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Summary. Characteristic scale is a notion that pervades the geophysical sciences, but it has
no widely accepted precise definition. The wavelet transform decomposes a time series into
coefficients that are associated with different scales. The variance of these coefficients can
be used to decompose the variance of the time series across different scales. A practical
definition for characteristic scale can be formulated in terms of peaks in plots of the wavelet
variance versus scale. This paper presents basic theory for characteristic scales based upon
the discrete wavelet transform, proposes a natural estimator for these scales and provides a
large sample theory for this estimator that permits the construction of confidence intervals for
a true unknown characteristic scale. Computer experiments are presented that demonstrate
the efficacy of the large sample theory for finite sample sizes. Examples of characteristic
scale estimation are given for global temperature records, coherent structures in river flows,
the Madden–Julian oscillation in an atmospheric time series and transects of one type of Arctic
sea ice.

1. Introduction

Time series in geophysics and other areas often seem to be describable as a series of ‘states’
or ‘events’ whose durations tend to cluster around a value known as a characteristic scale.
Although the notion of characteristic scale is widespread in the physical sciences, it does
not have a precise definition independent of summary statistics that have been proposed to
extract it from particular time series. Several definitions for characteristic scale are discussed
in von Storch and Zwiers (1999) for time series that can be modeled as a stochastic process
Xt, t ∈ Z (the set of all integers). One definition involves quantifying the ‘memory’ of the
process. Suppose that P[Xt+τ > 0 |Xt > 0] > 0.5 for small lags τ , but P[Xt+τ > 0 |Xt >
0] = 0.5 at large lags. The smallest τ such that the latter relationship holds is one way to
define a characteristic scale. Although this definition has some intuitive appeal because it
is based on the length of time that a process takes to ‘forget’ its current positive state, von
Storch and Zwiers note that it is of limited practical value; for example, it leads to an infinite
characteristic scale for a first-order autoregressive (AR(1)) process, one of the most popular
models in time series analysis. Under the additional assumption that Xt is a wide-sense
stationary process with variance σ2, a more useful definition compares Xt to a process Yt

consisting of independent and identically distributed random variables, also with variance
σ2. The sample mean of Y1, Y2, . . . , YN has variance σ2/N , whereas that for X1,X2, . . . ,XN

can be expressed as σ2/N 0, where N 0 is referred to as the equivalent sample size. The limit
of the ratio N/N 0 as N → ∞ defines a quantity τD known as the decorrelation time. As
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von Storch and Zwiers argue, τD is a reasonable definition for characteristic scale for some
– but not all – time series. The practicality of this measure is partly due to its relationship
with the autocorrelation sequence (ACS) ρk for Xt, namely,

τD = 1 + 2
∞X

k=1

ρk. (1)

Appropriate estimates of ρk can thus be used as the basis for an estimate of τD; for an
AR(1) process, we have τD = (1+ρ1)/(1−ρ1). More generally, von Storch and Zwiers note
that the variances of statistics other than the sample mean can be used in a similar manner
to define other measures of characteristic scale. Other approaches for defining characteristic
scale have been discussed in the literature. Four examples are Simonetti et al. (1985), who
cast the definition in terms of the structure function (basically a reformulation of the ACS);
Cordes (1986), who uses the shape of the ACS; Higuchi (1988), who links characteristic
scale to a measure of fractal dimension; and Tsonis et al. (1998), who define the concept
in terms of fluctuations from cumulative sums in combination with detrending via singular
spectrum analysis (see Section 6.1 for details).

In this article we propose a new definition for characteristic scale based upon the discrete
wavelet transform (DWT) of Xt. The DWT is often described as a scale-based transform
(see, e.g., Flandrin, 1999, Percival and Walden, 2000, and Nason, 2008). To fix ideas, let us
focus on the Haar DWT. This transform yields wavelet coefficients, say WHaar

τ,t , that reflect
changes in adjacent averages spanning integer scales τ at times indexed by t; to be precise,

WHaar
τ,t ∝ 1

τ

τ−1X

l=0

Xt−l −
1
τ

τ−1X

l=0

Xt−τ−l.

If the ‘events’ in a time series have a characteristic duration of τ , then |WHaar
τ,t | will tend to be

large at certain indices t. Under the assumption that Xt is a stationary process, a summary
of the ‘largeness’ of |WHaar

τ,t | across t is provided by a time-independent quantity var {WHaar
τ,t }

known as the wavelet variance. The wavelet variance provides a scale-based decomposition
of the variance of Xt (see Section 2.1 for details), so a large var {WHaar

τ,t } for a particular τ
should provide the basis for defining a characteristic scale that is in the neighborhood of τ .
The goal of this article is to expand this key idea to define a wavelet-based characteristic
scale and to provide theory for a corresponding statistically tractable estimator.

The remainder of this paper is organized as follows. Section 2 gives some necessary
background on the DWT, the wavelet variance and its sampling theory for intrinsically sta-
tionary Gaussian processes. Section 3 proposes a wavelet-based definition of characteristic
scale and contrasts it with τD. Section 4 deals with estimation of the wavelet-based charac-
teristic scale and provides some large-sample theory for the proposed estimator. Section 5
reports on a Monte Carlo study that examines the efficacy of the large-sample theory for a
representative selection of processes and finite sample sizes. Section 6 gives four examples of
estimating characteristic scales for actual time series. The final section (7) has a summary
and a discussion of possible extensions.

2. Background on the Wavelet Variance

Here we define the wavelet variance, give an interpretation for it and present formulae that
allows its computation, after which we review its estimation theory.
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2.1. Definition and Basic Properties of the Wavelet Variance
Let {Xt} be an intrinsically stationary process of integer order d ≥ 0, defined as follows.
If d = 0, {Xt} itself is stationary in the sense that both E{Xt} and cov {Xt+τ ,Xt} exist,
are finite and are independent of t; if d > 0, then subjecting {Xt} to a dth order backward
difference filter yields a stationary process, namely,

X(d)
t ≡

dX

k=0

µ
d

k

∂
(−1)kXt−k,

whereas {X(d−1)
t }, . . . , {X(1)

t } and {X(0)
t } ≡ {Xt} are all nonstationary. Under the assump-

tion that {X(d)
t } has a spectral density function (SDF) denoted by SX(d)(·), the (generalized)

SDF for {Xt} is defined to be

SX(f) =
SX(d)(f)

[4 sin2(πf)]d
,

where 4 sin2(πf) defines the squared gain function for a first-order backward difference filter
(Yaglom, 1958). We denote the autocovariance sequence (ACVS) for {X(d)

t } by {s(d)
τ }.

Let {h1,l : l = 0, 1, . . . , L1 − 1} be a unit-level Daubechies wavelet filter of width L1 =
2, 4, 6, . . . normalized such that

P
l h

2
1,l = 1/2 (Daubechies, 1992). If L1 ≥ 4, use of this

filter is equivalent to subjecting the output from a backward difference filter of order d =
L1/2 to a low-pass filter of width L1/2 (the case L1 = 2 yields the Haar wavelet filter,
whose coefficients {1

2 ,−1
2} are proportional to a first-order backward difference filter). Let

g1,l ≡ (−1)l+1h1,L1−1−l be the corresponding scaling filter. Let

H1(f) ≡
L1−1X

l=0

h1,le
−i2πfl

define the transfer function for the wavelet filter, and let G1(f) denote the same for the
scaling filter. For a level j ≥ 2, let

Hj(f) ≡ H1(2j−1f)
j−2Y

k=0

G1(2kf).

The inverse Fourier transform of this function gives the impulse response sequence for the
jth level wavelet filter {hj,l : l = 0, . . . Lj − 1}, where Lj ≡ (2j − 1)(L1 − 1) + 1. We
denote the corresponding squared gain function by Hj(f) = |Hj(f)|2. The filter {hj,l} is
approximately a bandpass filter with a passband given by |f | ∈ (1/2j+1, 1/2j ].

The jth level wavelet coefficient process for {Xt} is given by

Wj,t ≡
Lj−1X

l=0

hj,lXt−l.

The coefficient Wj,t is proportional to changes in adjacent weighted averages with an effec-
tive scale (or span) of τj = 2j−1. Note that scale τj is associated with the frequency interval
(1/(4τj), 1/(2τj)] and the interval of periods [2τj , 4τj). Under the assumptions that {Xt}
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is an intrinsically stationary process of order d with SDF SX(·) and that L1 ≥ 2d, {Wj,t}
is a stationary process with SDF given by

Sj(f) ≡ Hj(f)SX(f) =
Hj(f)SX(d)(f)
[4 sin2(πf)]d

.

By definition the wavelet variance for {Xt} at scale τj is the variance of {Wj,t}:

ν2
j ≡ var {Wj,t} =

Z 1/2

−1/2
Sj(f) df =

Z 1/2

−1/2
Hj(f)SX(f) df.

If {Xt} is a stationary process, then

var {Xt} =
∞X

j=1

ν2
j

(Percival, 1995), and the wavelet variance for scale τj can be interpreted as the contribution
to the overall variance due to changes in adjacent weighted averages over that scale (if {Xt}
is nonstationary, the summation above diverges to infinity, but ν2

j still has the interpretation
of measuring the variability of changes in adjacent weighted averages).

The theoretical wavelet variance for an intrinsically stationary process can be computed
readily in terms of the ACVS {s(d)

τ } for its underlying stationary component. In particular,
we can write

ν2
j = s(d)

0

Lj−d−1X

l=0

≥
b(d)
j,l

¥2
+ 2

Lj−d−1X

τ=1

s(d)
τ

Lj−d−1−τX

l=0

b(d)
j,l b(d)

j,l+τ ,

where {b(d)
j,l } is the dth-order cumulative summation of {hj,l}; i.e., with b(0)

j,l ≡ hj,l, we have,
for k = 1, . . . , d,

b(k)
j,l =

lX

n=0

b(k−1)
j,n , l = 0, 1, . . . , Lj − k − 1

(Lemma 1, Craigmile and Percival, 2005). Using {b(d)
j,l }, we can write

Wj,t =
Lj−d−1X

l=0

b(d)
j,l X(d)

t−l.

Denote the transfer function and squared gain function for {b(d)
j,l } as

B(d)
j (f) ≡

Lj−d−1X

l=0

b(d)
j,l e−i2πfl and B(d)

j (f) ≡ |B(d)
j (f)|2 =

Hj(f)
[4 sin2(πf)]d

.

Then we can have

Sj(f) = B(d)
j (f)SX(d)(f) and hence ν2

j =
Z 1/2

−1/2
B(d)

j (f)SX(d)(f) df.



ASSESSING CHARACTERISTIC SCALES USING WAVELETS 5

2.2. Estimation Theory for the Wavelet Variance
Given a time series that can be regarded as a realization of a portion X0,X1, . . . ,XN−1 of
length N of the process {Xt}, we can compute the level j wavelet coefficients for indices
Lj − 1 ≤ t ≤ N − 1 under the assumption that Mj ≡ N − Lj + 1 > 0. A sufficient (but
not necessary) condition for {Wj,t} to be a zero mean stationary process is that L1 > 2d (if
L1 = 2d, then {Wj,t} is necessarily stationary, but it might not have zero mean). Assuming
that L1 is chosen such that {Wj,t} is a zero mean stationary process, we have ν2

j = E{W 2
j,t}

and hence

ν̂2
j ≡

1
Mj

N−1X

t=Lj−1

W 2
j,t (2)

is an unbiased estimator of the wavelet variance.
To look at the second moment properties of ν̂2

j , we assume that the Wj,t obey a mul-
tivariate Gaussian distribution. Using the Isserlis theorem (Isserlis, 1918) and assuming
j ≤ k, we find that variance and covariance of ν̂2

j and ν̂2
k are given by

cov {ν̂2
j , ν̂2

k} =
2

Mj

Mk−1X

τ=−(Mk−1)

µ
1− |τ |

Mk

∂
s2

j,k,τ +
2

MjMk

Lk−2X

t=Lj−1

N−1X

u=Lk−1

s2
j,k,t−u, (3)

where {sj,k,τ} is the cross-covariance sequence for the bivariate stationary processes {Wj,t}
and {Wk,t}:

sj,k,τ ≡ cov {Wj,t+τ ,Wk,t} =
Lj−d−1X

l=0

b(d)
j,l

Lk−d−1X

m=0

b(d)
k,ms(d)

τ−l+m

(when using (3) to compute var {ν̂2
j } by letting k = j, the double summation is interpreted

as zero).
While (3) is an exact result, it is of interest to explore an approximation to cov {ν̂2

j , ν̂2
k}

that leads to a practical scheme for estimating it. As N → ∞ and hence Mk → ∞
also, the double summation in (3) becomes negligible, whereas the first summation can be
approximated using a Cesàro sum argument, which, followed by an appeal to Parseval’s
theorem, yields

cov {ν̂2
j , ν̂2

k} ≈
2

Mj

∞X

τ=−∞
s2

j,k,τ =
2Aj,k

Mj
, where Aj,k ≡

Z 1/2

−1/2
Sj(f)Sk(f) df. (4)

Suppose that Ŝj(f), 0 < f < 1/2, is some standard nonparametric SDF estimator whose
large-sample distribution is dictated by Sj(f)χ2

η/η, where χ2
η is a chi-square random variable

with η degrees of freedom (see, e.g., Priestley, 1981). Letting Ŝk(f) be a similar estimator
for Sk(f), it follows from standard theory for multivariate SDF estimation (Priestley, 1981)
that

E{Ŝj(f)Ŝk(f)} ≈ Sj(f)Sk(f)
µ

2
η

+ 1
∂

and hence that

Âj,k ≡
η

2 + η

Z 1/2

−1/2
Ŝj(f)Ŝk(f)df
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is an approximately unbiased estimator of Aj,k. Specializing to the case where Ŝj(f) and
Ŝk(f) are lag window estimators based upon lag windows {wj,τ} and {wk,τ} (Priestley,
1981), we have

Âj,k =
η

2 + η

√

ν̂2
j ν̂2

k + 2
Mk−1X

τ=1

wj,τ ŝj,τwk,τ ŝk,τ

!

, (5)

where {ŝj,τ} is the biased estimator of the ACVS for Wj,Lj−1, . . . , Wj,N−1:

ŝj,τ ≡
1

Mj

N−1−τX

t=Lj−1

Wj,t+τWj,t, 0 ≤ τ ≤Mj − 1.

A practical scheme for approximating cov {ν̂2
j , ν̂2

k} is to substitute Âj,k for Aj,k in (4).
Finally, we note that, under a Gaussian assumption on {Xt} and mild conditions on its

SDF, ν̂2
j is asymptotically normally distributed with mean ν2

j and large sample variance
2Aj,j/Mj (Percival, 1995; Mondal, 2007; see Serrouk et al., 2000, for related results that
relax the Gaussian assumption).

3. Wavelet-Based Definition of Characteristic Scale

Because we can interpret the wavelet variance at a particular scale τj as the contribution to
the overall variance of {Xt} due to changes in adjacent weighted averages over that scale, we
can formulate a wavelet-based notion of characteristic scale by searching for scales at which
ν2

j is large compared to its surrounding values, thus leading to the following definitions.

Definition 1. (Local characteristic scale τc,j.) Suppose {Xt} is an intrinsically sta-
tionary process such that ν2

j ≥ ν2
j±1 for some j ≥ 2, with strict inequality holding in

at least one case. Fit a quadratic yk = a + bxk + cx2
k that passes through (xk, yk) ≡

(log2(τk), log2(ν2
k)), k = j − 1, j, j + 1. A local characteristic scale is the location at which

the quadratic is maximized:

τc,j = 2−b/(2c) = 2−β1/β2τj , where β1 ≡
yj+1 − yj−1

2
and β2 ≡ yj+1 − 2yj + yj−1. (6)

We note in passing that τj/
√

2 ≤ τc,j ≤ τj
√

2 and that the pattern ν2
j−1 < ν2

j = ν2
j+1 > ν2

j+2

yields τc,j = τc,j+1 = τj
√

2.

Definition 2. (Global characteristic scale τc.) Suppose {Xt} has a local characteristic
scale τc,j such that ν2

j > ν2
k for all k ∈ Z+ excluding k = j − 1, j, j + 1, where Z+ is the set

of positive integers. Then {Xt} is said to have a global characteristic scale τc ≡ τc,j.

Figure 1 shows four examples of theoretical wavelet variance curves with local characteristic
scales. If we assume that the wavelet variances at scales not depicted in the plots are all
smaller than the ones shown, the processes associated with (a), (b) and (d) have a global
characteristic scale, but the one for (c) does not.

Our definitions for τc,j and τc need some justification. Arguably a more natural def-
inition for characteristic scale would involve a wavelet variance defined over a continuum
of scales via a continuous wavelet transform (CWT). A local maxima of a CWT-based
wavelet variance curve would then define a local characteristic scale, which would seem to
be preferable to our interpolation scheme based on just the dyadic scales τj = 2j−1. The
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Fig. 1. Log of wavelet variances ν2
j versus log of τj (circles) for (a) a first-order autoregressive

(AR(1)) process, (b) a linear combination of an AR(1) process and a fractionally differenced process;
(c) a linear combination of an AR(1) process and white noise; and (d) a linear combination of two
AR(1) processes (see Section 5 for precise definitions of all four processes). The vertical dashed
lines indicate the locations the characteristic scales τc,j , while the gray curves show the quadratic fit
whose maximum location determines τc,j .
.

following example suggests the CWT- and DWT-based definitions are quite similar, which
leads us to prefer the latter because it is much easier to compute and because its estimator
is statistically tractable. Consider an AR(1) process Xt = φXt−1 + ≤t, where {≤t} is a
Gaussian white noise process with zero mean and unit variance. For the Haar DWT, this
process has a global characteristic scale when 0.57 < φ < 1. The pluses in Fig. 2 show how
τc increases as φ varies from 0.60 to 0.99 in steps of 0.01. Avoiding interpolation issues that
arise in using a CWT with a time series sampled over the integers, we can readily extend
the definition of the Haar wavelet variance to all scales τ ∈ Z+:

ν2(τ) =
var

nPτ−1
l=0 Xt−l −

Pτ−1
l=0 Xt−τ−l

o

4τ2
.

A plot of ν2(τ) versus τ for φ = 0.60, 0.61, . . . , 0.99, shows a unique maximum, which
provides us with a CWT-like definition of characteristic scale τ̃c ∈ Z+. The circles in Fig. 2
show τ̃c versus φ. The agreement between τc and τ̃c is very good and gets better as φ
increases. By contrast, if we were to define τc in terms of a quadratic fit in linear/linear
rather than log/log space, we obtain the asterisks shown in the figure, which do not agree
nearly as well with the CWT-based definition τ̃c. Use of linear/log space or log/linear space
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Fig. 2. Comparison of three wavelet-based measures of characteristic scale for an AR(1) process
with a unit-lag autocorrelation of φ. The pluses show τc, which is based on a quadratic fit in log/log
space around the peak in the Haar wavelet variance curve evaluated over dyadic scales τj = 2j−1.
The asterisks show a similar measure, but now based on a quadratic fit in linear/linear space. The
circles are based on a measure given by the location of the peak of the Haar wavelet variance curve
evaluated over all integer-valued scales.
.

yields characteristic scales that are nearly identical to those obtained using, respectively,
linear/linear space or log/log space. The choice of log/log space over log/linear space
is dictated by the fact that the log transform acts as a variance-stabilizing transform for
wavelet variance estimators (this can be seen further on by noting that, while the elements of
Σ1 in Equation (7) depend on the wavelet variance, this quantity ratios out in the elements
of Σ2 in Equation (8)).

For a stationary process {Xt} with ACS {ρk}, it is of interest to compare τc to the
measure of characteristic scale provided by the decorrelation time of Equation (1). For an
AR(1) process, ρk = φ|k| decays exponentially, and we have τD = (1 + φ)/(1− φ). Figure 3
shows τD versus the Haar-based τc as φ ranges over 0.60, 0.61, . . . , 0.99. The two measures
track each other as φ gets large, with τD

.= 1.01τc for φ = 0.99. Figure 1(a) shows the
Haar wavelet variance versus τj when φ = 0.7, for which τc

.= 4.53. By contrast, Fig. 1(b)
shows a similar wavelet variance curve for a process that is a linear combination of an
AR(1) process with φ = 0.75 and a fractionally differenced (FD) process with long-memory
parameter δ = 0.45 (Granger and Joyeux, 1980; Hosking, 1981; Beran, 1984). The two
processes are independent of each other. Here τc

.= 5.87, whereas τD is infinite because
ρk decays hyperbolically due to the influence of the FD process. This fact points out a
fundamental difference between the measures τc and τD: whereas the former concentrates
on localized properties of {Xt}, the latter is influenced to a large degree by the asymptotic
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Fig. 3. Decorrelation time τD versus characteristic scale τc for AR(1) processes with unit-lag auto-
correlations of φ = 0.60, 0.61, ..., 0.99 (circles from left to right). If τD and τc had been equal, the
circles would have fallen on the dashed line.
.

decay rate of the ACS (and cannot be used at all with intrinsically stationary processes
with d > 0).

4. Statistical Properties of Characteristic Scale Estimators

Suppose we have a time series that can be regarded as a realization of a portion X0, X1,
. . . , XN−1 of an intrinsically stationary process of order d, based upon which we want to
estimate local characteristic scales (assuming such exist) for {Xt}. We start by estimating
the wavelet variance out to some maximum scale of interest τJ0 using the unbiased estimator
ν̂2

j , j = 1, . . . , J0. If there is some 1 < j < J0 such that the estimates obey the pattern
ν̂2

j ≥ ν̂2
j±1 (with strict inequality holding in at least one case), we can define an estimator

τ̂c,j of the characteristic scale in the region of τj by replacing yk with ŷk ≡ log2(ν̂2
k) in

equation (6):

τ̂c,j = 2−β̂1/β̂2τj , where β̂1 ≡
ŷj+1 − ŷj−1

2
and β̂2 ≡ ŷj+1 − 2ŷj + ŷj−1.

We want to establish simple – but reasonable – approximations to the sampling properties
of this estimator under the assumption that N is large.

Motivated by the large-sample theory reviewed at the end of Section 2.2, we start with
the assumption that

£
ν̂2

j−1, ν̂
2
j , ν̂2

j+1

§T is multivariate Gaussian with a mean given by the
true wavelet variances

£
ν2

j−1, ν
2
j , ν2

j+1

§T and a covariance matrix dictated by equation (3).
We use equation (4) to approximate this symmetric matrix by

Σ1 ≡ 2




Aj−1,j−1/Mj−1 — —
Aj−1,j/Mj−1 Aj,j/Mj —

Aj−1,j+1/Mj−1 Aj,j−1/Mj Aj+1,j+1/Mj+1



 . (7)
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The delta method says that
£
log2

°
ν̂2

j−1

¢
, log2

°
ν̂2

j

¢
, log2

°
ν̂2

j+1

¢§T = [ŷj−1, ŷj , ŷj+1]
T is ap-

proximately Gaussian with mean
£
log2

°
ν2

j−1

¢
, log2

°
ν2

j

¢
, log2

°
ν2

j+1

¢§T = [yj−1, yj , yj+1]
T

and covariance matrix Σ2 whose elements are

Σ2,m,n ≡
cov {ν̂2

j−2+m, ν̂2
j−2+n}

ν2
j−2+mν2

j−2+n log2(2)
+ 2

var {ν̂2
j−2+m} var {ν̂2

j−2+n} + (cov {ν̂2
j−2+m, ν̂2

j−2+n})2

ν4
j−2+mν4

j−2+n log2(2)
,

(8)
with m and n = 1, 2 and 3. Since

∑
β̂1

β̂2

∏
=

∑
−1

2 0 1
2

1 −2 1

∏


ŷj−1

ŷj

ŷj+1



 ≡ H




ŷj−1

ŷj

ŷj+1



 ,

it follows that [β̂1, β̂2]T is approximately Gaussian with mean [β1, β2]T and covariance
HΣ2HT . Let κ̂ ≡ −β̂1/β̂2. Further applications of the delta method say that κ̂ is ap-
proximately Gaussian with mean −β1/β2 and variance given approximately by

σ2
κ̂ ≡ var {β̂1}

β2
2

+
β2

1 var {β̂2}
β4

2

+
var {β̂1} var {β̂2} + 2(cov {β̂1, β̂2})2

β4
2

+
3β2

1(var {β̂2})2
β6

2

− 2β1 cov {β̂1, β̂2}
β3

2

(9)

and that
var {τ̂c,j} ≈ τ2

c,j σ2
κ̂ log2

e(2).

We can now provide, for example, an approximate 95% confidence interval (CI) [L−, L+]
for κ; i.e.,

P[L− ≤ κ ≤ L+] ≈ 0.95, where L±
.= κ̂ ± 1.96σκ̂.

The event L− ≤ κ ≤ L+ is equivalent to the event τj2L− ≤ τc,j ≤ τj2L+ , so an approxi-
mate 95% CI for τc,j is given by [2−1.96σκ̂ τ̂c,j , 21.96σκ̂ τ̂c,j ]. In practical applications, we can
estimate σ2

κ̂ in a ‘plug-in’ manner by using Âj,k from (5) for Aj,k in (7), ν̂2
j from (2) for ν2

j

in (8), and β̂1 and β̂2 for β1 and β2 in (9).
A caveat about our approach is that it is conditioned upon the observed pattern ν̂2

j ≥
ν̂2

j±1 correctly indicating the presence of a local characteristic scale somewhere in the vicinity
of τj . As N →∞, observed patterns will agree better and better with true patterns because
of the asymptotic properties of the wavelet variance estimators, but observed patterns might
be deceptive for finite sample sizes. A sanity check that sheds some light on the validity
of an observed pattern is to generate a large number of independent realizations from a
trivariate Gaussian distribution with mean vector

£
ν̂2

j−1, ν̂
2
j , ν̂2

j+1

§T and covariance matrix
dictated by (7) with Aj,k replaced by Âj,k of equation (5). If the proportion of realizations
that have a maximum in the same location as the observed pattern is large, then we have
some reassurance that the observed pattern is faithfully mimicking the true pattern (see
Section 6.3 for an example of this procedure).

5. Monte Carlo Experiments

We consider the following four zero-mean Gaussian stationary processes, whose wavelet
variances are depicted in Fig. 1:
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Table 1. Results from Monte Carlo experiments (see text for details).

process N τc τ̂c M % coverage
(a) 512 4.53 4.69 992 88.2

2048 4.66 1000 87.1
8192 4.57 1000 94.4

(b) 512 5.87 6.16 981 89.2
2048 5.84 1000 90.5
8192 5.83 1000 93.8

(c) 512 30.42 33.51 838 86.8
2048 32.49 964 88.5
8192 31.41 1000 93.1

(d) 512 3.76 4.00 971 91.0
2048 3.84 999 96.7
8192 3.76 1000 96.1

(d) 512 122.96 89.31 454 86.8
2048 149.60 703 88.9
8192 153.43 775 86.7

(a) an AR(1) process with a variance of 4 and a unit-lag autocorrelation of φ = 0.7;
(b) a process given by

√
2√
3Xt + 1√

3Yt, where {Xt} is an AR(1) process with φ = 0.75, while
{Yt} is an FD process with long-memory parameter δ = 0.45;

(c) 1√
2Xt + 1√

2Yt, where {Xt} is an AR(1) process with φ = 0.95, while {Yt} is a white
noise process; and

(d)
√

2√
3Xt + 1√

3Yt, where {Xt} is an AR(1) process with φ = 0.65, while {Yt} is a similar
process with φ = 0.99.

For creating the last three processes, {Xt} and {Yt} are unit variance Gaussian processes
such that Xs and Yt are independent for all s and t.

For each process and for samples size N = 512, 2048 and 8192, we generated 1000
realizations using an exact simulation method for AR processes (Kay, 1981) and for FD
processes (Davies and Harte, 1987; Craigmile, 2003). We recorded the number of replica-
tions M for which there was a peak in the Haar wavelet variance curve at either the proper
level j or levels j±1. For each of these M realizations, we estimated the characteristic scale
and computed a 95% CI using the plug-in procedure described above (the estimates Âj,k

were formed using periodograms, which are a special case of a lag window estimator with
wj,τ = 1 for all τ and with η = 2). Table 1 shows the average of the estimated characteristic
scales and the percentage of times that the 95% CIs trapped the true characteristic scale.
There is a tendency for τ̂c to be positively biased. The closeness of coverage percentage
to the nominal 95% tends to depend upon the true τc: the smaller τc is, the better the
coverage rate. For small sample sizes, the coverage rate tends to be below the nominal
95%. The coverage rates tend to improve with increasing sample size, as asymptotic theory
would suggest. These experiments show that the large-sample theory gives useful – but
admittedly not perfect – approximations to the variability in τ̂c for moderate sample sizes.
(Similar results were obtained using Daubechies wavelet filters of lengths L1 = 4 and 8.)
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Fig. 4. Four time series (upper four plots) and one derived series (bottom plot). The series are
(a) monthly global temperature anomalies; (b) coherent structures in river flows; (c) 200-hPa velocity
potential anomalies in the atmosphere; (d’) Arctic sea ice thickness; and (d) indicator series for
medium multiyear Arctic sea ice.
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6. Real-World Examples

Here we consider four examples of characteristic scale estimation based upon actual time
series and the Haar wavelet.

6.1. Global Temperature Record
Figure 4(a) shows a time series of length N = 1560 of monthly global temperature anom-
alies (land and ocean combined) from January 1880 up to December 2009 (data obtained
from http://www.ncdc.noaa.gov/pub/data/anomalies/). The series appears to have a
prominent trend upwards. Tsonis et al. (1998) analyzed a closely related series by forming
cumulative sums and considering standard deviations of lagged differences of these sums as
a function of lag. Because trends adversely affect this method, they elected to detrend the
series using the first three empirical orthogonal functions extracted from a singular spec-
trum analysis (Elsner and Tsonis, 1996). Subtraction of these functions from the time series
yielded a residual series that was subjected to a test for non-zero trend using a Cox–Stuart
nonparametric test (Cox and Stuart, 1955). Since the test failed to reject the null hypothe-
sis of no trend, they used the residuals to estimate a characteristic scale, obtaining a value
of about 20 months. This scale was the value at which the curve of standard deviations
versus lag exhibited a change in slope in log/log space. They interpreted this characteristic
scale as being due to the influence of El Niño/La Niña cycles on global temperatures.

Figure 5(a) shows that the Haar wavelet variance curve for this series has a peak at scale
τ5 = 16 months. The corresponding estimated characteristic scale is τ̂c,5

.= 14.9 months,
with an associated 95% CI of [9.6, 23.0]. This interval traps the nominal characteristic scale
found by Tsonis et al. (1998). There is, however, some cause for concern here due to the
apparent trend in this time series. If we model the series as Xt = a + bt + Yt, where a + bt
describes a linear (first-order polynomial) trend and {Yt} is a zero mean stationary process,
then the Haar wavelet coefficient process {Wj,t} is stationary, but has a nonzero mean,
which is in conflict with the zero mean assumption used to construct ν̂2

j of Equation (2).
The wavelet coefficients most influenced by a linear trend are those at the largest scales,
which explains the upward pattern in the wavelet variance curve of Fig. 5(a) at those scales.
Since there is some concern that the wavelet variance estimates at smaller scales might also
be adversely affected by the trend, we also considered a wavelet variance curve constructed
using a Daubechies wavelet filter of width L1 = 8 (the so-called ‘least asymmetric’ filter).
This filter is capable of completely eliminating a trend that is well-approximated by a
third-order polynomial because of its embedded backward difference filter of order d = 4
(Craigmile et al., 2004). The wavelet variance curve for this filter also exhibits a peak at
scale τ5. The corresponding estimated characteristic scale is τ̂c,5

.= 16.0 months, with an
associated 95% CI of [11.1, 23.3], all of which are in reasonable agreement with the results
from the Haar wavelet. This example points out that, because of differencing operations
embedded within wavelet filters, there is no need to detrend a time series prior to a wavelet
analysis if care is taken in selecting a wavelet filter of appropriate length L1 to handle the
nature of the apparent trend in the series.

6.2. Coherent Structures in River Flow
Figure 4(b) shows a time series capturing so-called ‘coherent structures’ (such as boils or
eddies) in river flows (Chickadel et al., 2009; data courtesy of Alex Horner-Devine and
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Fig. 5. Log of wavelet variances ν2
j versus log of τj (circles) for (a) monthly global temperature anom-

alies; (b) coherent structures in river flows; (c) 200-hPa velocity potential anomalies; and (d) medium
multiyear Arctic sea ice. The vertical dashed lines indicate the locations the estimated characteristic
scales τ̂c,j , while the gray curves show the quadratic fit whose maximum location determines τ̂c,j .
The horizontal solid lines depict 95% confidence intervals for the true characteristic scales.
.

Bronwyn Hayworth, Department of Civil and Environmental Engineering, University of
Washington). The 2048 values shown in the plot are from a longer series of length N = 29972
that has a sampling interval of ∆ = 1/25 sec and spans a little less than 20 min (the subseries
in the plot is from the first 82 sec). This time series is derived from measurements from
three transducers and a velocity profiler set on the bottom of the Snohomish River Estuary
in Washington State immediately downstream of a sill pointing upwards. The structures
are essentially quasi-periodic upwellings from the river that appear as temporary ‘blobs’
on the surface of the river. Each blob dissipates within a second or so, and then another
blob forms sometimes later. As the tide increases, the water velocity increases, and the
frequency at which the blobs occur appears to increase.

Videos of the river surface clearly show these boils qualitatively, but quantifying this
little-understood phenomenon using standard Fourier-based spectral analysis is problematic
because it appears as a small perturbation in a low-frequency rolloff. By contrast, the scale-
based analysis afforded by the wavelet variance (Fig. 5(b)) clearly displays a peak in its
decomposition of the sample variance, rendering the phenomenon as interpretable in terms
of a characteristic scale. The estimated standardized characteristic scale is τ̂c,6

.= 41.1, which
corresponds to a physical characteristic scale of τ̂c,6 ∆ = 1.6 sec, with an associated 95%
CI of [1.4, 1.9] sec. The time-evolving properties of the boils can be studied by estimating
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characteristic scales for time series spanning successive 20-minute time intervals.

6.3. Madden–Julian Oscillation (MJO)
Figure 4(c) shows the first 2048 values from a time series of 200-hPa velocity potential
anomalies equatorward of latitude 30◦N and at longitude 80◦E (one of a number of daily
MJO indices available from http://www.cpc.ncep.noaa.gov/). The entire series has 2354
values covering 3 January 1978 to 29 March 2010 with a sampling interval of ∆ = 5 days.
This series is one manifestation of the MJO, which Madden and Julian (1994) define as a
40–50 day oscillation appearing in various atmospheric time series collected in the tropics.
The periods associated with the MJO have been revised since 1994 based upon subse-
quent analysis of additional time series – the MJO is now sometimes called a 30–60 day
or intraseasonal oscillation. The wavelet variance plot for the velocity potential anomalies
(Fig. 5(c)) has a local peak at scale τ2, with associated standardized local characteristic
scale τ̂c,2

.= 2.53, which converts into a physical scale of τ̂c,2 ∆ .= 12.7 days. The associated
95% CI is [11.9, 13.5] days. Since a physical scale of τ ∆ is associated with the interval
of periods [2τ ∆, 4τ ∆], the point estimate τ̂c,2 ∆ matches up with 25–51 day oscillations
and hence with the description of the MJO as a 30–60 day oscillation. A difficulty with
using Fourier-based spectral analysis to deduce the MJO is the lack of a standard way to
determine the beginning and end of the frequency interval associated with this broad-band
oscillation. The notion of a characteristic scale bypasses this difficulty and opens up a means
of objectively tracking how the MJO varies across time and over different time series.

In addition to the peak at τ2, there is a second one at τ7, which leads to an estimated
physical characteristic scale of τ̂c,7 ∆ .= 304 days and an associated 95% CI of [79, 1170].
The interval of periods associated with τ̂c,7 is [609, 1217] days, so this local characteristic
scale suggests an oscillation spanning two to three years that is about 5 times weaker than
the MJO. The presence of this weak additional oscillation is conditional upon the peak
pattern in the wavelet variance estimates being correct. As an example of the reality check
described at the end of Section 4, we generated 100, 000 realization from a trivariate normal
distribution with mean [ν̂2

6 , ν̂2
7 , ν̂2

8 ]T and covariance dictated by Equation (7), with Aj,k

estimated per Equation (5). Of these realizations, 60% obeyed the observed ν̂2
6 ≤ ν̂2

7 ≥ ν̂2
8

pattern, but the remaining 40% did not, casting considerable doubt on the validity of the
observed peak pattern. (A similar test on the MJO peak at τ2 yielded 99, 916 realizations
with the observed peak pattern and only 84 without.)

6.4. Medium Multiyear Arctic Sea Ice
Figure 4(d0) shows 2048 measurements of ice thickness taken at 1 m spacings along a
transect near the North Pole in April of 1991. The entire set of data consists of N = 49, 998
measurements extending over 50 km and was collected by a U.S. Naval submarine with an
upward-looking sonar (the data are archived by the National Snow and Ice Data Center at
http://nsidc.org/). We can regard these data as a time series with a spacing of ∆ = 1 m,
where here ‘time’ is a surrogate for distance along the submarine’s path under the ice (the
submarine was moving in the same direction at a constant speed as much as possible, and
the data were recorded at regular intervals of time).

Researchers classify sea ice by thickness, with different ice types thought to be driven
by different physical processes (Flato, 1995, and World Meteorological Organization, 2007).
One such type is called medium multiyear ice and has a thickness from 2 to 5 m. The
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horizontal dashed lines on Fig. 4(d0) demark this ice type. Figure 4(d) shows a binary-valued
times series indicating the absence or presence (using 0 or 1) of this ice type. Figure 5(d)
shows the Haar wavelet variance curve for this indicator series. The curve exhibits a single
broad peak at scale τ7, leading to an characteristic scale is τ̂c,7

.= 48.9 m, with an associated
95% CI of [29.6, 80.7] m. We can regard this characteristic scale as an indicator of the
‘typical’ extent of medium multiyear ice. In the face of other evidence that the Arctic
climate is dramatically changing, a question of considerable geophysical interest is how
stable the characteristic scales for different ice types are both spatially and temporally.
Because submarines have collected data on sea-ice thickness throughout the Arctic region
since 1958, it is possible to look at temporal and spatial variations in estimated characteristic
scales and to use the methodology developed in this paper as one way to assess changes in
Arctic climatology over the past 50 years.

Finally we note that there is evidence of long-range dependence in series of ice thickness
measurements (Percival et al., 2008). This type of dependence maps over into indicator
series, which means that the characteristic scale τD of Equation (1) would be infinite for
the medium multiyear ice indicators. By contract, the wavelet-based characteristic scale is
finite and provides a useful summary of one aspect of the indicator series.

7. Summary and Discussion

We have proposed a new definition for the characteristic scale of a time series that can be
modeled as an intrinsically stationary process. The definition is based upon local peaks
in a plot of the wavelet variance versus scale. Since the wavelet variance provides a scale-
based decomposition of the process variance, a characteristic scale corresponds to one that
is contributing more to the overall variance than scales surrounding it. This wavelet-based
definition of characteristic scale has certain advantages over other definitions, including
abilities to (1) focus on localized properties of the process rather than asymptotic decay
rates of autocorrelation sequences, (2) handle certain nonstationary processes and (3) handle
series with trends that are well approximated by a low-order polynomial. We have developed
a large-sample theory for an estimator of the wavelet-based characteristic scale, and we have
demonstrated the use of this theory through Monte Carlo experiments and applications to
four representative real-world time series.

There are several avenues of research that are outside the scope of this article, of which we
mention three of particular interest. First, the basis for our large-sample statistical theory
for the characteristic scale estimator is that the underlying wavelet coefficient processes are
Gaussian. This assumption does not automatically rule out the usefulness of our theory
for non-Gaussian processes. The filtering that is required to generate wavelet coefficients
produces a central limit effect. Thus, even if a process is non-Gaussian, its associated wavelet
coefficient processes might be well approximated as Gaussian, particularly at large scales.
The indicator series for medium multiyear Arctic sea ice considered in Section 6.4 is an
example of a non-Gaussian series whose large-scale wavelet coefficients are markedly closer
in distribution to Gaussian than the original series. While limited tests to date indicate
that the Gaussian-based large-sample theory for τ̂c,j is reasonably valid for indicator series,
there is certainly room for additional research that examines the question of non-Gaussianity
more thoroughly.

Second, we have assumed our time series to be regularly sampled, but irregularly sampled
series often occur in practice. The simplest form of irregularity is missing observations in
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what would otherwise be a regularly sampled series. Mondal and Percival (2010) present
statistical theory for an estimator of the wavelet variance that works with gappy time
series. This theory can presumably be used as the basis for a characteristic scale estimator
for gappy time series. A more serious challenge is to provide a corresponding theory for
time series sampled at irregular patterns.

A third avenue for additional research is to handle two-dimensional data (collected on
a regular grid) that display a degree of characteristic bumpiness. Gilgai patterns in the
Bland Plain of New South Wales, Australia, provide an example of this type of data. Milne
et al. (2010) have analyzed these patterns using a two-dimensional version of the wavelet
variance. The notion of a characteristic scale for a two-dimensional isotropic field could be
the basis for an interesting complementary analysis of these data.
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