at the (1 — «)th quantile using a bandwidth
of 0.01 (Inclén and Tiao 1994). Quantiles of a Brownian bridge process are given at the far

right for comparison.

Scale  Haar D(4) LA(8)

1 —-0.0626 —0.0797 —0.0767
2 —0.0947 —0.1320 —0.1356
4 —-0.1133 —0.1511 —0.1501
8 —-0.1211 —-0.1559 —0.1535

Table 2: Lag one autocorrelations for wavelet coefficients of scales 1, 2, 4, and 8 for an FD

process with d = 0.45 using the Haar, D(4) and LA(8) wavelet filters.
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Scale D 10% critical level 5% critical level 1% critical level

1 0.1559 0.0945 0.1051 0.1262
2 0.1754 0.1320 0.1469 0.1765
4 0.1000 0.1855 0.2068 0.2474
8 0.2313 0.2572 0.2864 0.3436

Table 3: Results of testing the Nile River water levels for homogeneity of variance (N = 663)
using the Haar wavelet filter with Monte Carlo critical values. As shown in the table, the test
statistic at scale 1 is significant at the 1% level, and the test statistic at scale 2 is significant

at the 5% level.
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List of Figures

1. Estimated Haar wavelet variances for the Nile River minimum water levels before and
after the year 721 AD, along with 95% confidence intervals based upon a chi-square

approximation given in Percival (1995).

2. Estimated locations of variance change points for FD processes (N = 663, d = 0.4)
using W'j’t, with known variance change at t = 100 (dotted line). From bottom to top,
the variance ratio between the first 100 and remaining observations is 1.5:1, 2:1, 3:1

and 4:1, respectively.

3. Nile River minimum water levels (upper panel) and normalized cumulative sum of
squares using W, based upon D(4) wavelet filter for the Nile River minimum water
levels (lower two panels). The vertical dotted line marks the year 715 AD, after which
a nilometer on Roda Island was used to record the water levels. (The source of the
Nile River is Toussoun (1925). The data can be obtained via the World Wide Web
at http://lib.stat.cmu.edu/S/ under the title ‘beran’. This is the address for

StatLib, a statistical archive maintained by Carnegie Mellon University.)
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