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Abstract

Discrete fractional Gaussian noise (dFGN) has been proposed as a model for interpreting a wide

variety of physiological data. The form of actual spectra of discrete fractional Gaussian noise

(dFGN) for frequencies near zero varies as , where  is the Hurst coefficient;

however, this form for the spectra need not be a good approximation at other frequencies. When

approaches zero, dFGN spectra exhibit the 1-2H power-law behavior only over a range of low

frequencies that is vanishingly small. When dealing with a time series of finite length drawn from

a dFGN process with unknown , practitioners must deal with estimated spectra in lieu of actual

spectra. The most basic spectral estimator is the periodogram. The expected value of the

periodogram for dFGN with small also exhibits non-power law behavior. At the lowest Fourier

frequencies associated with a time series of N values sampled from a dFGN process, the expected

value of the periodogram for H approaching zero varies as  rather than . For finite N

and small H, the expected value of the periodogram can in fact exhibit a local power law behavior

with a spectral exponent of  at only two distinct frequencies.

PACS Codes and Key Terms: 05.45.Tp, 47.53.+n; anti-correlated fractional Gaussian noise,

power-law, spectra, Hurst coefficient, periodogram, time series analysis
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1. Introduction

Recently there has been considerable interest in the use of stochastic fractal models to help

interpret physiological data (Bassingthwaighte, Liebovitch, and West, 1994). Two models that

have been investigated extensively in this context are fractional Brownian motion (FBM) and

fractional Gaussian noise (FGN) (Mandelbrot and Van Ness, 1968). These two models are related

to one another, but the connection between them and how they are used in practical applications

bring up some subtle issues that have not been fully appreciated amongst practitioners and that are

the focus of the present manuscript.

Our starting point is FBM, which we denote here as , . FBM is a continuous

parameter stochastic process that depends upon a parameter , the Hurst coefficient, where

. The qualifier ‘continuous parameter’ refers to the fact that the independent variable, ,

ranges over all nonnegative real values. In practical applications, we must deal with sampled data,

which leads us to consider at just the integers t=0, 1, 2, .... This sampling leads to a discrete

parameter version of FBM, which we refer to as dFBM. For clarity, we henceforth refer to the

continuous parameter version of FBM as cFBM.

Flandrin (1989) shows that, even though cFBM is a nonstationary process, it has a well

defined power spectrum  that obeys a power law exactly over all frequencies; i.e.,  is

proportional to for . Flandrin also considers a form of a derivative of cFBM,

namely, a process defined as . He shows that this derivative process also

has a spectrum that obeys a power law exactly over all frequencies and is given by .

The concept of FGN as formulated by Mandelbrot and Van Ness is related to this derivative

process in that, rather than letting δ decrease to zero, we fix it at unity. This leads us to what we

will refer to as continuous FGN (cFGN) and discrete FGN (dFGN). cFGN is defined as

, where , resulting in a spectrum given by the product of the

squared gain function for a first difference filter and the spectrum of cFBM, i.e.,

BH t( ) 0 t ∞≤ ≤

H

0 H 1< < t
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f
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, which approaches a power-law only as . dFGN is obtained by

restricting t to the nonnegative integers. Note that, in addition to being the sampled version of

cFGN, the process dFGN can be regarded as the first difference of dFBM. We also note that, due

to the sampling, the spectra for dFBM and dFGN are even periodic functions with a period of

unity, so the frequencies of interest satisfy , and their respective spectra also

approach power-laws only as .

Both dFGN and dFBM have found application in many areas of science and have been

applied to discretely sampled time series of many natural processes. The fact that cFBM and its

derivative have spectra that exactly obey a power law over has sometimes mistakenly

been taken to hold both for the spectra of dFBM and dFGN over  and for

estimates of these spectra given by the periodogram. Sometimes the power-law expression is cited

directly, and it is implied or assumed that the expected estimated spectra as computed by the

periodogram for dFGN are a power-law everywhere (Churilla et al., 1996; Pilgram and Kaplan,

1998, Henegan and McDarby, 2000). The idea that the spectra of cFGN are a power-law

everywhere has been transferred to power-law behavior of dFGN spectral estimates, and the

caveat that the actual spectra for dFGN are only a power-law in the limit as  appears to be

unheeded. Churilla et al. (1996) posit separate power-law behavior for the low frequencies and the

high frequencies of the periodogram and derive separate Hurst coefficients for both by fitting each

band of frequencies with a different power-law based on the power-law formulation. The spectral

synthesis method of Peitgen and Saupe (1988) and that modified by Bassingthwaighte and

Raymond (1995) generated dFGN by an inverse Fourier transform of the power-law spectral

coefficients after phase randomization and multiplying the amplitudes by random Gaussian

numbers. The expected value of periodograms from this kind of process will be a power-law, and

do not have the same spectrum as a dFGN. Pilgram and Kaplan (1998) used a spectral synthesis

method whose basis is the power-law spectrum, but studied only spectra for  and

S f( ) 4sin
2 πf( ) f

1– 2H–⋅∼ f 0→

1– 2⁄ f 1 2⁄≤ ≤
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1– 2⁄ f 1 2⁄≤ ≤
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therefore did not observe the incorrect spectral representation at the low frequencies though their

method does also represent the highest frequencies incorrectly.

If we plot versus on a log-log scale, we see a line with a slope of .

To determine frequencies over which for dFGN varies as , we define a local spectral

exponent

, (1)

where . As  and , . We also define a local Hurst

coefficient,

. (2)

By plotting  as a function of f with  set to a small number, it is possible to see at what

frequencies this function is approximately equal to the Hurst coefficient, showing the region

where varies as to a good approximation. It is not widely appreciated how very low

the frequency must become when H is also small for the spectra to exhibit power-law behavior.

 Marked departure from nominal  behavior of dFGN spectra occur under several

conditions. At high frequencies near  (the Nyquist frequency for the data set sampled

from cFGN), the dFGN spectra flatten out and the local spectral exponent is zero. When is near

zero, a significant portion of the frequency band beginning at  and extending through

mid-range frequencies also deviate from nominal power-law behavior. The only spectrum

of dFGN that obeys the nominal power-law everywhere is for , i.e. the “white” noise

spectrum with zero exponent everywhere. For , the spectra of correlated or persistent

dFGN exhibit a significant discrepancy from nominal power-law behavior only near the highest

frequencies. The flatness of these spectra near  is less remarkable than the overall
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impression of power-law behavior (Beran, 1994, page 54). For , the spectra of anti-

correlated or antipersistent dFGN have more extensive regions of non-power law behavior than

what is observed for positively correlated dFGN spectra. More attention has been paid to

positively correlated than to anti-correlated series, and consequently the impression of power law

behavior for all spectra of dFGN has been inadvertently reinforced.

The next three sections of this paper are devoted to (1) calculating the local Hurst

coefficients, H(f,δ) from Eq. 2, for the spectra of dFGN; (2) comparing the local H(f,δ) from

spectra and periodograms and showing the effects of series length, N; and (3) evaluating the

utility of the local spectral exponents, e(f,δ), obtained at the lowest available frequencies of the

periodograms. The results emphasize that the  power-law behavior of the spectra applies

only to a very small range of frequencies when the Hurst coefficient is small; the expected value

of the periodogram exhibits power law behavior only over a small frequency band, if at all; the

expected values of the periodograms at the lowest available frequencies for anti-correlated dFGN

do not converge to the actual spectra as N increases; and for very small H, the local spectral

exponent of the smallest available frequencies from the periodogram of dFGN is zero.

2. Calculating the local Hurst coefficients, H(f,δ), for the spectra of dFGN

The spectral density function (SDF) for dFGN is given by Sinai (1976) and Beran (1994) as

, , (3)

where  is the variance of the process,  is the Hurst coefficient, and

. (4)

H 0.5<

1 2H–

S f( ) 4σ2
CHsin

2 πf( ) 1
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2H 1+

----------------------------
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∞

∑= f 1 2⁄≤

σ2
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Eq. 3 is not useful in calculating the SDF when  because of the slow convergence of the

infinite summation. The SDF can be approximated and computational efficiency gained by using

an Euler-Maclaurin summation (Percival and Walden, 2000, p280):

(5)

Only 2M+3 terms need to be evaluated (note that the second summation is over 1 and −1,not 0),

and choosing M=100 gives .

 Fig. 1 shows the local Hurst coefficient, , calculated from the SDFs for 12 Hurst

coefficients, H=0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01 and 0.001, with . In

Table 1, we have calculated the frequency below which , that is, the

frequency below which the local Hurst coefficients are within 10% of the nominal H. For

positively correlated FGNs, , as f is decreased from 0.5,  rises sharply above

the true H and then soon decreases to within 10% of the nominal Hurst coefficient when f is about

0.2 and to within about 1% when f < 0.03. The local Hurst coefficient for a white noise spectra,

( ) is everywhere 0.5.

For the anti-correlated dFGNs, , drops steeply as decreases from 0.5,

undershooting the true or nominal value of the Hurst coefficient (Fig. 1, lower section). The local

Hurst coefficient then slowly converges to the nominal at low frequencies. The convergence is

markedly slower than for positively correlated dFGN. For anti-correlated dFGN, the highest

frequency at which is within 10% of H decreases as H decreases. For a Hurst coefficient
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of 0.001, only at frequencies lower than  is  within 10% of H. The lowest non-

zero Fourier frequency in a periodogram that is computed for a time series of length N is given by

. If we could accurately determine the spectrum by computing the periodogram, we would

need a series at least as long as 5 million points when H = 0.001in order to achieve a power law at

 (as will be shown in the next section, in fact estimation of the spectrum via the

periodogram is problematic). Summarizing, Fig. 1 indicates that neither positively correlated nor

anti-correlated dFGNs have spectra following power law scaling over the complete range

of frequencies. Only a white noise dFGN has a power spectral exponent of 1 - 2H, namely zero.

3. Comparing the local H(f,δ) from dFGN spectra and periodograms with H = 0.001 to 0.1

Given a time series X0, X1, …, XN−1 of length N, a basic estimate of the SDF is the periodogram:

. (6)

The expected value of the periodogram is given by the convolution of Fejér’s kernel,

, (7)

with the SDF:

, (8)

where is given by Eq. 3. The contribution to this expectation at a particular frequency from

distant frequencies is called spectral leakage and occurs because of an interplay between the

shape of Fejér’s kernel and the distribution of power in the spectra. The leakage of power into the

lowest frequencies is especially severe as the Hurst coefficient approaches zero. For a long time

2.0 10
7–⋅ H f δ,( )
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series, it is tricky to calculate the expected value of the periodogram via numerical evaluation of

the integral in Eq. 8.

Fortunately the following method avoids the convolution integral of Eq. 8 and is

computationally more efficient. Let Xj, j = 0,... N-1, denote a portion of an dFGN process with

zero mean. The autocovariance sequence is given by Mandelbrot (1983, p353):

, (9)

where and is the Hurst coefficient. The expected value of the periodogram,

, is given by Percival and Walden (1993, Eq.198) as:

. (10)

The estimated spectra from the periodogram is an asymptotically unbiased estimator of

(Percival and Walden, 1993, p. 199). Thus, for any particular frequency,

. (11)

Once f is fixed, the expected value of the periodogram will equal the actual spectral density at that

frequency as the length of the series increases without bound. However, in general,

. (12)

For anti-correlated dFGN with small H, the periodogram at the lowest non-zero Fourier frequency

does not give the actual spectra or power-law behavior for dFGN.
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In Fig. 2, for H = 0.1, 0.01, and 0.001, the expected values of the periodogram for series of

lengths 2k, (k=6, 7, … 24) (series length N = 64, 128, … 16,777,216) (thin lines) have been used

to calculate  with  for . The values from the actual spectra

are plotted with darker lines for comparison. The corresponding  is indicated by the horizontal

dashed lines.

For , top panel of Fig. 2, for the local Hurst coefficient of the periodogram,

, to be within 10% of  for the range  requires a series of length

. Fitting the log of the expected values of the periodogram versus log frequency to a

straight line at the lowest frequencies would give a Hurst coefficient close to 0.2 for . For

short series, , the local Hurst coefficient has no significantly long range of frequencies

over which it is close to the nominal , even though it passes through the correct value.

For , middle panel of Fig. 2, a series of (16,777,216) points is required to

get a substantial range of frequencies over which  is close to . Computing e(f,δ) at the

lowest frequencies gives a local Hurst coefficient close to 0.4 for .

For , bottom panel of Fig. 2, a series of  points is not long enough to

identify the nominal . Roughly speaking, a series of approximately one billion points or longer

is required to get even a small range of frequencies where there is power-law scaling giving

. At the lowest frequencies the local slope, e(f,δ), would give a local Hurst coefficient

close to 0.5 for .

Fig. 3 displays the information on the upper panel of Fig. 2 in another way: it shows the

frequency ranges where the local Hurst coefficient of both the spectra and the periodogram are

within 10% of the nominal Hurst coefficient when . For series of length , no

such significant range exits. Series of length barely contain a significant frequency

band within 10% of the nominal H. Series of length greater than one million points are necessary
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to have a significant frequency band within 10% of the nominal H. The periodogram estimates

associated with both the highest and lowest frequencies are always outside this region.

In conclusion, for a given Hurst coefficient for anti-correlated dFGN and a long enough

series, a portion of the expected value of the periodogram will vary approximately as , but

the interval of frequencies over which this occurs does not include the lowest available Fourier

frequencies. If the series is not long enough, there is no substantive region where the periodogram

can be expected to vary as .

4. The local spectral exponents, e(f,δ), for periodograms of varied H at the lowest available

frequencies

In Fig. 4, for , the local spectral exponent, is shown as the thick line for a set

of series, all of length , where  and . This choice of f

and δ means that e(f,δ) depends on the expected value of the periodogram at its two lowest non-

zero Fourier frequencies, namely 1/N and 2/N. The local spectral exponent goes to zero as H goes

to zero. On a log-log plot of the periodogram versus frequency, the lowest frequency end behaves

as  instead of  as H approaches zero. The departure from the nominal power law,

 occurs when .

5. Summary and Conclusions

Although the SDF for dFGN approaches a power-law when the frequency approaches zero, it is

not everywhere a power-law, except when the Hurst coefficient equals 0.5. For anti-correlated

dFGN, the frequency where the SDF becomes a power-law to a decent approximation depends on

the Hurst coefficient. As , the frequency at which the power-law region becomes

discernible approaches zero as well. There is an obvious implication for methods generating

FGN. Generating dFGN by the Fourier transform of a spectra that is a power-law everywhere

f
1 2H–

f
1 2H–
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H 1< < e f δ,( )

N 2
15

= f 1 1 2⁄+( ) N⁄= δ 1 2⁄( ) N⁄=
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(Peitgen and Saupe, 1988; Bassingthwaighte and Raymond, 1995; Pilgram and Kaplan, 1998)

gives series that always deviate from FGN except when H=0.5.

The expected value of the periodogram for an anti-correlated dFGN can differ more

markedly from the corresponding true spectrum than does that for a positively correlated dFGN.

When H approaches zero, the local spectral exponent for the expected value of the periodogram

tends to differ significantly from the power law nominally associated with H even for quite large

sample sizes N. Unlike the actual spectra, the estimates from the lowest frequencies of the

periodogram available from a series of length N (that is, ) never converge to

the nominal power-law because of spectral leakage from other frequencies. At high frequencies,

the expected value of the periodogram is approximately equal to the true spectrum, but, over these

frequencies, the local Hurst coefficient, H(f,δ), is not close to H. These facts have two

implications. First, practitioners must be very cautious about attempting to deduce H from the

periodogram, particularly for anticorrelated time series. Blind application of regression analysis

to the log periodogram can lead to estimates of H that are not good quantifiers of the observed

phenomena, even in the case where dFGN is an appropriate model. Second, attempts to make use

of the log periodogram for estimating H have been motivated largely by the fact that the exact

maximum likelihood estimator of H is computationally infeasible for large sample sizes (Beran,

1994). Although the expected value of the periodogram can differ significantly from the true

spectrum, these values do exhibit a dependence on H. Rather than trying to fit portions of the

periodogram to the true spectrum via least squares, it might be better to fit the periodogram to its

expected value for various hypothesized values of H. This suggestion would lead to a nonlinear

procedure for deducing H, which might form the basis for an attractive alternative to the

computationally infeasible maximum likelihood estimator. Exploration of this scheme is a topic

for future research.

f 1 N⁄ 2 N⁄ …, ,=
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Table 1: The power law frequency limits
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Figure 1: Estimate of the local Hurst coefficient, H(f,δ), versus frequency for

dFGN of varied true H. The power law region where the similarity scaling in the

power spectrum exists, or where  is approximately equal to a constant, is

relatively short for Hurst coefficients below 0.1.
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Figure 2: Comparison of  from actual spectra (thick lines), power-law

(dashed lines), and periodograms (thin lines).
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Figure 3: The range of series lengths and segments of the frequency range where

the local slope, e(f,δ) gives acceptable estimates of H. The thin lines represent the

span of the non-zero Fourier frequencies j/N, j=1, ... N/2, , k=6,7, ... 24.

The dark bars are the regions where for both the spectra and

expected value of the periodogram when .

0-1-2-3-4-5-6-7-8
log10(Frequency)

10

15

20

25

5

lo
g 2

(N
)

1 K

32 K

1 M

16M

N 2
k

=

H f δ,( ) H– 0.1H≤

H 0.1=
/user14/manu/mss/637/637.fm 18 October 23, 2002 9:02 am



Figure 4: The local spectral exponent, (thick line), for series with 10-4 <

H < 1 of length , taken from the lowest frequencies of the periodogram

where  and . The thin line is .The

vertical dashed line is at , values above which .
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