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Wavelet-Based Parameter Estimation for Polynomial
Contaminated Fractionally Differenced Processes

Peter F. Craigmile, Peter Guttorp, and Donald B. Percival.

Abstract— We consider the problem of estimating the param-
eters for a stochastic process using a time series containing a
trend component. Trend, i.e., large scale variations in the series
that are best modeled outside of a stochastic framework, is
often confounded with low frequency stochastic fluctuations. This
problem is particularly evident in models such as fractionally
differenced (FD) processes, which exhibit slowly decaying auto-
correlations and can be extended to encompass nonstationary
processes with substantial low frequency components. We use
the discrete wavelet transform (DWT) to estimate parameters
for stationary and nonstationary FD processes in a model of
polynomial trend plus FD noise. Using Daubechies wavelet filters
allows for automatic elimination of polynomial trends due to em-
bedded differencing operations. Parameter estimation is based on
an approximate maximum likelihood approach made possible by
the fact that the DWT decorrelates FD processes approximately.
We consider this decorrelation in detail, examining the between
and within scale wavelet correlations separately. Better between
scale decorrelation can be achieved by increasing the length of the
wavelet filter, while the within scale correlations can be handled
via explicit modeling by a low order autoregressive process. We
demonstrate our methodology by applying it to a popular climate
dataset.

Index Terms— fractionally differenced processes; discrete
wavelet transform; trend; approximate Gaussian likelihood; con-
fidence intervals.

I. INTRODUCTION

In recent years long memory processes have been used
to model natural phenomena in areas such as atmospheric
science, geophysics and hydrology. Such processes are charac-
terized by slowly decaying autocorrelations that can be hard
to model using standard models such as the autoregressive
moving average (ARMA) processes [1]. One common example
of a long memory process, the fractionally differenced (FD)
process [2], [3], extends existing (integer) integrated processes.
The mathematical tractability of FD processes allows for a
varied range of estimation methods.

In the absence of a trend component, a common method
of FD parameter estimation involves calculating the exact
likelihood and maximizing with respect to the parameters.
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Beran [4] gives a review and evaluation of this method.
He concludes that the two factors hampering this method in
practice are (1) slow computations (particularly for large N )
and (2) inaccuracies due to a large number of computations
(the matrix calculations are O(N 2)). Various approximate
likelihood methods have been proposed to overcome this [4].
Some of these methods exploit fast transforms of the data such
as the fast Fourier transform (Robinson [5] – see Moulines
and Soulier [6] for an in depth analysis of this estimator) or
wavelet transforms (Wornell [7] and McCoy and Walden [8]
consider likelihood approaches; Abry et al. [9]–[12], Bardet
et al. [13] study least square methods). Vannucci and Corradi
[14] consider Bayesian estimation schemes for long memory
processes, and Jensen [15] examines a wavelet-based likeli-
hood method for the estimation of ARFIMA processes.

There is less literature in the case of such a process
contaminated by a trend component. The topic of long range
dependence and trends is dealt with in Smith [16]–[18].
Teverovsky and Taqqu [19] consider tests for long memory
dependence in the presence of two types of trend (shifting
means and slowly decaying trend). Percival and Bruce [20]
extend the wavelet-based approximate likelihood estimates of
McCoy and Walden [8] to work in the presence of poly-
nomial trends. Deo and Hurvich [21] consider linear trends
with fractionally integrated errors. Hurvich and Chen [22]
provide a spectral estimation method that can handle some
nonstationary ARFIMA processes with a low order polynomial
trend component. Giraitis et. al. [23] consider families of tests
for long memory, observed in the presence of deterministic
trends. Leipus and Vinao [24] extend the work of the previous
paper to the case of stochastic trends. Beran and Feng [25]
use variable bandwidth smoothing to estimate such processes
with additive trend.

In this paper we consider estimation of the long memory
parameters of a polynomial contaminated FD process using the
discrete wavelet transform (DWT) (see Craigmile et al. [26]
for details on the estimation of the trend component). Wavelet
transforms of such time series are useful for the following
reasons.

1) They approximately decorrelate FD and related pro-
cesses. We will show the resulting wavelet coefficients
form a near independent Gaussian sequence, simplifying
the statistics significantly.

2) Wavelets can cleanly separate polynomial trends from
noise, thus allowing us to analyze time series with a
trend well approximated by a polynomial.

3) Wavelets have excellent time and frequency localization,
which can be useful for investigating local deviations
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from a statistical model.

By using the wavelet coefficients of the transform in a
multivariate Gaussian model (with an assumed simplified
correlation structure for the coefficients), we can estimate
the long memory parameters using maximum likelihood. In
particular we consider two models:

1) White noise wavelet model – we assume the wavelet
coefficients are independent both within and between
wavelet scales;

2) First order autoregressive (AR(1)) wavelet model. We
show that there is often a small lag one autocorrelation
between wavelet coefficients on a specific scale. As a
model for this, we assume independence between scales,
and specific AR(1) models within each scale. While the
AR models are different for each scale, they are in fact
coupled together and are fully determined by just two
FD parameters.

In Section II we define the DWT. We define the FD process
in Section III and demonstrate the statistical properties of
the DWT of these processes (with and without trend) in
Section IV. We outline the approximate maximum likeli-
hood scheme for the white noise wavelet model in Section
V, and for the AR(1) wavelet model in Section VI. We
provide theory for these estimators, under the assumption
that the approximating models are true, in Section VII,
and obtain approximate confidence intervals for the model
parameters. In Section VIII, Monte Carlo simulations are
used to assess these methods in practice. We also compare
our methods to the spectral-based method of Hurvich and
Chen [22] and the wavelet-based method of Veitch and
Abry [12]. In Section IX we apply our theory to a northern
hemisphere temperature dataset obtained from the Climate
Research Unit, University of East Anglia, UK. We close
with a summary and discussion in Section X (proofs of
the results presented in this paper can be downloaded from
http://www.stat.ohio-state.edu/˜pfc/).

II. THE DISCRETE WAVELET TRANSFORM

Suppose {Xt : t = 0, . . . , N−1} is our observed time series
with N divisible by 2J for some positive integer J . For an
even positive integer L, let {hl : l = 0, . . . , L− 1} denote the
Daubechies wavelet filter of unit l2 norm. The squared gain
function for the wavelet filter is given by

H1,L(f) = 2 sinL(πf)

L/2−1∑

l=0

(
L/2−1+l

l

)
cos2l(πf). (1)

For a particular choice of L there are multiple filters, {hl}, that
share this squared gain function. This is because the transfer
function, H1,L(f) =

∑L−1
l=0 hle

−i2πfl, associated with the
squared gain function via H1,L(f) = |H1,L(f)|2, is not
unique. Daubechies [27] distinguishes between two (of the
possible) choices: the extremal phase, D(L), filters are the ones
that exhibit the smallest delay (have maximum cumulative
energy) over other choices of scaling filter, and the least
asymmetric, LA(L), filters (which differ from the D(L) filters
when L=8, 10, . . . ) are the closest approximations to linear

phase filters. We now define the level j wavelet coefficients
in terms of a filtering of our data, {Xt} (in practice, we can
calculate the wavelet coefficients efficiently using a cascade
algorithm rather than filtering the data directly [28], [29]).
Define Lj = (2j − 1)(L− 1) + 1. The level j wavelet filter,
{hj,l : l = 0, . . . , Lj−1} can be defined as the inverse Fourier
transform of its transfer function,

Hj,L(f) = e−i2π(Lj−1−1)fH1,L(2j−1f)

×
j−2∏

k=0

H1,L(1/2− 2kf) (2)

which in turn defines the jth level squared gain function
Hj,L(f) = |Hj,L(f)|2. This filter is an approximate bandpass
filter with a passband given by |f | ∈ [1/2j+1, 1/2j ]. Then
for Nj = N/2j, the level j wavelet coefficients are, for
k = 0, . . . , Nj − 1,

Wj,k =

Lj−1∑

l=0

hj,lX2j(k+1)−1−l mod N . (3)

These coefficients are associated with changes in averages on
scale 2j−1 and with times spaced 2j apart. The first Bj =
min(d(L−2)(1−2−j)e, Nj) wavelet coefficients are affected
by circularly filtering data; that is, the coefficients {Wj,k :
k = 0, . . . , Bj − 1} combine data from the start and end of
the sequence. We refer to these as the boundary coefficients.
The remaining Mj = Nj − Bj are unaffected by boundaries,
and we call them the nonboundary (nb) coefficients, {W̃j,k ≡
Wj,Bj+k : j = 1, . . . , J ; k = 0, . . . ,Mj − 1}. The statistical
properties of the boundary coefficients can be quite different
from those of the nonboundary coefficients.

III. FRACTIONALLY DIFFERENCED PROCESSES

The FD process is a long memory dependence model that
has become popular in recent years, mainly due to its tractable
mathematical properties. The process was originally proposed
by Granger and Joyeux [2] and Hosking [3] as an extension to
ARIMA(0, d, 0) models to allow for fractional values of d. For
d ∈ [−1/2, 1/2) and σ2 > 0, the stationary Gaussian process
{Xt : t ∈ Z} is an FD(d) or ARFIMA(0, d, 0) process if it
has a spectrum

S(f) = σ2 |2 sin(πf)|−2d, |f | ≤ 1/2. (4)

Here d is known as the fractional difference parameter and σ2

is the innovations variance.
For d ∈ (−1/2, 1/2) the process is stationary and invertible,

and is a white noise (i.e., uncorrelated) process for d = 0. For
d = −1/2 the process is stationary, but noninvertible. We can
extend this model by letting d ≥ 1/2 in (4), and obtain a
class of non-stationary processes that become stationary after
differencing bd + 1/2c times [30]. Taking differences of the
process, we can let d ≤ −1/2 to obtain a stationary, but
noninvertible, process. For d ∈ [−1/2, 1/2) the autocovariance
sequence can be shown to be (Beran [4] and Hosking [3] for
the d = −1/2 case)

sk = σ2 (−1)k Γ(1 − 2d)

Γ(1 − d+ k) Γ(1 − d− k)
. (5)
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Fast simulation of FD processes is possible using the Davies–
Harte algorithm [31]–[33]. Further properties and an extensive
history of the FD process can be found in, e.g., Beran [4];
Samorodnitsky and Taqqu [34, Sections 7.13 and 14.7].

IV. THE NONBOUNDARY WAVELET COEFFICIENTS OF AN

FD PROCESS

Suppose we observe a realization of a Gaussian FD(d)
process, {Xt : t = 0, . . . , N − 1}. By the linearity of the
DWT the wavelet coefficients of the process are Gaussian. By
definition of the level j wavelet filter, {hj,l},

∑
l hj,l = 0 [29,

Table 154], and it follows that the wavelet coefficients have
zero expectation. We now investigate the second moment
properties of the nonboundary (nb) wavelet coefficients. By
[29, Equation (348a)]

cov(W̃j,k , W̃j′,k′)

=

∫ 1/2

−1/2

ei2π[2j′ (k′+1)−2j(k+1)]f

×Hj,L(f) H∗

j′,L(f) σ2(2 sin(πf))−2d df,

where ∗ denotes the complex conjugation operator. Between
scales the DWT acts as a whitening transform for an FD
process; that is, for j 6= j ′, cov(W̃j,k , W̃j′,k′) ≈ 0. This
approximation improves with increasing L. In fact as L→ ∞
the covariance tends to zero, as the next result due to Craigmile
and Percival [35] states.

Theorem 4.1: Let W̃j,k and W̃j′,k′ be the level j and j ′

wavelet coefficients for an FD process, {Xt}, based upon a
wavelet filter {hl} of width L. Then cov(W̃j,k, W̃j′ ,k′) → 0
as L→ ∞ when j 6= j.

Thus for sufficiently long wavelet filters we can bound the
covariance between different wavelet levels by some small
ε. In practice we would like to use longer wavelet filters to
decorrelate between wavelet scales, but this also has the effect
of decreasing the number of nb wavelet coefficients. This result
ignores what effect longer wavelet filters will have upon within
scale correlations, which is the subject of the next theorem.

Theorem 4.2: When d < (L + 1)/2 the nb wavelet co-
efficients within a given level j are a portion of a zero
mean stationary process with autocovariance sequence given
by cov(W̃j,k , W̃j′,k+τ ) = σ2 sj,τ (d) where

sj,τ (d) =

∫ 1/2

−1/2

ei2πfτSj(f) df, (6)

and Sj(f) = 2−j
∑2j

−1
k=0 Hj,L(2−j(f + k))(2 sin(π2−j(f +

k)))−2d.
Hence within a particular wavelet scale the nb wavelet coef-

ficients of an FD process are also approximately uncorrelated
if Sj(·) is close to the spectrum for a white noise process;
that is, Sj(·) is approximately flat. Figure 1 illustrates that
this is a good approximation for an FD(0.45) process with
σ2 = 1 analyzed using a LA(8) wavelet filter. The first panel
shows the spectrum of the process along with the approximate
passbands that correspond to the first five wavelet levels. The
second panel shows Sj(·) for j = 1, . . . , 5. The rightmost
two panels illustrate the approximations to these spectra used

in the paper. If we assume that the wavelet coefficients are
uncorrelated per each wavelet level, we obtain the flat spectra
given in the third panel. Clearly the fourth panel show spectra
that better model the true spectra of the wavelet coefficients. In
this case we assume that the wavelet coefficients on each level
follow an AR(1) model, where the AR parameters are given by
φj(d) = sj,1(d)/sj,0(d) with variance η2

j (d) = σ2(1−φ2
j(d))

and hence depend on d and σ2 alone.
Now let Yt = Tt + Xt, where Tt is a deterministic

polynomial trend of order K, and perform a DWT on these
data [26]. Because a Daubechies wavelet filter of order L has
L/2 embedded differencing operations we can zero out a trend
of polynomial order K in the nb wavelet coefficients if K ≤
L/2−1; that is, only the boundary wavelet coefficients will be
influenced by the trend component. The above results apply
and the nb wavelet coefficients can be regarded approximately
as either uncorrelated or following an AR(1) model on each
level.

V. THE WHITE NOISE MODEL

We now consider the simplest model for estimating the
parameters of the FD process using the wavelet coefficients
(the next section explores the refinement given by the AR(1)
model). Assume that the nb wavelet coefficients {W̃j,k : j =
1, . . . , J, k = 0, . . . ,Mj − 1} form an independent sample
with W̃j,k ∼ N(0, sj,0(d)σ

2). The likelihood function for this
model is

LM (d, σ2|W̃j,k)

=

J∏

j=1

Mj−1∏

k=0

(2πsj,0(d)σ
2)−1/2 exp

(
−

W̃ 2
j,k

2sj,0(d)σ2

)
.

If we let Rj =
∑Mj−1

k=0 W̃ 2
j,k denote the sum of squares of

the level j nb wavelet coefficients and M =
∑J

j=1 Mj , then
maximizing the likelihood is equivalent to minimizing twice
the negative of the log likelihood; that is,

−2 lM (d, σ2|W̃j,k)

= M log(2πσ2) +

J∑

j=1

[
Mj log(sj,0(d)) +

Rj

sj,0(d)σ2

]
.

(7)

For a given d, the above is a function of σ2 that is minimized
when

σ̂2
M (d) =

1

M

J∑

j=1

Rj

sj,0(d)
. (8)

Substituting this estimator into (7), we obtain a function of d
alone, known as the profile log likelihood [36]:

−2 lM (d, σ̂2
M (d)|W̃j,k)

= M
(
log(2πσ̂2

M (d)) + 1
)

+

J∑

j=1

Mj log(sj,0(d)). (9)

Minimizing with respect to d yields the maximum likelihood
estimator, d̂M .
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Fig. 1. Going from left to right plots show the spectrum of an FD(0.45) process (dotted vertical lines indicate the approximate passbands for the first five
wavelet levels), the spectra of the LA(8) nb wavelet coefficients, and the spectra assumed in the white noise (WN) and AR(1) models.

VI. THE FIRST ORDER AUTOREGRESSIVE MODEL

In Figure 1 we illustrated that within scales, a good ap-
proximation to the spectrum of the nb wavelet coefficients is
to assume an AR(1) model per scale. We now investigate this
in further detail. We assume {W̃j,k : k = 0 . . .Mj − 1} is a
portion of an AR(1) process; that is,

W̃j,k = φj(d)W̃j,k−1 + (Znb)j,k, (10)

where {(Znb)j,k ∼ N(0, ηj(d)σ
2) : j = 1 . . . J, k =

0 . . .Mj − 1} are a set of independent random variables. The
parameters of the AR(1) process on each wavelet scale j are
potentially different, but across scales they are coupled to-
gether through the dependence on the FD process parameters.
For any given level j, the Yule–Walker equations (e.g., Box,
Jenkins, and Reinsel [1]) yield

φj(d) = sj,1(d)/sj,0(d)

and ηj(d) = sj,0(d)(1 − φ2
j (d)). (11)

Assuming again independence between coefficients on differ-
ent scales, it follows from [1] that minus two times the profile
likelihood is

−2 lM (d, σ̂2
M (d)|W̃j,k)

= M
[
log(2πσ̂2

M (d)) + 1
]

+

J∑

j=1

[
Mj log(ηj(d)) − log(1 − φ2

j (d))
]
, (12)

where the estimate of σ2 is given by

σ̂2
M (d) =

1

M

J∑

j=1

[
W̃ 2

j,0(1 − φ2
j (d))

ηj(d)

+

Mj−1∑

k=1

(
W̃j,k − φj(d)W̃j,k−1

)2

ηj(d)

]
.

Minimizing (12) with respect to d we obtain the maximum
likelihood estimator, d̂M .

VII. PROPERTIES OF THE WAVELET-BASED ESTIMATORS

In this section we provide theory for the estimators under
the models discussed in Sections V and VI. In particular this
theory provides approximate confidence intervals for the FD
parameter. These results give an illustration of the large sample
properties of what we can think of as “wavelet-based models
for long memory” [37]. We examine further properties of these
estimators by simulation in Section VIII.

For a wavelet filter of width L, let ΘL ≡ {θ = (d, σ2)T ∈
R

2 : d < (L + 1)/2 and σ2 > 0} denote the parameter
space of interest. Suppose that θ0 = (d0, σ

2
0)

T ∈ ΘL denotes
the true values of the parameters, which are estimated by
θ̂M = (d̂M , σ̂2

M (d̂M ))T under the white noise or AR(1)
wavelet model. Also, let mj = limM→∞(Mj/M) and for
any differentiable function, g, define the operator ∆1(g(x)) =(

d
dxg(x)

)
/g(x). The following two theorems provide the large

sample properties of the estimators under the white noise and
AR(1) wavelet models respectively.

Theorem 7.1: Suppose that the white noise model is the
true model for the nb wavelet coefficients within each level.
Then the following holds.

(a) (Consistency) With probability converging to one there
exist solutions, θ̂M , of the likelihood equation such that
θ̂M →p θ0, as M → ∞.

(b) (Joint asymptotic normality)
√
M(θ̂M − θ0) →d

N(0,Σ|−1
0 (θ0)), as M → ∞, where

Σ| 0(θ) =
1

2

[
a11 a12

a12 σ−4
ε

]
,

with a11 =
∑J

j=1 mj∆
2
1(sj,0(d)), and a12 =

σ−2
ε

∑J
j=1 mj∆1(sj,0(d)).

(c) (Marginal asymptotic normality of d̂M )
√
M(d̂M −

d0) →d N(0, ψ2
0(d0)), as M → ∞, where

ψ2
0(d) = 2



( J∑

j=1

mj∆
2
1(sj,0(d))

)

−
( J∑

j=1

mj∆1(sj,0(d))
)2



−1

.
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(d) (Exact distribution of σ̂2
M (d0)) σ̂2

M (d0) =d σ2χ2
M/M ,

where χ2
M denotes a chi squared random variable with

M degrees of freedom.
To calculate ∆1(sj,0(d)) in the above theorem, we need to

know d
ddsj,τ (d), which is

d

dd
sj,τ (d) = −4

∫ 1/2

0

[log sin(πf)] cos(2j+1πfτ)

×Hj,L(f)(2 sin(πf))−2ddf, (13)

and is obtained via Leibnitz’s rule that allows us to interchange
differentiation and integration.

Theorem 7.2: Suppose that the AR(1) model is the true
model for the nb wavelet coefficients within each wavelet
level. Then the following holds.
(a) (Consistency) With probability converging to one there

exist solutions, θ̂M , of the likelihood equation such that
θ̂M →p θ0, as M → ∞.

(b) (Joint asymptotic normality)
√
M(θ̂M − θ0) →d

N(0,Σ|−1
1 (θ0)), as M → ∞, where

Σ| 1(θ) =
1

2

[
b11 b12
b12 σ−4

ε

]
,

with b11 =
∑J

j=1 mj∆
2
1(ηj(d)) and b12 =

σ−2
ε

∑J
j=1 mj∆1(ηj(d)).

(c) (Marginal asymptotic normality of d̂M )
√
M(d̂M −

d0) →d N(0, ψ2
1(d0)), as M → ∞, where

ψ2
1(d) = 2



( J∑

j=1

mj∆
2
1(ηj(d))

)

−
( J∑

j=1

mj∆1(ηj(d))
)2



−1

.

In the above theorem, we calculate ∆1(ηj(d)) =
d
ddηj(d)/ηj(d) by taking derivatives of (11) with respect to
d. In particular:

d

dd
φj(d) =

d
ddsj,1(d)

sj,0(d)
− φj(d)∆1(sj,0(d)),

d

dd
ηj(d) =

(
d

dd
sj,0(d)

) (
1 − φ2

j (d)
)

+2sj,0(d)φj(d)

(
d

dd
φj(d)

)
.

Table I tabulates ψ2
k(d) from the above theorems for various

widths L, under either the white noise (k = 0) or the
AR(1) model (k = 1) within each wavelet scale. For fixed
L, the asymptotic variance decreases with increasing d. It
also decreases with increasing L for stationary d < 1/2, but
increases with L for non-stationary d ≥ 1/2. As a result,
ψ2

k(d) becomes more uniform across d as L increases.
We can obtain approximate confidence intervals for d

based upon the above models and their profile likelihoods
via the log likelihood ratio statistic 2 logλ(d, σ̂2

M (d)) =

2
[
lM (d̂, σ̂2

M (d̂)) − lM (d, σ̂2
M (d))

]
(the Wald or Rao test

statistics could also be used to provide a confidence interval).
Standard statistical theory (e.g., Lehmann [38]) suggests that

TABLE I

CALCULATION OF ψ2

k
(d) FOR VARIOUS FILTER WIDTHS L, UNDER EITHER

THE WHITE NOISE (WN) (k = 0) OR THE AR(1) MODEL (k = 1) WITHIN

EACH WAVELET SCALE. WE SET J = 6 IN EACH CASE.

d
L Model 0 0.25 0.50 0.75 1.00 1.25 1.50
2 WN 1.260 1.036 0.896 0.781 0.664 0.541 –
2 AR(1) 1.260 1.020 0.886 0.795 0.664 0.433 –
4 WN 1.060 0.982 0.921 0.867 0.816 0.764 0.712
4 AR(1) 1.060 0.961 0.884 0.828 0.793 0.778 0.761
8 WN 0.991 0.956 0.923 0.893 0.864 0.836 0.809
8 AR(1) 0.991 0.936 0.884 0.838 0.800 0.771 0.755
16 WN 0.966 0.943 0.921 0.900 0.880 0.862 0.844
16 AR(1) 0.966 0.925 0.886 0.850 0.817 0.788 0.764

an approximate 100(1−α)% confidence interval is then given
by {d : 2 logλ(d, σ̂2

M (d)) ≤ q1(1−α)}, where here q1(1−α)
denotes the (1−α)th quantile of a chi squared random variable
with 1 degree of freedom.

VIII. MONTE CARLO STUDIES

Our aim in this section is to investigate how well the
estimators perform in practice for the white noise and AR(1)
wavelet models. We also compare the AR(1) model estimator
to the estimators of Hurvich and Chen [22] and Veitch and
Abry [12]. All realizations of FD processes are created using
the Davies–Harte algorithm with σ2 = 1 (there is no lose of
generality with this arbitrary choice).

A. Estimation of the long memory parameter

We first investigated how well wavelet-based estimators
of the difference parameter, d, performed in practice. We
simulated 1024 replications of FD(d) processes of length
N = 256, 512 and 1024 for values of d ranging from 0 to
1.5 in steps of 0.25. In each case we added a linear trend of
the form Tt = 0.5t/N , t = 0, . . . , N − 1, and the resulting
time series was analyzed using the DWT with the Haar, D(4)
and LA(8) wavelet filters. The number of levels we analyzed
to, J , was dependent on the wavelet filter and the sample
size N , namely J = log2(N) − L/2. We estimated d via the
white noise and AR(1) wavelet models. Each study, carried
out in the statistical software package R [39], was performed
by minimizing the negative log-profile likelihood for values
of d ranging in [−1,min{(L+ 1)/2, 3}] (an arbitrary choice).
We used two methods for calculating sj,τ (d) (defined in (6)):

1) Exact form: Use numerical integration with a Gauss rule,
calculating Hj,L(f) using the modulus squared of (2).

2) Bandpass approximation: Hj,L(f) is approximated by
the squared gain function for a bandpass filter with
passband [1/2j+1, 1/2j], yielding, e.g., sj,0(d) ≈
2j+1

∫ 1/2j

1/2j+1 [2 sin(πf)]−2d df .
Figure 2 shows a plot of the root mean square error (RMSE)

of the estimates for each case. The standard errors for the
RMSEs (calculated using 512 bootstrap samples) are bounded
by 0.0025; that is, approximately the height of the plotting
symbols. For the Haar case we only plotted results for d ≤
1.25 (since the condition d < (L+1)/2 does not hold for d =
1.5). In all cases of wavelet filter and model we can see that
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Fig. 2. RMSE in estimating the difference parameter using either the white noise or autoregressive wavelet models, for various wavelet filters, sample lengths,
N , and difference parameters. The different symbols denote the different wavelet models and whether an exact or bandpass variance was used. The standard
deviations of the estimated RMSEs are bounded by 0.0025. The lines on each panel denotes the theoretical RMSE, ψ1(d)/

√
M , for the AR(1) method with

exact variance calculations.

estimation is best for small values of d. For d > 0 the RMSEs
tend to be smaller for the exact sj,τ (d) calculation compared
to the bandpass approximation. This difference increases with
d, but decreases with increasing wavelet filter order because
Hj,L(·) converges to an ideal bandpass filter as L→ ∞ [40].
The empirical value of the RMSE is worse in general for the
white noise as compared with the autoregressive model. This
is because, as shown in Figure 1, the AR(1) model gives us a
better approximation to the correlation structure of the wavelet
coefficients than the white noise model does (the white noise
approximation deteriorates with increasing d). The RMSEs
increase with wavelet order, and decrease for longer time
series.

Figure 2 also enables us to evaluate the theory of Section
VII (where we assume an approximating model for the wavelet
coefficients) on the basis of the simulation results. The lines on
Figure 2 displays the theoretical RMSE, ψ1(d)/

√
M , for the

AR(1) model, calculated using the equation in Theorem 7.2
with exact variance calculations for sj,τ (d). The theoretical
and simulated values for the AR(1) model are closest for
longer filter widths L, smaller d, and larger N . This is as
expected since the theoretical RMSE is an asymptotic value

that is calculated under the assumption of perfect decorrelation
between scales (which by Theorem 4.1 is better approximated
by longer filter widths L), using an approximating model
within scale, which fits better for values of d closest to zero.

The estimation bias is not shown in Figure 2. In general the
bias decreases as we increase the wavelet order, and for d 6= 0
is bounded by ±0.01 (with a maximum standard deviation of
0.003). This is because we obtain better decorrelation between
wavelet scales when we use longer wavelet filters. The bias
is smaller for the exact sj,τ (d) calculation compared to the
bandpass approximation, and for the AR(1) wavelet model
compared to the white noise wavelet model (the biases for the
AR(1) model using an LA(8) filter with a bandpass variance
calculation are displayed in Table II). Because of the relatively
low biases the variance largely determines the MSE of these
estimators.

B. Comparisons with the Hurvich–Chen estimator

Hurvich and Chen [22] propose a complex valued taper
which can be used to estimate d in the presence of a low
order polynomial trend when d ∈ (−0.5, 1.5). This estimator
is based on the Gaussian semiparametric estimator due to
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Künsch [41]. For fj = j/N such that 0 < fj ≤ 1/2, let

F (p)(fj) =
1√
N

N−1∑

t=0

Xt e
−i2πfj t (14)

denote the (orthonormal) discrete Fourier transform of the
data [29, Chapter 3], and let S(p)(fj) =

∣∣F (p)(fj)
∣∣2 denote

the periodogram of the data. The Künsch [41] estimator is the
value of d ∈ (−0.5, 0.5) which minimizes

Q(d, σ̂2
Q(d)) = log(σ̂2

Q(d))

−2d

m

m∑

j=1

log(2 sin(πfj)), (15)

for some m < N/2, where σ̂2
Q(d) =

m−1
∑m

j=1(2 sin(πfj))
2dS(p)(fj). The refinement of Hurvich

and Chen [22] is to first difference the data, thus turning a
realization of a process with d ∈ (−0.5, 1.5) into one with a
difference parameter in the range (−1.5, 0.5). This yields the
Gaussian semiparametric estimator (GSE), which can perform
badly for low values of d as we have overdifferenced the
time series. To compensate for this, a complex spectral taper
is used (basically an extension of Tukey’s cosine bell taper
to the complex plane). The spectral estimator for this taper is
given by S(hc)(fj) =

∣∣F (p)(fj) − e−iπ/NF (p)(fj+1)
∣∣ /2, and

then we minimize expression (15) with S(p)(fj) replaced by
S(hc)(fj) in the expression for σ̂2

Q(d). Under conditions set
out in Hurvich and Chen [22], this estimator, denoted GSET
(’T’ stands for tapered), is consistent and has a Gaussian
limiting distribution. A good choice of m is given by N 4/5/4.

We now compare GSE and GSET with our wavelet-based
estimator. We conducted a simulation study similar to Hurvich
and Chen [22], for which they consider time series of length
513 for an FD(d) process with d = 0 to 1.4 in steps of
0.2. However, in our simulations we also consider the same
linear trend component as above, i.e., Tt = 0.5t/N , for
t = 0, . . . , 512. For the wavelet-based estimator, we used the
AR(1) model with exact sj,τ (d) calculations in conjunction
with a level J = 6 LA(8) DWT of the first 512 point of
each simulated series. The bias, variance and RMSEs of the
sample of estimates for 500 replications of each method are
shown in three parts of Table II. We see that the wavelet-
based estimator clearly outperforms the other two estimators
in terms of RMSE, variance and magnitude of bias. The
reason for the disparity in the results is because the GSE
and GSET methods use a trim factor m. In this simulation
study, the estimate of d for these spectral methods are based
on 37 periodogram bins. For the wavelet-based method we use
480 wavelet coefficients. If we reduce the number of wavelet
levels that we use to estimate d, then the results become more
comparable. To demonstrate this, the last columns of Table
II display the bias, variance and RMSE for an AR(1) model
fit using only levels j = 3, . . . , 6 (this choice means that
the range of frequencies collectively covered by the wavelet
coefficients is approximately the same as covered by GSE and
GSET). The bias for this subset AR(1) model is smaller than
for the GSET method (except at d = 0.8), but the variance
is larger. Trimming of periodogram bins or wavelet levels is

useful in practice if we want to estimate d in the presence of
the short range dependence (see, e.g., Hurvich and Chen [22]
and Bardet et al. [13]).

C. Comparisons with the Veitch–Abry estimator

Veitch and Abry [12] consider a weighted least squares
wavelet-based estimator of the long memory parameter d.
Their method is based on a unbiased estimate of the wavelet
variance at level j given by ωj =

∑Mj−1
k=0 W̃ 2

j,k/Mj . Letting
yj = log2(ωj) − ψ(Mj/2)/ log 2 + log2(Mj/2) where ψ(·)
denotes the digamma function, and under the assumption that
the wavelet coefficients are Gaussian and independent both
across and within scales, they show that

E(yj) = log2(σ
2) + d(2j),

var(yj) = ζ(2,Mj/2)/(log 2)2,

for each j, where ζ(·, ·) denotes the generalized Zeta function.
Estimation of d is obtained using weighted least squares
estimation in a simple linear regression model where {yj :
j = J0, . . . , J1} is the response variable, and the explanatory
variable is {2j : j = J0, . . . , J1}. Here J0, . . . , J1 denotes the
range of values over which the power-law relationship, i.e.,
S(f) ∝ |f2|−d, holds.

Table III summarizes the results of a Monte Carlo simula-
tion to compare the performance of the AR(1) wavelet methods
with exact variances calculations to the Veitch–Abry estimator.
In each case we simulated 500 realizations of an FD(d) process
with additive linear trend Tt = βt/512, for t = 0, . . . , 511,
with the slope parameter set at β = 0.5. We analyzed each
process to J = 6 levels using an LA(8) wavelet. For both
methods we calculated the estimate of d using only the wavelet
coefficients on levels J0, . . . , J1. We fixed J1 = 6, and let J0

be either 1 or 2. As J0 increases the spectrum will be closer
to a power-law. We repeated the experiment for d = 0 to 1.4
in steps of 0.2, and calculated the bias, variance and MSE for
each estimator. As we can see the AR(1) wavelet method has a
small bias for each d, whereas, with the Veitch–Abry estimator,
the bias tends to increase as d increases. The variances of both
estimators are comparable, with the variance of the Veitch–
Abry estimator being slightly larger than the variance of the
AR(1) estimator when J0 = 2. In terms of the MSE, the AR(1)
wavelet method performs better for larger d. Because there are
fewer wavelet coefficients included in each of the estimators,
the MSEs of both estimators increase as J0 increases.

IX. A NORTHERN HEMISPHERE TEMPERATURE SERIES

The top panel of Figure 3 shows a time series plot of the
deseasonalized monthly deviations in the average Northern
hemisphere temperature (in units of degrees Celsius) from
1854 to 1998, relative to the monthly average over the period
1961 to 1990. The original data come from the Climate
Research Unit, University of East Anglia, UK. This updated
version of the dataset incorporates combinations of grid data
(over the sea and land) from 1000 extra sites, new reference
periods and an increased resolution. Visually there is an
indication of an upward trend and increased variability at the
start of the series.
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TABLE II

MONTE CARLO COMPARISON OF FOUR METHODS TO ESTIMATE d. IN EACH CASE WE SIMULATED AN N = 513 FD(d) SERIES WITH A LINEAR TREND,

500 TIMES IN EACH CASE, AND ESTIMATED d USING THE BASIC GAUSSIAN SEMIPARAMETRIC METHOD (GSE), THE TAPERED VERSION (GSET), THE

AR(1) WAVELET MODEL (WITH 6 WAVELET LEVELS), AND THE AR(1) WAVELET MODEL (USING LEVELS j = 3, . . . . , 6, WHICH WE CALL THE SUBSET

AR(1) MODEL). BOTH WAVELET ESTIMATORS USE AN LA(8) WAVELET FILTER DECOMPOSITION OF THE FIRST 512 TIME POINTS.

GSE GSET AR(1) Subset AR(1)
d bias var. MSE bias var. MSE bias var. MSE bias var. MSE

0.0 0.261 0.037 0.105 0.069 0.014 0.019 0.002 0.003 0.003 -0.001 0.016 0.016
0.2 0.127 0.022 0.038 0.049 0.014 0.017 -0.008 0.003 0.003 -0.025 0.018 0.018
0.4 0.062 0.013 0.017 0.042 0.016 0.018 -0.002 0.002 0.002 -0.003 0.017 0.017
0.6 0.010 0.011 0.011 0.020 0.015 0.015 0.000 0.003 0.003 -0.012 0.016 0.017
0.8 -0.007 0.012 0.012 -0.001 0.015 0.015 -0.001 0.003 0.003 -0.009 0.016 0.016
1.2 -0.007 0.010 0.010 -0.026 0.014 0.015 -0.005 0.002 0.002 -0.017 0.017 0.018
1.4 -0.010 0.007 0.007 -0.040 0.011 0.013 -0.001 0.003 0.003 -0.010 0.018 0.018

TABLE III

MONTE CARLO COMPARISON OF THE AR(1) WAVELET AND VEITCH–ABRY METHODS OVER DIFFERENT SUBSETS OF WAVELET LEVELS, J0, . . . , 6. IN

EACH CASE WE SIMULATED AN N = 512 FD(d) SERIES WITH A LINEAR TREND, 500 TIMES IN EACH CASE, AND ESTIMATED d USING EACH METHOD.

AR(1), J0 = 1 Veitch–Abry, J0 = 1 AR(1), J0 = 2 Veitch–Abry, J0 = 2
d bias var. MSE bias var. MSE bias var. MSE bias var. MSE

0.0 -0.004 0.003 0.003 -0.002 0.003 0.003 -0.007 0.005 0.006 -0.005 0.006 0.006
0.2 -0.007 0.003 0.003 -0.036 0.002 0.003 -0.007 0.006 0.006 -0.015 0.006 0.007
0.4 -0.005 0.003 0.003 -0.061 0.002 0.006 -0.010 0.006 0.006 -0.020 0.007 0.007
0.6 -0.005 0.002 0.003 -0.089 0.002 0.010 -0.004 0.005 0.005 -0.023 0.007 0.007
0.8 -0.001 0.002 0.002 -0.109 0.002 0.014 -0.003 0.005 0.005 -0.031 0.007 0.008
1.0 0.000 0.002 0.002 -0.125 0.002 0.018 -0.002 0.005 0.005 -0.030 0.007 0.008
1.2 -0.006 0.002 0.003 -0.148 0.003 0.024 -0.009 0.006 0.006 -0.042 0.008 0.010
1.4 -0.004 0.003 0.003 -0.160 0.003 0.029 -0.005 0.006 0.006 -0.040 0.009 0.011

There has been much interest in earlier versions of this time
series that only went up to 1989 and were averaged over a
different reference period (1950–1979). Smith [18] illustrates
the problem of trying to fit an autoregressive model to the
data. Using a spectral-based estimate of d, he finds significant
long memory behavior in the series, with d ranging from 0.29
to 0.40 (depending on the choice of two key parameters in the
estimator). Alternatively, using a kernel smoother Beran and
Feng [25] obtain an ML estimate for d of 0.33 with a 95%
CI of [0.19,0.46]. We now analyze the newer version of series
using our proposed methodology, which allows us to estimate
d even if data is contaminated by a low order polynomial (as
might be the case here). We first assess whether an FD(d)
process is reasonable for this series.

The bottom panel of Figure 3 shows a periodogram of
the data. If we take the log of the spectrum given by (4)
we have log(SX(f)) = log(2σ2) − 2d log(2 sin(πf∆t)), for
0 < f < 1/(2∆t), where ∆t = 1/12 year is the sampling rate.
For small x, sin(x) ≈ x and thus log(SX(f)) ≈ log(2σ2) −
2d log(2πf∆t). Hence an FD process is a good model if the
log spectrum versus log frequency is approximately a straight
line for small f , as in this case. By calculating the slope of
the line for small enough f we obtain an estimate of d. We
obtain an estimate of 0.532 for f ≤ 1, indicating evidence of
long memory.

Using an LA(8) wavelet filter (which can handle a cubic
polynomial trend) and analyzing to level J = 7, we obtain the
DWT decomposition of the deseasonalized deviations shown
in Figure 4. The thick gray vertical lines denote the partition
between the boundary (outside) and nb wavelet coefficients
(inside) on each wavelet level. The nb wavelet coefficients on
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Fig. 3. The top panel denotes a time series plot of the monthly deseasonalized
deviations in the northern hemisphere temperatures. The bottom panel is the
corresponding periodogram. The spectrum (in decibels) is shown versus the
log (base 2) frequency. The lines with the negative slope on the periodogram
denotes the least squares fit for f ≤ 1.

lower scales (j = 1, 2, 3) are more variable in earlier years,
which violates an assumption behind our proposed method
for estimating d. We can also look at normal Q-Q plots,
ACFs, PACFs and periodograms for the nb wavelet coefficients
on each scale (not shown). From these plots the Gaussian
assumption for the data seems reasonable, although the non-
constant variance is evident in the lower wavelet levels by
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Fig. 4. Wavelet coefficients from DWT decomposition of the northern hemi-
sphere series using an LA(8) wavelet filter analyzing levels j = 1, . . . , J = 7.
The thick gray vertical lines denote the partition between the boundary
(outside) and non-boundary wavelet coefficients (inside) on each wavelet level.

an over-dispersion in the Q-Q plots. Lag 1 autocorrelation on
levels 4 and 5 imply that the AR(1) wavelet model is more
appropriate than the white noise model. If we ignore the non-
constant variance problem (as has also been done in the earlier
analyzes cited above), we obtain an estimate of d̂M = 0.361
(with a 95% CI of [0.317,0.408]) and σ̂2(d̂M ) = 0.045 using
the AR(1) model.

To assess the affect of non-constant variance, we repeated
our analysis using just the last 96 years of data. In this
case the heteroscedacity in the boundary-independent wavelet
coefficients reduces, and via the AR(1) wavelet model we
obtain d̂M = 0.368 (with a 95% CI of [0.323, 0.415]) and
σ̂2

M (d̂M ) = 0.032. The increased variability at the start of
series thus has little effect on the estimate of d, but the
innovation variance is reduced somewhat.

An alternative to dealing with deseasonalized monthly de-
viates is to analyze yearly averages of the original monthly
deviates. A periodogram similar to the one shown previously
shows evidence of long memory in this case. We perform a
DWT on these data using a D(6) filter to level J = 4 (the lower
values of L and J are dictated by the decrease in sample size).
The equivalent diagnostic plots show few problems in the
distribution of the boundary-independent wavelet coefficients
(probably due to the small sample sizes – note that we can
only handle a quadratic trend now). When we use the AR(1)
wavelet model, we obtain d̂M = 0.343 (with a 95% CI of
[0.101, 0.648]) and σ̂2

M (d̂M ) = 0.020, comparable with the
previous results. The smaller value of the innovations variance

is due to the averaging involved.
Thus, independently of the possible presence of a low order

polynomial trend of order K (as long as L/2 ≥ K+1), there is
evidence of significant long memory. For the deseasonalized
deviations the long memory process is stationary (since the
CI for d does not contain values greater than or equal to 0.5),
but we cannot conclude stationarity for the yearly averaged
series (due to the reduction in sample size). These deductions
support the ideas of Smith [18] and Beran and Feng [25], that
we should be cautious in testing for a significant trend in this
series, unless we can adequately account for the long memory
dependence (the question of the significance of trend can be
investigated using the methods of Craigmile et al. [26]).

X. DISCUSSION AND SUMMARY

The key property of the DWT that we have exploited in our
work is that it approximately decorrelates FD processes. The
degree to which this approximation holds must be assessed
by considering the correlations between wavelet coefficients
on the same scale and on different scales. As the wavelet
filter width L increases, the correlation between coefficients
on different scales necessarily decreases to zero [35]; however,
the same cannot be said for within-scale correlations. Since
coefficients within scale are correlated, we consider an AR
model to capture this dependency structure. The combination
of a moderate filter width (L = 8) and the AR model is
sufficient to give a very good description of FD processes in
the wavelet domain. We have demonstrated through our Monte
Carlo experiments that the large sample theory that is based
upon this wavelet-based description is reasonably accurate,
even for modest sample sizes (N = 256). While it should
be possible to derive a large sample theory that would take
into account the correlations between the wavelet coefficients
not accounted for by our approximations, the justification for
this nontrivial extension would have to be as an interesting
mathematical exercise: the theory that we have developed here
is sufficient for all practical purposes.

Our methodology depends upon a sensible choice of the
width L for the wavelet filter. Two considerations are impor-
tant. The first concerns the order K of the polynomial that
we are willing to consider in our statistical model. Setting K
places a lower bound on L since we must have L ≥ 2(K+1).
The second consideration is dictated by our simulations, which
show that the RMSE in estimating d increases as L increases
due in part to the decrease in the number of nb coefficients per
scale. There is thus good reason to not let L be too much above
2(K+1). (Our estimator of d is designed to be impervious to
trends well-modeled by low order polynomials. The question
of how to use wavelets to estimate and test for such trends is
addressed in Craigmile et al. [26]).

Since our theory agrees with our simulations best for smaller
values of d, a useful strategy in practice is to difference the
process when there is evidence that d ≥ 0.5 (i.e., the FD
process is nonstationary). The theory developed in this paper
will then apply to estimation of the long memory parameter
for the differenced series (since our theory applies to the
estimation of FD processes for d < 0).
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The results presented here for FD processes can be extended
naturally to, for example, ARFIMA processes by modeling the
autoregressive and moving average component in the spectrum
of the process. This allows us to model short and long range
dependence in a time series. Estimation via likelihood is
supported by equivalent limit theorems. The limit variance
of the difference parameter will then depend on the other
parameters in the model. When extending the results to other
error processes we need to assess the extent to which we
can decorrelate the error process, and thus whether the white
noise or AR(1) wavelet model are still adequate fits for the nb
wavelet coefficients. Plots allow us to investigate this question
empirically (see, e.g., Figure 1) and in practice (by looking at
normal Q-Q plots, ACFs, PACFs and periodograms for the nb
wavelet coefficients). Another way to estimate the magnitude
of long range dependence in the presence of short range depen-
dence, is to only consider lower frequencies of the spectrum
(but not too low as to be affected by trend). Equivalently
using the frequency localization of wavelet transforms, we
estimate d using a subset of wavelet scales. This leads to a
semiparametric wavelet-based approach for the estimation of
long memory processes (e.g., Veitch and Abry [12]; Bardet
et al. [13]). Selection of the range of wavelet scales to
include in the estimator is critical in obtaining estimators
with good statistical properties, especially in the presence of
trend (see Veitch and Abry [12], [42] for a discussion of such
issues under the assumption that the wavelet coefficients are
independent both across and within scale).

In summary, we have investigated estimation of the pa-
rameters of polynomial contaminated FD processes using
the DWT. Our proposed method is valuable in the case of
low order polynomial trend (relative to the wavelet order),
since it provides for an elegant partitioning of the noise and
trend components. This leads to an computationally efficient
estimator of d (the wavelet transform is O(N), and the solution
of the profile likelihood equation is fast if we use division
schemes such as the bisection method, or a Newton-Raphson
algorithm). We can also improve estimation by modeling
the within wavelet scale correlations using an AR(1) model,
and using exact wavelet variance calculations rather than the
bandpass approximation.
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[9] P. Abry, P. Gonçalvès, and P. Flandrin, “Wavelet-based spectral analysis
of 1/f processes,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 3, 1993, pp. 237–240,
minneapolis, MN, USA.

[10] ——, “Wavelets, spectrum analysis and 1/f processes,” ser. Lecture
Notes in Statistics, A. Antionadis and G. Oppenheim, Eds. New York:
Springer-Verlag, 1995, vol. 103, pp. 15–29.

[11] P. Abry and D. Veitch, “Wavelet analysis of long-range dependent
traffic,” IEEE Trans. on Info. Theory, vol. 44, no. 1, pp. 2–15, 1998.

[12] D. Veitch and P. Abry, “A wavelet based joint estimator of the parameters
of long-range dependence,” IEEE Transactions on Information Theory,
vol. 45, no. 3, pp. 878–897, 1999.

[13] J. Bardet, G. Lang, E. Moulines, and P. Soulier, “Wavelet estimator of
long range dependence processes,” Statistical Inference for Stochastic
Processes, vol. 3, no. 1-2, pp. 85–99, 2000.

[14] M. Vannucci and F. Corradi, “Modeling dependence in the wavelet
domain,” in Bayesian Inference In Wavelet-Based Models, ser. Lecture
notes in statistics. New York: Springer-Verlag, 1999, ch. 12, pp. 173–
186.

[15] M. J. Jensen, “An alternative maximum likelihood estimator of long-
memory processes using compactly supported wavelets,” Journal of
Economic Dynamics and Control, vol. 24, no. 3, pp. 361–387, 2000.

[16] R. L. Smith, “Extreme value analysis of environmental time series: An
application to trend detection in ground-level ozone,” Statistical Science,
vol. 4, pp. 367–377, 1989.

[17] ——, “Reply to comments on “Extreme value analysis of environmental
time series: An application to trend detection in ground-level ozone”,”
Statistical Science, vol. 4, pp. 389–393, 1989.

[18] ——, “Long-range dependence and global warming,” in Statistics for
the Environment. Wiley (New York), 1993, pp. 141–161.

[19] V. Teverovsky and M. Taqqu, “Testing for long-range dependence in the
presence of shifting means or a slowly declining trend, using a variance-
type estimator,” Journal of Time Series Analysis, vol. 18, pp. 279–304,
1997.

[20] D. Percival and A. Bruce, “Wavelet-based approximate maximum likeli-
hood estimates for trend-contaminated fractional difference processes,”
Insightful, Tech. Rep. 67, 1998.

[21] R. S. Deo and C. M. Hurvich, “Linear trend with fractionally integrated
errors,” Journal of Time Series Analysis, vol. 19, pp. 379–397, 1998.

[22] C. Hurvich and W. W. Chen, “An efficient taper for potentially overdif-
ferenced long memory time series,” Journal of Time Series Analysis,
vol. 21, no. 2, pp. 155–180, 2000.

[23] L. Giraitis, P. Kokoszka, and R. Leipus, “Testing for long memory in
the presence of a general trend,” Journal of Applied Probability, vol. 38,
no. 4, pp. 1033–1054, 2001.

[24] R. Leipus and M.-C. Viano, “Long memory and stochastic trend,”
Statistics & Probability Letters, vol. 61, no. 2, pp. 177–190, 2003.

[25] J. Beran and Y. Feng, “SEMIFAR models – A semiparametric approach
to modelling trends, long-range dependence,” Computational Statistics
and Data Analysis, vol. 40, no. 2, pp. 393–419, 2002.

[26] P. F. Craigmile, P. Guttorp, and D. B. Percival, “Assessing nonlinear
trends using the discrete wavelet transform,” Environmetrics, vol. 15,
no. 4, pp. 313–335, 2004.

[27] I. Daubechies, Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.
[28] S. Mallat, “A theory for multiresolution signal decomposition: The

wavelet representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.

[29] D. Percival and A. Walden, Wavelet Methods for Time Series Analysis.
Cambridge: Cambridge University Press, 2000.

[30] A. Yaglom, “Correlation theory of processes with random stationary
nth increments,” American Mathematical Society Translations (Series
2), vol. 8, pp. 87–141, 1958.

[31] R. B. Davies and D. S. Harte, “Tests for Hurst effect,” Biometrika,
vol. 74, pp. 95–101, 1987.

[32] A. T. A. Wood and G. Chan, “Simulation of stationary Gaussian
processes in [0, 1]d,” Journal of Computational and Graphical Statistics,
vol. 3, pp. 409–432, 1994.

[33] P. F. Craigmile, “Simulating a class of stationary Gaussian processes
using the Davies–Harte algorithm, with application to long memory
processes,” Journal of Time Series Analysis, vol. 24, no. 5, pp. 505–
511, 2003.

[34] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random
Processes: Stochastic Models With Infinite Variance. New York:
Chapman & Hall, 1994.



11

[35] P. F. Craigmile and D. B. Percival, “Asymptotic decorrelation of
between-scale wavelet coefficients,” IEEE Transactions on Information
Theory, 2004, to appear.

[36] P. McCullagh and J. A. Nelder, Generalized Linear Models (Second
Edition). New York: Chapman & Hall, 1989.

[37] T.-H. Li and H.-S. Oh, “Wavelet spectrum and its characterization
property for random processes,” IEEE Transactions on Information
Theory, vol. 48, pp. 2922–2937, 2002.

[38] E. L. Lehmann, Theory of Point Estimation, 2nd ed. New York:
Springer-Verlag, 1998.

[39] R Development Core Team, R: A Language And Environment For
Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2003. [Online]. Available: http://www.R-project.org

[40] M.-J. Lai, “On the digital filter associated with Daubechies’ wavelets,”
IEEE Transarctions on Signal Processing, vol. 43, pp. 2203–2205, 1995.
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