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A fractionally differenced (FD) process is used to model
aerothermal turbulence data and the model parameters are
estimated via wavelet techniques. Theory and results are pre-
sented for three estimators of the FD parameter: an ‘instan-
taneous’ block independent least squares estimator and block
dependent weighted least squares and maximum likelihood
estimators. Confidence intervals are developed for the block
dependent estimators. We show that for a majority of the
aerothermal turbulence data studied herein, there is a strong
departure from the theoretical Kolmogorov turbulence over
finite ranges of scale. A time-scale dependent inertial range
statistic is developed to quantify this departure.

PACS number(s): 89.75.Kd, 47.27.-1, 47.53.4n, 95.75.Wx

I. INTRODUCTION

The last three decades have seen a rapid advance in
the mathematical modeling of turbulence data. Encour-
aged partly by the fact that complex, seemingly random,
behavior can be well modeled by simple low dimensional
deterministic nonlinear systems, many researchers have
hypothesized that turbulence can be modeled using chaos
theory. Early experiments in Rayleigh-Bernard thermal
convection [1], Taylor-Couette flow between cylinders [2],
closed loop thermosiphons [3], turbulent boundary layers
for open flow over a wall [4], and surface wave propa-
gation in a saltwater medium [5], have in part verified
this hypothesis. However, there is a lack of such clear
proof in other experiments and in data collected from
uncontrolled environments such as in aerothermal data.
More recent efforts in turbulence modeling have shown
chaos theory to be useful in interpreting local phenom-
enon and flow stability. Chaos is now generally consid-
ered to have an important (yet limited) role in the mod-
eling of turbulence but not as a theory capable of de-
scribing turbulent flow in detail. Even if the turbulence
is viewed as a deterministic event, the high degrees of
freedom (dimension) of the flow makes the use of chaos

theory impractical. Hence, the treatment of turbulence
as a stochastic process prevails and (like low dimensional
chaotic models) is well-matched for handling a prevalent
notion about turbulence, namely, that it has certain ‘self-
similar’ or ‘fractal’ properties. Loosely speaking, this
property means that certain measures of turbulence data
are invariant upon rescaling the data, but the measures
are quite different for stochastic and deterministic models
(e.g., invariance in distributional properties in the former
and invariance in space-filling properties in the latter).
Both approaches are capable of generating simulated se-
ries that mimic some properties of actual turbulence, but
there is much work yet to be done to ascertain which class
of models or combination thereof is the best to use to an-
swer questions of practical importance.

Most deterministic and stochastic approaches assume
homogeneity in time across all scales of interest. In this
paper, we discuss methods that can be used for turbu-
lence with time-varying properties. As we show below,
there is strong evidence to support the notion that tur-
bulence measurements such as we consider here exhibit
time varying power law behavior over finite ranges of
scale. Because of the temporally localized and scale de-
pendent nature of wavelet transforms, wavelet techniques
provide a natural framework for the analysis of physi-
cal phenomena that exhibit variations across time and
within a finite range of scales. This is a departure from
techniques that assume a priori either a self-similar struc-
ture across all scales in the data or stationarity in fractal
measures as a function of time (see [6-9] for examples of
wavelet-based estimation of non-time varying turbulence
model parameters). While a wavelet decomposition of a
turbulence time series, say {X:}, is based on using self-
similar analysis tools (i.e., wavelets), it does not make an
a priori assumption that {X;} is evolving in a self-similar
manner. By making a careful study of each scale as it
evolves in time and of the relationships of the scales to
each other, we can then evaluate how reasonable it is to
use models that postulates a tight coupling across scales,
e.g., a time-evolving power law processes.

In this article, we use recently developed wavelet tech-



niques to estimate the parameters of FD models applied
to aerothermal turbulence data. There are a number
of advantages in using the discrete wavelet transform
(DWT) on turbulence data:

e DECOMPOSITION BASED ON SCALE. Turbulence
is known to exhibit fluctuations at various spatial
scales, and hence the DWT is a natural analyzer.

e DECORRELATION OF TIME SERIES. While turbu-
lence data are typically highly correlated, their
wavelet coefficients are approximately uncorre-
lated [10] (see §IV C for details). This property is
crucial for obtaining viable approximate maximum
likelihood estimates of FD parameters.

e LOCALIZED TIME AND SCALE CONTENT. Each
wavelet coefficient is localized in time, allowing us
to track changes in the characteristics of a time se-
ries at a particular scale as a function of time.

e SEPARATION OF NONLINEAR TRENDS FROM NOISE.
The wavelet coefficients are inherently ‘blind’ (in-
variant) to nonlinear polynomial trend contamina-
tion in the original time series [11].

As in [12,13], we use wavelet techniques to analyze
intermittent deviations from Kolmogorov inertial sub-
range behavior for measured temperature-based turbu-
lence data. We extend these works by (1) using higher
order wavelet filters (non-Haar wavelets) to avoid spu-
rious estimates of model parameters, (2) refining novel
block estimation techniques with weighted least squares
and maximum likelihood estimators, (3) developing an
instantaneous (block independent) least squares estima-
tor, (4) using simple diagnostic statistics as means of
identifying anomalous deterministic structure imposed
by the measurement system (thereby helping us to elim-
inate scales over which a stochastic fractal model is in-
appropriate) and (5) developing confidence intervals for
the block dependent estimators.

The remainder of this paper is organized as follows. In
811 we define an FD process and discuss why it has certain
advantages over other models that have been used with
turbulence data. In §III we define the specific wavelet
transforms used herein, including the DWT and a related
nondecimated transform (the ‘maximal overlap’” DWT)
that allows us to define an ‘instantaneous’ estimator of
FD parameters as a function of time. In §IV we dis-
cuss wavelet transform techniques for estimating the FD
parameters for turbulence data — these include a block
dependent weighted least squares estimator (§IV A), a
block independent least squares estimator (§IV B) and a
block dependent maximum likelihood estimator (§IV C).
For block dependent estimators, we also establish confi-
dence intervals for the FD parameter related to inertial
range determination. In §V we present an analysis of the
aerothermal data that motivated the development of the
methodology discussed in previous sections. We summa-
rize the results in §VI.

II. FRACTIONALLY DIFFERENCED
PROCESSES

The FD process was originally proposed by Granger
and Joyeux [14] and Hosking [15] as an extension to
an autoregressive, integrated, moving average model in
which the order of integration is allowed to assume non-
integer values.

Definition 2.1 Let 6 € R and 02 > 0. We say that
{Xi}eez is an FD(6,02) if it has a spectral density func-
tion (SDF)

0.2

. [fl<1/2,

) = B

(2.1)

where o2 is the innovation variance, and § is the frac-
tionally differenced parameter.

When § < 1/2, an FD process is stationary; when
—1/2 < 0 < 1/2, its autocovariance sequence (ACVS)
is given by

o2 sin(7d)T(1 — 26)(7 + 6)
(Tt +1—0) '

SX, 7t = (2.2)

When § > 1/2, we obtain a class of nonstationary
processes that are stationary if {X;} is differenced |0 +
1/2| times (here |z is the greatest integer less than or
equal to z). By inspection of Eq. (2.1), an FD(4,02)
process approximately obeys a power law process, i.e.,
Sx (f) o« |f|*, at low frequencies with a = —24 (the er-
ror in this approximation is quite small for |f| < 1/8).
For simplicity, we assume that E{X;} = 0 throughout
(in practice, this assumption does not lose us any gener-
ality in what we discuss below because of the differencing
operations that are embedded in wavelet filters).

An FD process has certain advantages over similar
models such as fractional Brownian motion (fBm) and
fractional Gaussian noise (fGn) that have been used pre-
viously to study turbulence data.

e UNLIMITED POWER LAW EXPONENT RANGE. Both
fBm and fGn are stochastic power law processes in
that their SDFs are approximately proportional to
|f]® at low frequencies; however, an fBm is limited
to an exponent range of —3 < a < —1 while a fGn
is limited to —1 < a < 1. An FD process is also
a stochastic power law process, but it has no such
limitation on its exponent range and is theoretically
well-defined for a € R.

e MODEL CONTINUITY. Because fBm and fGn jointly
cover power laws ranging from —3 up to 1 (ad-
equate to model some — but not all — turbulent
phenomena), it is tempting to select between fBm
and fGn to model various turbulent series; however,
neither model actually includes the case @ = —1
(known as 1/f, pink, or flicker noise), and there



is a discontinuity between the fGn and fBm mod-
els close to a = —1 at high frequencies, which
can lead to problems in model selection. Unfor-
tunately, many real world phenomena exhibit 1/f
noise [16]. An FD process has no such disconti-
nuity. In addition, an FD process is closed under
differencing operations; i.e., an FD(§,02) process
that has been subjected to a dth order differencing
operation, yields an FD(§ — d, 02) process. An fGn
or fBm process subjected to the same differencing
operation will not yield the same type of process,
which is another indication that an FD process is
a more flexible and tractable model.

e TRACTABLE SDF AND ACVS. In contrast to the
fBm and fGn models, an FD process has tractable
forms for both its SDF and (when stationary) cor-
responding ACVS.

e MODEL FLEXIBILITY. Both autoregressive and
moving average components can be added to an
FD process to provide more flexibility in model-
ing high frequency spectral content, leading to the
well-known class of autoregressive, fractionally in-
tegrated, moving average models [17]. The high
frequency content of measured data is often conta-
minated by exogenous noise sources, and thus flexi-
ble modeling of this region is appropriate. The {Bm
and fGn models are not readily amenable to such
additions as they would further complicate the SDF
and ACVS.

IIT. DISCRETE WAVELET TRANSFORMS
Consider a uniformly sampled time series {X;}Y 5!
with IV divisible by 27 for J € N. For L an even positive
integer, let {hy,;} ;' be a Daubechies [18] wavelet filter
with squared gain function

L/2—1

Hio(f) = 2sin”(nf) Y

=0

(L/2 ; 1+ 1) coszl(w{?)):l)

Equation (3.1) does not uniquely define a wavelet filter,
and an additional phase criterion, such as extremal or
least asymmetric phase, must be imposed to do so (use
of the latter criterion means that, after an appropriate
shift in time, the wavelet filter has approximately zero
phase). Let {ng}lL:_O1 be a scaling filter, defined by the
quadrature mirror filter relation

gii= (D" hy g

The squared gain function for a Daubechies scaling filter
is given by

(3.2)
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The wavelet and scaling filters are used in a ‘pyramid’
algorithm [19] to transform {X;} into a collection of
wavelet coefficients W, ; and scaling coeflicients V;, that
can be associated with scales of, respectively, 7; = 27~!
and 275, j = 1,...,J (these standardized scales can be
converted to physical scales by multiplying them by the
sampling time between contiguous observations in {X;}).
Implementation of the DWT begins by defining the ze-
roth level scaling coefficients to be the original time se-
ries: Vo = X;. The level j wavelet coeflicients W}, and
scaling coeflicients V;, are then formed recursively by

L-1

Wi = E h1,1Vi—1,2641-1 modNj_1»
1=0

(3.4a)

L-1

Vie = E 91,1 Vi—1,2641-1 modN;_1 5
1=0

(3.4b)

wheret =0,... ,N;—1and N; = N/27. For an integer J’
satisfying 1 < J’ < J, we define a level J' DWT of {X,}
to be the collection of vectors W1, Ws,... W,V 5,
where W, contains the N; wavelet coefficients W4,
while V' ;s contains the N scaling coeflicients Vj ;.

The pyramid algorithm represented by Eq. (3.4) can
also be interpreted as a cascade filter bank operation.
Thus an alternative (but less efficient) method for com-
puting W; ; is to subsample what we would get by filter-
ing X; with a single filter, say h;;, that is the equiv-
alent filter for the cascade filter bank. This filter is
an approximate bandpass filter with nominal pass-band
f € [1/47;,1/27;]. The corresponding equivalent scaling
filter g;; used to create the V;, is a low pass filter with
nominal pass-band f € [0,1/47;]. Figure 1 shows the
squared gain responses H;s(f) and G;s(f) for h;,; and
951, J =1,...,4, corresponding to an 8-tap Daubechies
wavelet filter hq; and illustrates the bandpass and low-
pass nature of the equivalent wavelet and scaling filters.

When considering the statistical properties of DWT co-
efficients, it is useful to divide the wavelet and scaling co-
efficients into boundary and interior coefficients. Bound-
ary coefficients are those subject to change if the ‘mod’
operator were to be dropped in Eq. (3.4). These bound-
ary coefficients must be ignored, e.g., when calculating
unbiased wavelet variance estimates (see Eq. (4.5) be-
low). The number of boundary coefficients in W or V;
is given by min{L}, N;}, where L, = [(L —2)(1—277)],
and [x] is the smallest integer that is greater than or
equal to = (for large j, L; = L — 2). The remaining
M; = N; — min{L}, N;} coefficients make up the set of
interior coefficients. The boundary coefficients are the
first N; — M coefficients in W ; or V ;, while the interior
coefficients are the last M; elements in these vectors.

A physical interpretation of the DWT based upon
Daubechies’ class of compactly supported wavelet filters
is that the W;, measure the difference (centered at a
particular time) between adjacent weighted averages of
{X,} at scale 7;. Large values for the W;, indicate that



{X:} tends to have large variations over time scales of
length 7;. Similar to the wavelet coefficients, the scaling
coefficients V;, are weighted averages of {X;} on a scale
Of 27—]‘ .

Despite its popularity, the DWT has two practical
limitations. The first is the dyadic length requirement.
While the DWT can be adapted to accommodate arbi-
trary length sequences via, e.g., polynomial extensions
of the scaling coefficients, selecting an appropriate num-
ber of end points to fit or the order of fit is not a trivial
task. Other techniques can be used, but generally in-
volve either complicated bookkeeping or are too simple
to accurately portray the dynamics of the scaling coeffi-
cients. The second limitation is a sensitivity of the DWT
to where we start recording a time series; i.e., the deci-
mation operation makes the DWT a non shift-invariant
transform so that circularly shifting the time series can
alter the entire DWT.

To overcome these limitations, we can use a nondeci-
mated form of the DWT, known as the maximum overlap
DWT (MODWT), that has two main advantages: (1) it
handles arbitrary length sequences inherently and (2) cir-
cularly shifting the time series will result in an equivalent
circular shift of the MODWT coefficients. Additionally,
the number of coefficients in each scale is equal to the
number of points in the original time series. This refined
slicing of the data in combination with the approximate
zero phase property of the least asymmetric filters allows
us to calculate ‘instantaneous’ statistical measures of the
data across scales (see §IV B).

As in the DWT, implementation of the MODWT be-
gins by defining the zeroth level scaling coefficients to be
the original time series: V()ﬂf = X;. Let hll = hi,1/v/2
and g1; = g11/v/2 for 1 =0,...,L —1. The MODWT
wavelet coeflicients W, and corresponding scaling coef-
ficients ‘7j7t are formed recursively by

L-1
Wi = Z P11V _1.4—25-11 mod N (3.5a)
=0
Vii = Z 91,1V5-1,6—25-11 mod N> (3.5b)
1=0
Where t = 0,..., N — 1. The collection of vectors

Wl, Wg, .. WJ, V ;i is the level J MODWT of {X:},
where W contains the N wavelet coefficients WJ t, while
\% g+ has the N scaling coeflicients VJ/ The number of

boundary coefficients in W or Vj is Lj = min{(27 —
1)(L—-1),N}.

If the sample size N is a power of two, the MODWT
coefficients and DWT coefficients are related by

Wi = 27/2 Wg 29 (t41)—1 and V;; =27 i/2 V ,29 (t41) (1 )
3.6

The DWT can thus be seen as a scaled and subsam-
pled version of the MODWT. As was true for the DWT,

we could obtain /Wv/j,t by filtering X; directly with an

equivalent MODWT wavelet filter ﬁjJ. This filter is re-

lated to the corresponding DWT wavelet filter by ﬁj,l =

h;1/27/2, and a similar result holds for the scaling filters.

The MODWT squared gain functions are thus given by

zjj,L(J)”) = 2791, 0(f) and G L(f) = 277G L(f) (see
ig. 1).

IV. ESTIMATING FD PARAMETERS WITH
WAVELETS

Suppose that we have a time series that can
be regarded as a realization of a portion X =
[Xo, X1,...,Xn_1]T of an FD(8,02) process. In this
section we discuss three schemes for estimating the pa-
rameter ¢ via a wavelet transform of X. The first two
schemes make use of the fact that the relationship be-
tween the variance of the wavelet coefficients across scales
is dictated by 0 in such a manner that we can construct
a least squares estimator (LSE) of § (Abry et al. [20,21],
Abry and Veitch [22] and Jensen [23] consider similar es-
timators). The third scheme is a wavelet-based approx-
imation to the maximum likelihood estimator (MLE) of
0 (Wornell and Oppenheim [24], Wornell [25,26], Kaplan
and Kuo [27], McCoy and Walden [28] and Jensen [29,30]
discuss related wavelet-based MLEs). The first LSE and
the MLE make use of the entire time series and hence are
called ‘block dependent’ estimators; by contrast, the sec-
ond LSE utilizes only certain coefficients that are colo-
cated in time, and we refer to it as an ‘instantaneous’
estimator (this estimator would not change if, e.g., we
were to lengthen the time series by prepending it with
X_4).

A. Block dependent weighted least squares estimator

Let W; be the MODWT wavelet coefficients for scale
7;. Here we develop a weighted LSE (WLSE) of §
based upon an estimator of the variance of the inte-
rior coefficients in W; over a range of scales 7; given
by Jo < j < Jp (the selection of Jy and J; is applica-
tion dependent — see §V). Under the assumption that
the length L of the wavelet filter is chosen such that
L/2 > |6 + %], these interior coefficients are a portion
of a stationary process obtained by filtering X with the
equivalent MODWT wawvelet filter h; ;. Since the squared

gain function for h;; is given by 7-lj,L (f), the SDF for the

interior coefficients is given by ??[j7 (f) Sx(f), and hence
their variance can be expressed as

H;,0(f) Sx(f) df.

. 1/2
vi (1) = var{W,,} =
ki) =) = [ -



Using the approximation that #,; 1 (f) is an ideal band-
pass filter over |f| € [1/2771,1/27] and taking into con-
sideration the even symmetry of SDF's, an approximation
to the wavelet variance is given by

1/29
)~z [ S df (42)
1/25+1
For fractionally differenced processes, we have
X 1/27 o2
vy (1) =2 —=— {f. 4.3
% (1) // P RN

When j > 3, so that sinwf ~ 7 f, Eq. (4.3) can be ap-
proximated by

V?{(Tj) ~ a§ c(9) 7']-25_1,

(4.4)
where ¢(8) = 7729(1 — 22071) /(1 — 26). Equation (4.4)
suggests that a direct means of estimating ¢ is to fit a
least squares line to the log of an estimate of the wavelet
variance, say 7% (7;). The slope of the line, say 3, that
best fits log(9% (7)) versus log(7;) in a least squares sense
is related to the FD parameter by 6 = (64 1)/2 and the
power law exponent by oo = — (8 + 1).

Given a time series of length N, we can obtain an un-
biased MODWT-based estimate of the wavelet variance
by defining

~ 1 o
R == > W

where ]\Afj = N—Ej—l—l is the number of MODWT interior
wavelet coefficients. As a caveat, it should be noted that
the wavelet variance estimates are somewhat sensitive to
the order L of the wavelet filter used in the analysis. In
particular, studies by one of us [31] have shown that there
can be a significant bias in estimating J (and hence «) if
we use the Haar wavelet filter (for which L = 2). This
bias can be attributed to a spectral leakage phenomenon
and can be attenuated by increasing L. In practice the
choice L = 8 works well, so we have used it in all analyses
presented in this paper.

The distribution for 0% (7;) is approximately that of
a random variable given by X%j vk (75)/n;, where x2_ is
a chi-square random variable with 77; degrees of freedom
(§8.4 of [31] discusses three methods for determining 7;,
the simplest of which is to set n; = max{M;/27,1}).
Define

Y () = log(# (7)) — () + log (£ ),

(4.6)
where () is the digamma function. The properties of
the chi-square distribution dictate that

E{Y(7;)} = log (v% (75)) and var{Y(7;)} = 4'(1;/2),
(4.7)

where 9/(+) is the trigamma function. By assuming the
approximation afforded by Eq. (4.4), we can now formu-
late a linear regression model Y (7;) = v+ Blog(7;) + ¢;,
where e; = log (0% (1;)/v% (1)) — ¥(n;/2) + log (n;/2)
defines a sequence of errors, each with zero mean and
variance ’(n;/2). If we take into account the inhomo-
geneity in the variance in these errors, we arrive at the
WLSE of the slope term (3 given by

ﬁwlse =

2wy wilog(ry)Y (1) — 3 wjlog(ry) ¥ w;V(7y)
> wj Y wslog®(r;) — (X wj log(7y))?

where w; = [¢'(n;/2)] !, and all sums are over j =

Jo,---,J1. The weighted least squares estimate of the
FD parameter is then

, (4.8)

o 1 A
6wlse = §(ﬁwlse + 1) (49)

If we ignore the possible correlation between the error
terms (which we can decrease by increasing L), the vari-

ance of Byse is given by

dowj

Va‘r{Bwlse} - P
S w; Y wilog? () — (3 wj log(7;))?
(4.10)
and thus the variance of the Swlse is given by
~ 1 ~
var{Owise } = Zvar{ﬁwlse}. (4.11)

Monte Carlo studies indicate that Eq. 4.10 tends to over-
estimate the variability in (s Somewhat and thus can
be regarded as a conservative upper bound [31].

B. Instantaneous least squares estimator

The block dependent WLSE we formulated above de-
pends upon the entire time series Xgp,...,Xy_1. For
time series whose statistical properties are evidently
evolving over time (such as the aerothermal data con-
sidered in §V), the assumptions behind this estimator
are violated, and it is problematic to use this estimator
on the entire times series. If, however, we can divide
the time series up into blocks within which we can as-
sume that the data are the realization of an FD process
(with parameters that are now allowed to vary from one
block to the next), we can apply the WLSE estimator on
a block by block basis. In practice, each of the blocks
will contain the same number of points, so we can now
consider N to be the size of each block rather than the
length of the entire time series. The choice of N is usu-
ally subjective and thus open to question, so it is useful
to have some means of verifying that a particular choice
is appropriate. We can do so by formulating an ‘instanta-
neous’ estimator that is independent of N and that can



be used to check for departures from statistical consis-
tency within a proposed block size.

The idea behind an instantaneous least squares esti-
mate of § is to use only a single wavelet coefficient from
each scale; i.e., we only use Wj%tj to estimate v%(7;),
where ¢, is the time index of the j level MODWT coeffi-

cient associated with time ¢ in {X;};\ ;. The time index
t; can be meaningfully determined only 1f (approximate)
linear phase wavelet filters are used. With this substitu-
tion, the time dependent form of Eq. (4.9) becomes

Brous = A > log(ry)Yi(ry) — 3 log(ry) 3. Yilry) 1/2
’ 2(A; Y log? (7)) — (3 log(75))?)
(4.12)
where Ay = J; — Jy + 1 and all sums are over j =
Jo,... ,J1 and

Yi(r;) = log(W2, ) — 1(1/2) — log(2).

(4.13)

To decrease the variability of the estimates Aj; should
ideally be set to be as large as is feasible.

C. Block dependent maximum likelihood estimator

Wavelet-based maximum likelihood techniques can be
used in harmony with an FD model as another means of
obtaining estimates for FD parameters. Using the DWT
is advantageous in that it is known to decorrelate long
memory FD and related processes, forming a near in-
dependent Gaussian sequence, and thus simplifying the
statistics significantly [10]. The basic idea is to formulate
the likelihood function for the FD parameters § and o2
directly in terms of the interior DWT wavelet coefficients.
Let Wy bean M = ) j M; point vector containing all
of the interior DWT wavelet coefficients over a specified
range of scales j = Jy,...,J;. We can write the exact
likelihood function for § and o2 as

Ts—1
WISW, Wi/2

(27T)M/2‘EWI‘1/27

L((sv J?‘WI) = (4 14)

where Yy, is the covariance matrix of W, and |Sw, |
is the determinant of Yy ,. Note that the dependence
of the likelihood function on § and o2 is through Sy,
alone. Under the assumption that the wavelet coefficients
in W are approximately uncorrelated, Eq. 4.14 can be
approximated by

-1 —W? 1(0,02))

t+L’ /(

Ji Mj
2(5, O’?‘W} H H

2\)1/2
Pl it (27C;(8,02))Y/

(4.15)

where C;(8,0?) is an approximation to the variance of
W+ given by the average value of the SDF in Eq. 2.1 over

the nominal pass-band [1/47;,1/27;] for the equivalent
wavelet filter h;;. The estimate 5mle of § is obtained by
maximizing £(d,02|W ) with respect to 6. Equivalently
we can consider the reduced log likelihood function

1(6|W 1) = Mlog( Z M; log(C4(9)),
Jj=Jo (4 16)
where C}(0) = C;(8,02)/0%¢, and
M;—1
05 - Z IS\ Z 2,t+L’
M C = (4.17)

(see [31] for explicit details on the development of the
reduced log likelihood function using the DWT coeffi-
cients). Minimizing Eq. (4.16), which is a function of ¢
alone, yields the maximum likelihood estimate sze, after
which we can compute the corresponding estimate for o2
by plugging bmie into Eq. 4.17.

Under the assumption that § € [—1/2, L/2], the esti-
mator d,e for large M is approximately Gaussian dis-
tributed with mean § and variance

J1 1 J1 29—1
T _2{2 Mid; - M(Z Mj¢j> ] (4.18)

j=Jo j=Jo
where
_ 40? 1/2 log(2sin(wf))
= i P B
L PP /1/271' log(2sin(r[)) i (419)
C5(Omie) J1/ar; [28in(m f)]20mee
(see [11] for details). In practice, the right-hand inte-

gral can be approximated through either (i) numerical
integration or (i) a Taylor series expansion about the
mid-band frequencies for levels j = 1, 2 along with direct
integration using a small angle assumption for j > 2.
The approximation above is based upon the view that
the wavelet transform forms an octave band decomposi-
tion. There is generally a large increase in computational
speed when using this bandpass approximation with rel-
atively small loss of accuracy.

V. ANALYSIS OF MEASURED AEROTHERMAL
TURBULENCE DATA

A. Description of the data

Here we examine a uniformly sampled 7.5 million point
aerothermal turbulence data set (referred to as ‘aero’
henceforth). These data are a temperature related time
series gathered by an aircraft flying at a constant (or lin-
early increasing) elevation and constant speed in clear



air conditions. The measurement system is a cold-wire
probe, externally attached to the aircraft, that senses
fluctuations in local temperature by means of a propor-
tional change in wire current. The data span a total
distance of 137.3 km with a spatial resolution of approx-
imately 1.83 cm. Due to the large amount of data in the
aero series, we will use MA(q,r) filters (moving average
using windows of length ¢ with an overlap of r points) for
purposes of display and comparison of results. Figure 2
shows the aero series smoothed with a MA(10000,0)
filter. Typical of turbulence data, the aero series ex-
hibits seemingly random fluctuations at various scales
and times. This particular set of data seems to have
a change in some of its characteristics after about 80 km.

B. FD model validation

Figure 3 shows a DWT transform of a small segment of
the aero series using Daubechies 8-tap least asymmetric
filters, while Fig. 4 shows the corresponding MODWT.
The relationship between the DWT and MODWT given
in Eq. (3.6) can be visualized, for example, by compar-
ing the DWT scaling coefficients Vg, in Fig. 3 with the

corresponding MODWT coefficients V5 ; in Fig. 4.

Let us now consider modeling the aero series as the
realization of an FD process. We begin by considering
some diagnostic statistics designed to help us ascertain if
in fact an FD model is appropriate. If this series were an
actual realization from an FD process, then, to a good
approximation, the interior coefficients in W'; should be
a realization of a white noise process [31,10]. To see if
this is true, let us look at the sample autocorrelation
functions (ACFs) for W, j = 1,...,11, of a represen-
tative sample of the aero data along with the ACF of
the data itself (Fig. 5). Under the white noise hypothe-
sis, standard statistical theory suggests that roughly 95%
of the sample ACF values for the wavelet coefficients at
scale 7; should fall between + 2,/N; —n/N;, where n
is the ACF lag, restricted here to range from 0 to 128
[32]. The actual percentage of coefficients that fall within
these limits is shown to the right of each plot. The ACF
of the aero segment itself shows a persistent positive cor-
relation typical of an FD process; however, the ACF's for
W, ..., W5 exhibit correlation well outside the white
noise limits, evidently due to energetic deterministic pat-
terns. This is particularly apparent in the ACFs for W4
and W, which exhibit a strong (SNR > 0.5) sinusoidal
beating pattern and pure sine wave pattern, respectively.
These periodicities are suspected to be due to an exoge-
nous factor unrelated to aerothermal turbulence such as
a periodic autopilot correction or harmonic resonance of
the probe armature, inducing a local vibration (and cor-
responding recorded temperature fluctuation) in the cold
wire probe instrumentation. As a result, these determin-
istic components render an FD model inappropriate over
those scales. For scales 74 and 77, the percentages of sam-

ple ACF values falling within the limits are still half to
two thirds of the nominal value of 95%, but the values are
nonetheless quite small in magnitude (< 0.08 for 74 and
< 0.14 for 77); for scales 73 and above, the percentages are
fairly close to 95%. Thus, in keeping with an FD model,
the DWT effectively decorrelates the aero segment over
scales 7¢ and higher, so this ACF-based diagnostic sug-
gests just applying the FD model over these scales.

Let us now look at a second diagnostic statistic, but
based upon the interior MODWT coeflicients in W ;.
Figure 6 shows an example of unbiased wavelet variance
estimates for one 26 point block in the aero series. As
can be deduced from Eq. (4.4), a multiscale linear pattern
in a log-log plot of the wavelet variance versus 7; would
be consistent with the presence of an FD process; how-
ever, this figure shows that such linear patterns appear
only over a quite limited range of scales. If we segment
the log wavelet variance curve into regions over which a
linear relationship appears to hold, we obtain a different
FD parameter § over scales 7y — 74, 75 — 77 and 78 — Tq1.
These patterns change with different blocks, indicating
both time varying and scale dependent power law behav-
ior.

Using the collection of diagnostics shown in Fig. 5-6,
we can demonstrate the methodology described in this
paper by fitting separate FD models to the aero se-
ries over two finite ranges of scales, namely, 74 — 75 and
Tg — T11, €ach spanning approximately an octave of fre-
quencies (to simplify our discussion and accompanying
figures, we do not consider triads of higher scales).

C. Block dependent WLSE

Using Eq. (4.9) and the relation o = —26, the Qs
were calculated for the aero series over scales 74 — 73
and 79 — 111 (Fig. 7). For simplicity, we define the term

d%fjl to mean the WLSE of the power law exponent over

scales Tjo,...,7s1. The G¥%° and a¥y were estimated

over contiguous nonoverlapi)ing blocks of size 10000 and
20000, respectively. Due to the sampling variability
present in the wavelet variance estimates, we smoothed
all df}’(fsjl with a MA(20,19) filter (the choice of this par-
ticular filter is somewhat arbitrary, but such smoothing
is helpful in making it easier to see how « evolves in time
over the two groupings of scales). Note the apparent wide
range of d’élilgse and dg”lff, which roughly span values ap-
propriate for stationary white noise up to nonstationary
random walk noise. This clearly suggests that a single
(Kolmogorov) exponent is not an adequate description of
this aerothermal turbulence data as might be incorrectly
construed from conventional Fourier-based methods (see
§VF). To quantify this effect we define the inertial range
percentage as

P
100 . .
IJOJl = P Z U(V&r{an7‘/'1710}1/2 - ‘aJO7J17P + 5/3‘)a
p=1 (51)



where U(-) is the unit step function and &, g, p is
the &y, 5, at block p in time. The I“’lse represents
the percentage of unsmoothed A“’lsjl that falls within
+ var{ay'*5, /2 of the Kolmogorov exponent (a =
—5/3). Using Eq. 5.1, the inertial range percentages
for the WLSE curves were found to be Ig’ wise — 8% and
Ié"ﬁe = 45%. Most of the inertial range percentage is

achieved where there is a moderate coupling of awzse

and
Awlse

&g over (approximately) 20-80 km.

D. Block independent (instantaneous) LSE

Instantaneous LSEs of « over scales 174 — 73 were cal-
culated for the entire 7.5 million point aero series us-
ing Eq. 4.12. Figure 8 shows the désgt smoothed with
a MA(10000,0) filter. These estimates follow the same
pattern exhibited by the Oz“’lse shown in Fig. 7 but with a
bit more variability. T hese varlablhtles are not, captured
by the block dependent estimators and illustrate the im-
portance of using time dependent estimators for a more
accurate portrayal of the (turbulence) dynamics.

E. Block dependent MLE

Figure 9 shows the maximum likelihood estimates of
a for the aero series smoothed with a MA(20,19) fil-
ter. These estimates are noticeably more coupled in the
spatial range of 20-80 km than are the &y s. shown in
Fig. 7. Outside of this spatial range, however, both
the aggse and the dg@ée show a strong departure from
Kolmogorov turbulence. This change in process dynam-
ics is somewhat discernible in the smoothed plot of the
aero series (Fig. 2). The resulting inertial range per-

centages for the A, are Imle = 9% (= é‘jése) and

Igs = 22% (= I35 /2).

F. Comparison to Fourier techniques

Finally, for contrast, let us look at a common way to
analyze turbulence data through an estimate of its SDF.
Conventionally, power law exponents are estimated di-
rectly from an estimate of the SDF for the data. For
example, the slope of the SDF on a log-log scale provides
a direct estimate of a. Figure 10 shows the SDF of the en-
tire aero series, computed by partitioning the aero series
into 216 point blocks, forming a spectral estimate for each
block and then averaging the spectral estimates together.
The average SDF portrays a strong Kolmogorov turbu-
lence slope of a &~ —5/3 over many octaves. This global
approach masks the fact that there are significant devi-
ations from the —5/3 law locally in time and hence does
not accurately portray the dynamics of a. We could, of
course, track the power law estimate of each block as time

unfolds, but we would then need some scheme for parti-
tioning the frequencies into regions over which a single
power law is applicable. If we use a partitioning scheme
that is essentially the same as what our wavelet method-
ology yields, the work of McCoy et al. [28] shows that
wavelet-based estimates of a have better mean square
error properties than do those based upon the SDF.

VI. DISCUSSION

In this paper we have introduced three wavelet-
based techniques to estimate FD model parameters for
aerothermal turbulence data: block independent (instan-
taneous) LSE, and block dependent WLSE and MLE.
The block dependent WLSE and MLE verify the pres-
ence of time varying power law processes with an esti-
mated power law exponent spanning from white noise to
nonstationary red noise and applicable over finite ranges
of scale. Additionally, averaged block independent LSEs
were shown to match well with block dependent WLSEs.
The LSEs are an effective means of obtaining instanta-
neous estimates of FD parameters (or, through the ap-
proximation a = —24, the power law exponents) and are
consequently very useful in detecting changes in a system
whose dynamics fluctuate rapidly as a function of time
or scale. For the block dependent WLSE, we introduced
methods for calculating the variance of FD parameter
estimates and corresponding confidence intervals. For a
specified range of the FD parameter 6 and under a large
sample assumption, we showed that the the block de-
pendent MLE estimator bmie 18 approximately Gaussian
distributed with mean 4, and we developed the variance

of the estimator (62 ). To summarize the departure of

6mle
the estimates from (fully developed) Kolmogorov turbu-

lence, we introduced the inertial range percentage statis-
tic, which quantifies the time and scale dependent inter-
mittency of Kolmogorov turbulence. The collection of
results supports the efficacy of using stochastic FD mod-
els for aerothermal turbulence data.
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FIG. 1. The squared gain functions for Daubechies least asymmetric 8-tap wavelet filter for
levels 7 = 1,...,4. For simplicity, the sampling period was set to unity to create the frequency
axis and establishes the Nyquist frequency at 1/2. The dotted vertical lines identify the frequency
bands with which the wavelet and scaling filters are associated. The scaling of the left (right)
ordinate is representative of the DWT (MODWT) squared gain function.
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FIG. 2. The aero series smoothed with a MA (10000, 0) filter.
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FIG. 4. MODWT of aerothermal data segment using Daubechies 8-tap least asymmetric filters.
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FIG. 7. The d%‘jlgse and dg’,lff of the aero series smoothed with a MA(20,19) filter. The con-
fidence limits are for the smoothed estimates shown and are constant since the number of scales
over which the estimates are made is constant.
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FIG. 9. The dg?ée and dg‘ﬁ of the aero series smoothed with a MA(20,19) filter.
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FIG. 10. Averaged estimated SDF for aero series and the theoretical SDF's for an FD process
and pure power law (PPL) model of fully developed Kolmogorov turbulence with an infinite inertial
range. The FDP and PPL curves are purposefully offset from the average SDF of aero series so
that their log—log SDF slopes may be easily compared over a broad range of scale. The vertical
divisions represent the bandwidth over which the wavelet coefficients at scale 7; are nominally
associated.



