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Abstract. Measured sea-ice draft exhibits variations on all scales. We

regard draft profiles up to several hundred kilometers in length as being drawn

from a stationary stochastic process. We focus on the estimation of the mean

draft H of the process. This elementary statistic is typically computed from

a profile segment of length L and has some uncertainty, or sampling error,

that is quantified by its variance σ2
L. How efficiently can the variance of H

be reduced by the use of more data, that is, by increasing L? Three prop-

erties of the data indicate the need for a non-standard statistical model: the

variance σ2
L of H falls off more slowly than L−1; the autocorrelation sequence

does not fall rapidly to zero; and the spectrum does not flatten off with de-

creasing wavenumber. These indicate that ice draft exhibits, as a fundamen-

tal geometric property, ‘long-range dependence.’ One good model for this de-

pendence is a fractionally differenced process, whose variance σ2
L is propor-

tional to L−1+2δ. From submarine ice draft data in the Arctic Ocean, we find

δ = 0.27. Mean draft estimated from a 50-km sample has a sample standard

deviation of 0.29 m; for 200 km, it is 0.21 m. Tabulated values provide the

sample standard deviation σL for various values of L for samples both in a

straight line and in a rosette or spoke pattern, allowing for the efficient de-

sign of observational programs to measure draft to a desired accuracy.
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1. Introduction

Sea-ice draft, the submerged portion of floating sea ice, is a good proxy for ice thickness.

Draft, as can be measured by a submarine transiting the Arctic Ocean, exhibits variations

on all horizontal scales. We take the point of view that small scale variations up to several

hundred kilometers are manifestations of a random process; i.e., we regard the draft profile

over such distances as being drawn from a random process whose probability density

function is the same along the profile [Thorndike et al., 1975]. Complete geophysical

information is contained not in the particular profile, but in the statistical ensemble from

which our profile is one representative. An elementary and crucial statistic is the mean

draft H. This statistic is of particular geophysical interest since, as an estimator of

the first moment of the probability density function, it is directly related to the volume

and mass of sea ice per unit area. Under this framework, variations on larger scales of

hundreds to thousands of kilometers represent variations in the underlying probability

density function. The small scale variations in draft are random and unpredictable. The

large scale variations in any statistic such as H are related to predictable phenomena in

the atmosphere and ocean and are themselves predictable.

This point of view allows us to address questions of the accuracy of an observation of

H. By accuracy, here we mean representativeness, not instrumental accuracy, which is

an entirely separate issue [Rothrock and Wensnahan, 2007]. Our measurement of H is

based typically on a profile segment of length L and inevitably has some uncertainty, or

sampling error. In general using more data in the estimation reduces this sampling error.

The practical issue we address here is how efficiently the uncertainty in H can be reduced

D R A F T September 10, 2007, 9:52am D R A F T



X - 4 PERCIVAL ET AL.: LONG-RANGE DEPENDENCE AND SEA ICE

by the use of more data, that is, by increasing L. This issue is central to all attempts to

use observations to characterize the state—or changes in the state—of sea-ice draft. To

address this issue, we need to assume some sort of model for the spatial variations of ice

draft.

We argue in this paper that the nature of sea-ice drafts dictates the use of nonstandard

statistical models. The simplest standard model would assume that the measurements are

uncorrelated. As we demonstrate empirically in section 2, this assumption is problematic

and leads to estimates of the variance in H that are much smaller than are realistic. A

common way to account for correlation in climate research is to use a first-order autore-

gressive process as a model [von Storch and Zwiers, 1999]. We demonstrate empirically

in section 2 that this more refined standard model is still not a good match for the actual

measurements. The problem with the autoregressive model is that it assumes that the

autocorrelation between sea-ice drafts at two distinct locations decays exponentially as

the distance between the locations increases. Again we show empirically this assumption

does not match reality. We then argue in section 3 that the measurements are better

described by a model exhibiting ‘long-range’ (or ‘long-memory’) dependence. The key

feature of this nonstandard model is that the autocorrelation decays as a power law, a

much slower rate than that for the autoregressive model. It should be emphasized that

long-range dependence is not just a statistical characterization that affects only sampling

errors, but describes a fundamental geometric property of the ice pack, akin to roughness

and fractal properties, lead and floe size distributions, and ridge and keel properties. We

use a stochastic model to describe this property because of the simplicity this approach

affords.
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The data used in this paper are acoustic measurements of sea-ice draft, taken by upward

looking sonars mounted on U.S. Navy submarines. In particular, we use data from two

SCientfic ICe EXpedition (SCICEX) cruises within the Arctic Ocean: one in October of

1996 and one in September of 1997. The data are archived at the National Snow and Ice

Data Center in Boulder, Colorado, USA, along with data from numerous other cruises

that span three decades.

2. Interpreting Variability in Mean Drafts via Standard Statistical Methods

We begin by considering a set of ten draft profiles collected in a rosette pattern in

October 1996 (thin curves in the right-hand part of Figure 1). Although data are sampled

at one meter spacing, we take each profile to consist of a certain number of one kilometer

averages H1. In all, there are 1814 such averages, so the average length of the ten profiles

is 181.4 km. The sample mean of these averages is 2.36 m, and their sample variance is

σ̂2
1 = 0.390 m2, which gives us an empirical measure of the sampling variability in any given

H1. We then take the one kilometer averages for each of the ten profiles and average them

pairwise to form two kilometer averages H2. There are 904 such averages (there would

have been 907 averages if all profiles had had an even number of data points). The sample

mean of these two kilometer averages is again 2.36 m; however, their sample variance is

σ̂2
2 = 0.248 m2, which is notably smaller than σ̂2

1. This demonstrates empirically that a

mean draft over one kilometer has greater variability than a two kilometer mean draft,

which is no surprise.

We can continue in this manner to build up a picture of how the variability in draft

changes as we increase the distance over which measurements are averaged. We do so

by taking the two kilometer averages and averaging them pairwise to form four kilometer
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averages H4, yielding σ̂2
4 = 0.154 m2. Subsequent pairwise averaging yields values for σ̂2

8,

σ̂2
16 and σ̂2

32. Figure 2a shows a plot of σ̂2
L versus averaging lengths L = 1, 2, 4, 8, 16 and

32 (circles). As expected, the variability decreases as L increases.

We can also demonstrate a similar monotonic decrease in variability using a longer single

draft profile of one kilometer averages collected in 1997 (thick curve in the right-hand part

of Figure 1). This profile passes through the 1996 rosette region and has a mean draft of

1.6 m. Here there is a noticeable overall linear trend in the draft profile, which we have

eliminated via a least squares fit. The residuals from the fit are shown in Figure 3. If we

apply the same scheme as before to these residuals, we obtain the values for σ̂2
L shown in

Figure 2b (circles). Although the variability is systematically lower here due presumably

to changes in ice thickness from 1996 to 1997, the pattern of decay is similar to what we

observed before.

Note that, on a log/log plot, the patterns of decay in the variances look fairly linear in

both Figures 2a and b. In an attempt to explain this observed rate of decay, suppose we

entertain the simplest possible standard statistical model for our measurements, namely,

that the one kilometer averages can be considered to be independent realizations from

some distribution with an unknown variance σ2
1. Standard statistical theory then says

that the population variance σ2
L in HL should be related to the variance σ2

1 in H1 via the

equation

σ2
L = σ2

1 × L−1; (1)

i.e., the rate of decay is L−1, which, on a log/log plot, becomes a line with a slope of

−1. In Figures 2a and b, we have plotted as thin lines σ̂2
1/L versus L for the rosette and
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SCICEX 97 profiles. Clearly the empirically observed rate of decay is much slower than

under the independence assumption.

A more realistic model must take into account the fact that draft measurements are

not independent but rather are correlated. A standard way of handling a correlated time

series in climatology is to assume that its correlation properties are dictated by a first-

order autoregressive model. Under this model, the correlation between H1 measurements

that are adjacent to each other in the SCICEX 97 profile is φ, where typically 0 ≤ φ < 1

(when φ = 0, the measurements are uncorrelated, which is implied by the assumption of

independence). We note two important implications of the autoregressive model. First,

the correlation between H1 measurements that are separated by d km is φd. Second, the

variances of HL and H1 are related by

σ2
L = σ2

1 ×
1 + φ

1 − φ

(
1 − 2φ(1 − φL)

L(1 − φ2)

)
× L−1 (2)

(see Appendix A for details). In Figure 2b the dotted curve shows σ2
L versus L in equa-

tion (2) with σ2
1 replaced by σ̂2

1. The autoregressive model fails to predict the observed

rate of decay as L increases. Note that equation (2) reduces to

σ2
L ≈ σ2

1 ×
1 + φ

1 − φ
× L−1 as L → ∞. (3)

The difference between the above approximation and equation (1) is just a multiplicative

factor (1+φ)/(1−φ). This says that, as L gets large, the rate of decay for the autoregressive

model is proportional to L−1, just as under the independence assumption, which explains

why the dotted curve in Figure 2b is parallel to the thin line for large L. (For higher

order autoregressive models, σ2
L is also proportional to L−1 for large L, so the observed
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rate of decay cannot be explained using an asymptotic approximation by just increasing

the autoregressive order.)

Why does the autoregressive model fail here? One telltale sign is the autocorrelation

sequence. Figure 4a shows the sample autocorrelation sequence for the SCICEX 97 profile

(circles), i.e., the observed correlation between values of the profile that are separated by

d km. For d = 1 km, we obtain an observed correlation between adjacent profile mea-

surements of φ̂ = 0.36. The autoregressive model predicts the correlation between profile

measurements separated by d > 1 km to be φ̂d, indicated by the thick curve. The thin

curves above and below the thick curve indicate limits within which we can reasonably

expect to find the sample autocorrelation sequence (at any given d, these are 95% confi-

dence limits under the autoregressive model). Eight out of the first ten values from this

sequence are above the upper 95% confidence limit. Clearly the autoregressive model

systematically underestimates the observed autocorrelation sequence and postulates a

sequence that damps down to zero much more quickly than is actually observed.

A second telltale sign is the spectrum (also known as the power spectral density func-

tion). Figure 5 shows an estimate of the spectrum (thin jagged curve), along with a 95%

confidence interval for the true spectrum based upon this estimate at the lowest displayed

wavenumber (0.003 cycles/km, which corresponds to a period of 341 km; see Appendix B

for details about this estimate). The dotted curve shows the spectrum implied by the

autoregressive model. This spectrum falls outside of the displayed 95% confidence inter-

val, and the same statement holds at other low wavenumbers. While the autoregressive

model is capable of capturing the high wavenumber portion of the estimated spectrum,
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it significantly underestimates the observed spectrum at the lowest wavenumbers, which

correspond to the longest lags or scales.

3. Interpreting Variability in Mean Drafts via Long-Range Dependence

In the previous section we noted empirically that the variability in mean drafts cannot

be adequately explained either by a model that assumes independence or by one that

allows correlation as dictated by a first-order autoregressive model. The three symptoms

noted are that the variance in the mean draft falls off more slowly than L−1, the au-

tocorrelation sequence does not fall to zero sufficiently rapidly, and the spectrum does

not flatten off with decreasing wavenumber. These symptoms indicate long-range depen-

dence. The hydrologist Hurst is credited with sparking interest in long-range dependence

amongst geophysicists in a study of long-term storage capacity of reservoirs in the Nile

River basin [Hurst, 1951]. Models with long-range dependence have been applied to such

diverse topics as assessing power output from wind-driven turbines [Haslett and Raftery,

1989], investigating long-term trends in global temperatures [Bloomfield, 1992; Smith,

1993], interpreting variability in North Pacific sea-level pressure time series [Percival et

al., 2001] and studying hydroclimatological time series [Cohn and Lins, 2005]. Good gen-

eral references are Beran [1994], Doukhan et al. [2003] and Rangarajan and Ding [2003].

A simple model that exhibits long-range dependence is a fractionally differenced pro-

cess [Granger and Joyeux, 1980; Hosking, 1981]. The precise definition of this process is

deferred to Appendix A, but suffice it to say that one can construct a good approxima-

tion to a fractionally differenced process by averaging together a collection of first-order

autoregressive processes with different φ’s [Mandelbrot, 1971; Granger 1980; Beran, 1994;

see also equation (27)]. Any given first-order autoregressive process has a ‘decorrelation
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length’ of (1 + φ)/(1 − φ) lags, which can be interpreted as the approximate range of

dependence for such a process [von Storch and Zwiers, 1999, section 17.1]. The aver-

aged process does not have a single well-defined decorrelation length, but rather exhibits

nonnegligible dependencies between portions of the process that are far apart.

Just as the correlation properties of an autoregressive process are determined by a single

parameter φ, those of a fractionally differenced process are also characterized by a single

parameter, denoted as δ; i.e., the autoregressive and fractionally differenced models are

equally simple in the sense that both involve the same number of parameters. The long-

range parameter δ is of interest to us in that it determines the rate of decay of variance

with averaging length:

σ2
L ≈ σ2

1 ×
Γ(1 − δ)

(2δ + 1)Γ(1 + δ)
× L−1+2δ as L → ∞ (4)

[Percival, 1985]. In the limiting case δ = 0, the process is the same as a white noise

process, so the rate of decay reverts to the more familiar L−1 given in equations (1) to (3).

If 0 < δ < 1/2, then the fractionally differenced process is stationary and exhibits long-

range dependence. In the extreme case δ = 1/2, the process becomes nonstationary and is

very similar to so-called 1/f or flicker noise [Solo, 1992]. Figure 6 shows four realizations

of stationary fractionally differenced processes with similar short-range fluctuations but

differing degrees of long-range dependence, along with an example of white noise (δ = 0).

Note that, although the eye can perceive differences among the realizations in this figure,

one would be hard pressed to judge how strong is the long-range dependence in any

particular realization, that is, to assign even a rough value of δ to a wiggly curve. Visually,

long-range dependence is a fairly subtle property.
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Let us now see how the fractionally differenced model corrects the problems that the in-

dependence and autoregressive models experienced in representing the decrease in variance

of the sample mean and in matching the observed autocorrelation sequence and spectrum.

Using a maximum likelihood procedure, we estimate the parameter δ for the SCICEX 97

profile as δ̂ = 0.27 (see Appendix B for details). Using this estimate and the observed

sample variance σ̂2
1 for the one kilometer averages, we can compute the expected pattern

of σ̂2
L versus L under the fractionally differenced model for both the rosette profiles and

the SCICEX 97 profile (see Appendices A and C). These are shown in Figures 2a and b as

the thick curves, which are a better overall match to the observed decrease (circles) than

either the independence or autoregressive models. Similarly, the thick curve in Figure 4b

shows the expected value of the sample autocorrelation sequence for the SCICEX 97 pro-

file under the fractionally differenced model, along with upper and lower 95% confidence

limits (thin curves). In contrast to the autoregressive model, we now see that the sample

autocorrelation sequence (circles) is consistently within the confidence limits for the fitted

model (only the value at lag d = 76 km falls outside the limits).

A comparison of the thick curves in Figures 4a and b shows the main qualitative differ-

ence between the autocorrelation sequences for the autoregressive and fractionally differ-

enced models. The autoregressive model predicts essentially zero correlations for observa-

tions that are about d ≥ 7 km apart, whereas the fractionally differenced model postulates

small—but persistent and slowly decaying—correlations beyond 7 km. Visually the ex-

pected pattern of the autocorrelation sequence under the fractionally differenced model is

a much better fit than that of the autoregressive model. Additionally, the thick curve in

Figure 5 shows the spectrum for the SCICEX 97 profile under the fractionally differenced
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model and is clearly a better overall match to the observed spectrum than the dotted

curve for the autoregressive model.

Our conclusion from this study is that the fractionally differenced model adequately

explains the variance of the sample mean of sea-ice draft from one kilometer up to

200 kilometer averages and is to be preferred over a model assuming independence or

an autoregressive formulation.

4. Practical Implications

We now have a method based upon equation (4) of determining the variance for a

sample from a profile averaged over length L:

σ2
L ≈ σ2

1 × Cδ × L−1+2δ, (5)

where our best estimate of δ for the SCICEX 97 profile is 0.27, σ2
1 is the variance at a

sample length of 1 km and Cδ = 0.9 when δ = 0.27. This equation requires that we know

σ2
1. Alternatively, if we know σ2

L0
for some L0 > 1 km instead, we can express the above

as

σ2
L ≈ σ2

L0
×

(
L

L0

)−1+2δ

, (6)

which is a good approximation if the averaging lengths L and L0 are both at least as long

as 5 km. In an earlier exploration of the statistical sampling problem, Wadhams [1997]

used L0 = 50 km and presumed a white noise model, which corresponds to setting δ = 0

rather than δ = 0.27 as we advocate. He also supposed that σ50 would be proportional to

mean draft H50 and, based on four observations from near the North Pole with fairly high

values for H50 (3.671 to 4.008 m, from his Table 3), suggested that σ50 ≈ 0.1275 × H50.

This approach allows indirect determination of σ2
50 via H

2
50 for use in (6).
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To explore the Wadhams approach, we used draft data from NSIDC to examine the

relationship between σ50 and H50. We grouped together five nearby samples with L0 ≈

50 km. The five samples in each group are from the same cruise and roughly from the

same 175-km-wide patch of ice. (The boxes containing each group of five have a mean

hypotenuse of 156 km and a maximum of 200 km.) There were 274 such groups. The

bias-corrected standard deviation for each group is plotted against its corresponding mean

in Figure 7, where σ50 appears to have a slight dependence on H50 (see Appendix D for

details on the bias correction). We used ordinary least squares to fit the models

σ50 = a (a constant model), (7)

σ50 = bH50 (the Wadhams model) and (8)

σ50 = c + dH50 (a linear model). (9)

For the constant model we obtained an estimate of â = 0.285 ± 0.009, where 0.009 is the

estimated standard deviation of â. For the Wadhams model, we found b̂ = 0.095± 0.003,

which is significantly smaller than the result reported by Wadhams. For the linear model

(equation (9)), we obtained ĉ = 0.164 ± 0.029 and d̂ = 0.043 ± 0.010, so both parameters

would be deemed as significantly different from zero at a level of significance less than

0.001. (Because the observed standard deviations σ50 have a markedly non-Gaussian

distribution as seen in Figure 7b, we also computed a robust MM–estimate for the linear

model [Yohai et al., 1991; Venables and Ripley, 2002]. This yielded estimates of c̃ =

0.155 ± 0.025 and d̃ = 0.039 ± 0.008, which are consistent with ĉ and d̂.) The three

fitted models are shown in Figure 7a, where the dashed, dotted and solid lines are for the

constant model, the Wadhams model, and the linear model fit by ordinary least squares.

For all three fitted models, the residual standard deviations are practically the same
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(0.154, 0.157 and 0.149), indicating that, even though the slope terms are statistically

significant, neither of the models with a slope term is markedly better at predicting σ50

than just using â (the mean of the 274 observed values of σ50). For this reason, we prefer

the simple approach of neglecting any dependence of σ50 on mean draft.

Using σ50 = 0.29 m as determined by the NSIDC data along with our values for L0 and

δ, equation (6) becomes

σ2
L ≈ (0.29)2 ×

(
L

50

)−0.46

, L in km. (10)

Assuming the above, the top row of Table 1 lists the standard deviation σL of mean ice

draft for sampling length L ranging from 5 to 200 km. For comparison the middle and

bottom rows show standard deviations based upon the white noise and autoregressive

models, again assuming σ50 = 0.29 m. The latter two models both predict that σL will

decrease by approximately a factor of 6 as L goes from 5 km up to 200 km, whereas the

fractionally differenced model predicts a decrease of only about a factor of 2.5.

Table 2 shows standard deviations of mean ice draft for data collected in an ideal rosette

pattern with n profiles, again under the fractionally differenced model. The case n = 1

is a degenerate rosette consisting of a single draft profile of length L, so the top rows of

Tables 1 and 2 are identical. When n > 1, the angle θ between adjacent spokes in the

rosette is 180◦/n. The case n = 10 corresponds to an idealized version of the rosette

shown in Figure 1. If resources allow the enlargement of a sampling scheme by, say, a

factor of 10, is it better to extend the length of a single profile by a factor of 10 or to

sample 10 profiles in a rosette? Consider the first four entries in Table 2 for n = 1 and

L = 5, 10, 15, 20. Enlarging these by lengthening the profile gives the four bold numbers

on the same line; on the other hand, taking 10 profiles in a rosette gives the four bold
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numbers on the last line. Clearly, lengthening a single profile gives lower sampling errors.

Additionally the table indicates that there is virtually no decrease in standard deviation

when going from n = 4 to n = 10 legs, even though the latter involves about 2.5 times

more samples. This result is in stark contrast to what is predicted by both the white noise

and autoregressive models.

5. Conclusions

This paper addresses the question: how accurately can one estimate the mean draft

from a finite sample provided by a profile of ice draft measurements of length L? Or, put

differently, what is the sampling error in ice draft observations? The assumption has been

that the underlying random process producing draft profiles is the same over any length

L, ignoring the fact that the polar oceans are of finite size and, at very large lengths, are

subject to regional variations that are incompatible with the notion of stationarity. Ice

draft is not well represented by a white noise process or by an autoregressive process, for

which the variance of the sampling error falls off as L−1 for large L. It is better represented

as a process with long-range dependence, for which the variance of the sampling error falls

off as L−1+2δ (Figure 2). A stochastic process with long-range dependence that serves

as a useful model of ice draft is a fractionally differenced process. From observations

acquired by U.S. Navy submarines (Figure 3), the long-range parameter δ is estimated to

be 0.27. Symptoms of this long-range dependence are that the autocorrelation sequence

falls slowly to zero as the lag increases (Figure 4), and that the spectrum never levels off

as the wavenumber gets small (Figure 5).

Relying on analysis of all available ice draft observations from U.S. submarines, we advo-

cate using the approximation that σL0
has a value of 0.29 m for L0 = 50 km, independent
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of the mean draft (Figure 7). Given the parameters δ and σL0
, one can construct tables

that list the values of the standard deviation of the sampling error for various sample

lengths L in a single straight-line profile (Table 1) and for various combinations of sample

length L and number n of rosette legs (Table 2). These tables illustrate how difficult it

is to ‘beat down’ sampling errors by taking larger and larger samples. Quadrupling the

amount of data from L = 50 km to L = 200 km would reduce the standard deviation of

a white noise process by 50%, but, for a fractionally differenced process that mimics sea

ice, it is reduced from 0.29 only to 0.21 m (Table 1). For a rosette it is difficult to reduce

the sampling error below 0.18 m no matter how much data one acquires. These sampling

errors must be kept in mind when using data to draw conclusions about the temporal

or spatial variations in ice draft [e.g., Wadhams and Horne, 1980; McLaren et al., 1994;

Wadhams, 1990; Rothrock et al., 1999; Tucker et al., 2001]. Conversely, using the values

in Tables 1 and 2, one can devise observational schemes that most efficiently provide the

desired accuracy for draft.

An interesting question for sea-ice modelers is whether modeled ice thickness has the

same long-range dependence as reported here for natural ice. If so, it would suggest that

whatever physics produces the property in nature is captured in the modeled physics,

which would be an encouraging statement about the quality of current ice models. It

would be desirable to know what physics actually gives rise to long-range dependence;

however, there is no obvious cause, although it might be due to ice strength having a

fairly long length scale. Some insight into this question might be provided by looking for

a source of long-range dependence in some portion of the thickness distribution (either

thick, ridged ice or thin, new ice).
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We need to point out three caveats about our results. First, we have focused on a single

SCICEX draft profile, for which we estimated the long-range parameter to be δ̂ = 0.27. A

95% confidence interval for the assumed true δ is [0.21, 0.33]. Analyses of other SCICEX

draft profiles give estimates δ̂ that are compatible with the one presented here, but with

some exceptions. There does not seem to be any obvious pattern to the exceptions, but

how much δ varies spatially and temporally is an open question. Second, the theory of

long-range dependence has been most thoroughly worked out under an assumption of

Gaussianity, which is reasonable to make here because we are dealing with one kilometer

averages. For lesser amounts of averaging, the Gaussianity assumption is not reasonable.

A model for the original one meter data would need to take non-Gaussianity into account.

Third, the error discussed in this paper is the error in estimating the mean value of a

process using a finite observational sample. A problem still to be addressed—but also of

great interest—is estimating the error in the ‘observation mean’ or ‘realization mean’ as

distinct from the ‘process mean’.

Appendix A: Three Models for SCICEX Draft Profiles

In sections 2 and 3, we consider three Gaussian models for the detrended SCICEX draft

profile of 1 km averages, namely, white noise, a first-order autoregressive process and a

fractionally differenced process. Here we describe these three models in more detail using

a unified formalism, which allows us to see how a fractionally differenced process compares

qualitatively to the other two processes. In particular we formulate the autocorrelation

sequences and spectra for all three processes and review formulae for evaluating how the

variance of the sample mean depends upon the length L of the average.

D R A F T September 10, 2007, 9:52am D R A F T



X - 18 PERCIVAL ET AL.: LONG-RANGE DEPENDENCE AND SEA ICE

Let H1,n, n = 0, . . . , N −1, represent the SCICEX profile, where N = 803 is the number

of 1 km averages. Let µ be a real-valued constant, and let {εn} be a Gaussian white noise

process with mean zero and variance σ2
ε , where n ranges over all integers. All three

models for H1,n can be defined in terms of µ and εn. The first model simply states that

H1,n = µ + εn; the autoregressive model dictates that

H1,n = µ + φ(H1,n−1 − µ) + εn = µ +
∞∑

j=0

φjεn−j, (11)

where |φ| < 1; and the fractionally differenced model says that

H1,n = µ +
∞∑

j=0

Γ(j + δ)

Γ(j + 1)Γ(δ)
εn−j, where

Γ(j + δ)

Γ(j + 1)Γ(δ)
≈ jδ−1

Γ(δ)
for large j, (12)

and |δ| < 1/2 [Granger and Joyeux, 1980; Hosking, 1981; Beran, 1994]. The process mean

for each model is µ, and the process variances σ2
1 are, respectively, σ2

ε , σ2
ε /(1 − φ2), and

σ2
ε Γ(1 − 2δ)/Γ2(1 − δ).

All three models can be reexpressed as

H1,n = µ +
∞∑

j=0

ψjεn−j, (13)

with a suitable definition for the weights ψj, which are nonnegative and satisfy 1 = ψ0 ≥

ψ1 ≥ ψ2 ≥ · · ·. For any n and j > 0, the white noise deviate εn has some influence on

H1,n+j as long as ψj is positive. The weight ψj is thus a measure of how much influence

εn has on H1,n+j. If ψj damps down to zero rapidly as j increases, the influence of εn on

H1,n+j also decreases rapidly. This is certainly the case for white noise, for which ψj = 0

for all j > 0. The ratio ψj/ψj−1 of adjacent weights for an autoregressive process is φ,

which implies a rapid decrease in ψj when φ is set equal to its estimated value (= 0.36)

for the SCICEX 97 profile (see Appendix B). This is demonstrated in Figure 8, where the

thin curve shows ψj versus j. Since ψj is already below 0.01 when j = 5, the influence of
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εn on H1,n+5 and beyond is quite limited. By contrast, the ratio of adjacent weights for a

fractionally differenced process is (j +δ−1)/j, which becomes closer and close to unity as

j gets large. The thick curve in Figure 8 shows ψj versus j with δ set to its estimated value

(= 0.27) for the SCICEX 97 profile. The ψj weights decay at a much slower rate for the

fractionally differenced process and first dip below 0.01 when j = 103. The influence of

εn thus extends much further than in the autoregressive case, which is why a fractionally

differenced process is said to have long-range dependence. A comparison of the weights for

large j is another way of seeing the difference between the models. In the autoregressive

case, ψj decays at an exponential rate φj, whereas it decays as a power law jδ−1 for a

fractionally differenced process.

The autocorrelation sequence ρd ≡ E{(H1,n − µ)(H1,n+d − µ)}/σ2
1 for a white noise

process is ρ0 = 1 and ρd = 0 for any nonzero integer d. The corresponding sequences for

the autoregressive and fractionally differenced processes are given by

ρd = φ|d| and ρd =
Γ(|d| + δ)Γ(1 − δ)

Γ(|d| + 1 − δ)Γ(δ)
≈ Γ(1 − δ)

Γ(δ)
|d|2δ−1, (14)

where the approximation is valid for large |d|. For d ≥ 1, these sequences satisfy the

respective recursions ρd = φρd−1 and ρd = d+δ−1
d−δ

ρd−1. Note that ρd/ρd−1 is constant

for the autoregressive process, whereas, for the fractionally differenced process, this ratio

becomes closer and closer to unity as d increases. These recursions indicate that the rate

of decay of the autocorrelation sequence is much slower for the fractionally differenced

process. Whereas ρd decays at an exponential rate φ|d| for an autoregressive process, it

decays as a power law |d|2δ−1 for a fractionally differenced process, which is a primary

characteristic of long-range dependence.
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The spectrum for a white noise process is given by S(f) = σ2
ε , |f | ≤ 1/2, whereas those

for the autoregressive and fractionally differenced processes are given by

S(f) =
σ2

ε

1 − 2φ cos (2πf) + φ2
and S(f) =

σ2
ε

[4 sin2(πf)]δ
. (15)

Examples of these latter two spectra are shown by the dotted and thick curves in Figure 5,

again using values of φ and δ appropriate for the SCICEX 1997 profile. Long-range

dependence is indicated in the spectrum by the fact that S(f) increases without bound as

the wavenumber f decreases to zero; i.e., low wavenumbers are of dominating importance

in the construction of processes with long-range dependence. By contrast, the spectrum

for the autoregressive process flattens out at low wavenumbers (large lags).

Given H1,n, n = 0, . . . , N − 1, from one of the three processes, we are interested in the

statistical properties of length L averages of the form

HL,m =
1

L

L−1∑
l=0

H1,mL+l, m = 0, 1, . . . , M − 1, (16)

where M = �N/L� (i.e., the largest integer less than or equal to N/L). By stationarity,

the variance of HL,m is independent of m and is given by

σ2
L =

σ2
1

L

L−1∑
d=−(L−1)

(
1 − |d|

L

)
ρd. (17)

[Brockwell and Davis, 1991, p. 219; Fuller, 1996, p. 310]. If Hl is a white noise or

autoregressive process, the above reduces to equations (1) or (2). If Hl is a fractionally

differenced process, we can compute σ2
L either exactly by substituting ρd from (14) into

the above or approximately by using equation (4). A natural estimator for σ2
L is the

sample estimator

σ̂2
L =

1

M

M−1∑
m=0

(
HL,m − HLM,0

)2
, where HLM,0 =

1

M

M−1∑
m=0

HL,m. (18)
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Because

E{σ̂2
L} = σ2

L − σ2
LM < σ2

L, (19)

this sample estimator is biased toward zero [David, 1985]; in the above, σ2
LM is defined

as in equation (17) with L replaced by the product LM . In Figure 2b, we have plotted

E{σ̂2
L} versus L for the three models under consideration, again using values for φ and

δ estimated from the SCICEX profile. Here the difference between E{σ̂2
L} and σ2

L is

very small for the white noise and autoregressive processes because σ2
LM is negligible;

however, this term is nonnegligible for the fractionally differenced process, which is why

it is important to compare the observed values in the figure to the expected value of the

sample variance E{σ̂2
L} rather than the theoretical process variance σ2

L (or the large L

approximation to it in equation (4)).

Appendix B: Data Preparation and Estimation Procedures

Data from the SCICEX cruises were recorded at a 1 m resolution, but there were a

significant number of gaps in the recorded data. Here we explain how the gaps were filled

by means of a stochastic simulation scheme so that these gap-filled data could be used to

compute a sample autocorrelation sequence and a sample spectrum.

We used nominal 1 km averages as our starting point for analyzing the SCICEX 97

profile. We based the nth such average on all available 1 m measurements taken between

n and n + 1 km from the beginning of the profile, where n ranges between 0 and 802 (the

total length of the profile was 803 km). If there were fewer than 500 data points available

within a given 1 km window, we declared the corresponding 1 km average to be missing.

The resulting gappy profile of 632 averages has a notable linear trend, which was removed
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by subtracting off a line whose slope and intercept were estimated using ordinary least

squares. We take this detrending operation to yield a set of gappy 1 km averages that

can be regarded as a realization of H1,nj
, j = 0, . . . , 631, where H1,n is as described in

Appendix A with µ = 0 (here nj is the index of the jth available 1 km average; thus

n0 = 0 and n631 = 802). In effect we are treating detrending as a preprocessing step that

yields a realization of a zero mean process. A refined, but considerably more complicated,

approach would take into account this preprocessing, but would not substantively alter

the conclusions we have drawn using the simpler approach.

Fitting the white noise model to the detrended gappy profile H1,nj
requires only the

estimation of the process variance via

σ̂2
1 =

1

632

631∑
j=0

H
2
1,nj

. (20)

To fit the autoregressive and fractionally differenced models, we use the exact maximum

likelihood method as adapted to handle missing observations [Jones, 1980; Palma and

Chan, 1997]. These yield parameter estimates of φ̂ = 0.360 and σ̂2
ε = 0.2033 for the

autoregressive model and δ̂ = 0.268 and σ̂2
ε = 0.1984 for the fractionally differenced

model (approximate 95% confidence intervals for φ and δ are, respectively, [0.287, 0.433]

and [0.207, 0.329]).

Both fitted models can be used to parametrically estimate the autocorrelation sequence

and the spectrum for the SCICEX 97 profile (Figure 5 shows these parametric spectrum

estimates). It is of interest to compare these parametric estimates to the sample autocor-

relation sequence and sample spectrum commonly used in time series analysis, but these

descriptors require series that are gap free. To form the sample autocorrelation sequence

and spectrum displayed in Figures 4 and 5, we used a stochastic interpolation scheme to
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convert the gappy H1,nj
to a gap-free series, as follows. Suppose that nj − nj−1 > 1 for

a given j; i.e., there are Nj = nj − nj−1 − 1 missing observations between H1,nj−1
and

H1,nj
. Let Ha = [H1,nj−1

, H1,nj
]T , where Ha is a two-dimensional column vector, and ‘T ’

denotes the transpose operation. Let Hb = [H1,nj−1+1, . . . , H1,nj−1]
T represent the missing

profile values. Let sd = ρdσ
2
1 represent the autocovariance sequence as specified by either

the fitted autoregressive or fractionally differenced model. Under a Gaussian assumption,

the distribution of Hb conditional on Ha is multivariate normal with a mean vector and

covariance matrix given by, respectively, µb|a ≡ ΣT
abΣ

−1
aa Ha and Σb|a ≡ Σbb − ΣT

abΣ
−1
aa Σab,

where Σaa is the 2×2 covariance matrix for Ha and has diagonal and off-diagonal elements

given by, respectively, s0 and snj−nj−1
; Σ−1

aa denotes the inverse of Σaa; Σbb is the Nj ×Nj

covariance matrix for Hb, and its (l, m)th element is sl−m; and Σab is a 2 × Nj matrix

containing the covariances between the elements of Ha and Hb (the first row of Σab has

s1, s2, . . . , sNj
, while the second row has sNj

, sNj−1, . . . , s1) [Anderson and Moore, 1979].

Let Σb|a = LLT represent the Cholesky factorization of the covariance matrix. Given a

vector Z of Nj uncorrelated deviates from a normal distribution with zero mean and unit

variance, then µb|a + LZ is a realization from the conditional distribution of Hb given Ha

and can be used as a surrogate for the missing values Hb. (This procedure could be refined

by defining Ha to comprise all available data, and Hb all missing data, but conditioning

on two ‘boundary’ values only is computationally simpler.)

This stochastic interpolation technique can be used to fill in all of the gaps in the

SCICEX 97 profile with values that have sampling variations consistent with the rest of

the profile. One particular interpolation is shown in Figure 3. Let H1,n represent the

gap-filled series, and let HN,0 be its sample average. The sample autocorrelation at lag d
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is given by

ρ̂d =

∑N−|d|−1
n=0 (H1,n − HN,0)(H1,n+|d| − HN,0)∑N−1

n=0 (H1,n − HN,0)2
(21)

We repeated the above procedure 5000 times using the fractionally differenced model and

another 5000 times using the autoregressive model, giving us a total of 10, 000 sample

autocorrelation sequence. The sample autocorrelation sequence shown by the circles in

both plots of Figure 4 is the average of all 10, 000 individual sequences. While there

is a small systematic difference between the average sample autocorrelation sequences

generated by the two models individually, the variation in the individual sequences is quite

small (generally less than the diameter of the circles), particularly when compared to the

uncertainty due to the finite sample size N . To assess this latter source of uncertainty,

we generated 25, 000 realizations of length N from both an autoregressive process and

a fractionally differenced process (with values of φ and δ again dictated by estimates

from the SCICEX 97 profile) using an appropriate exact simulation procedure [Kay, 1981;

Davies and Harte, 1987; Wood and Chan, 1994; Dietrich and Newsam, 1997; Gneiting,

2000; Craigmile, 2003]. We computed ρ̂d for each realization and then formed the sample

average of the ρ̂d’s to estimate E{ρ̂d}, which are displayed as thick curves in Figure 4.

The long-range dependence in the fractionally differenced process shows up in the slow

decay of E{ρ̂d} toward zero as d increases, in contrast to the rapid decay exhibited by

the autoregressive process. While E{ρ̂d} ≈ ρd in the autoregressive case, the same is not

true for the fractionally differenced process, for which ρ̂d is biased toward zero [Newbold

and Agiakloglou, 1993]. We also estimated the distribution of ρ̂d for both processes. The

lower and upper thin curves in Figure 4 show the 2.5% and 97.5% percentage points from

the estimated distributions.
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In a similar manner we can use the stochastic interpolations in order to estimate the

spectrum of the SCICEX 97 profile. The simplest estimator of the spectrum is the peri-

odogram, which unfortunately has high variability. To reduce the variability somewhat,

we used a multitaper estimator based upon five orthogonal sine tapers [Thomson, 1982;

Percival and Walden, 1993; Riedel and Sidorenko, 1995]. The sample spectrum that is

shown in Figure 5 is the average of the multitaper spectra formed for the 10, 000 individual

stochastic interpolations. The center of the small circle in the figure indicates the value of

the sample spectrum at the wavenumber f = 0.003 cycles/km (corresponding to a period

of 1/f = 341 km). A 95% confidence interval for the true spectrum at f is indicated by

the vertical line bisecting the circle and is based upon a chi-square distribution with ten

degrees of freedom. Because the spectrum is plotted on a log scale, confidence intervals

at other frequencies have an identical apparent height and can be formed by mentally

moving the circle and its associated vertical line so that its center captures a given value

of the sample spectrum. Again the additional variability due to uncertainty in the gaps

is small compared to uncertainty represented by the 95% confidence intervals.

Appendix C: Treatment of Rosette Data

The rosette data from October 1996 were recorded along ten co-located profiles (see

Figure 1). While each individual profile can be treated in a manner similar to that of

the SCICEX 1997 profile, their co-location must be taken into account if we want to

understand how variability across profiles is influenced by averaging within profiles. Here

we describe how this can be done.

As in case of the SCICEX 1997 profile, we formed 1 km averages H1,n based upon

all available 1 m data along each of the ten rosette profiles. The profiles have a mean
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length of 181.4 km, which is considerably shorter than the SCICEX 1997 profile (803 km).

Because of this, there is no need to detrend via a linear regression as in the case of the

SCICEX 1997 profile; however, the sample mean of each profile was used to center the

profile prior to using the same maximum likelihood methods described in Appendix B to

compute estimates of φ and δ. The individual estimates of φ and δ for the ten rosette

profiles were systematically smaller than the ones for the SCICEX 1997 profile, possibly

attributable to biases due to the small profile lengths. Pending additional research on

how to form estimates of φ and δ using all ten profiles jointly, for simplicity we have just

adopted the estimates for the SCICEX 1997 profile in what follows.

The sampling pattern for the rosette profiles requires use of a spatial process if we want

to model how sampling variability is affected by different averaging schemes. Accordingly,

we now denote the 1 km averages by H1,xn , where xn is a two-dimensional vector indicating

the location of the center of all the 1 m measurements involved in forming the average.

Here n ranges from 0 to 1813 since the total number of 1 km averages in the ten profiles is

N = 1814 . We assume that H1,xn can be modeled as a spatially stationary and isotropic

random process with variance σ2
1, which requires that

cov {H1,xn , H1,xn+d} ≡ σ2
1ρ|d| (22)

depends on just the magnitude |d| =
√

(d2
0+d2

1) of the two-dimensional vector d = [d0, d1]
T

and not on xn [Chilès and Delfiner, 1999, Chapter 2]. Note that |d| can assume any

nonnegative real value, whereas d in equation (14) is integer valued. For simplicity (and

in keeping with the isotropy assumption), we are ignoring the directionality in our basic

data; i.e., each H1,xn is formed using 1 m samples along a line in a certain direction.
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We entertain three models for H1,xn that are obvious analogs to those for the SCICEX

1997 profile. The first model assumes uncorrelatedness between distinct H1,xn ’s:

ρ|d| =

{
1, if |d| = 0; and
0, for all |d| = |xn − xm| 
= 0,

(23)

where xn and xm are any two distinct locations. The other two models assume either

ρ
(ar)
|d| = φ|d| or ρ

(fd)
|d| =

Γ(|d| + δ)Γ(1 − δ)

Γ(|d| + 1 − δ)Γ(δ)
, (24)

where, in general, 0 < φ < 1 and 0 < δ < 1
2
, but we set φ and δ to agree with the

estimates from the SCICEX 1997 profile (φ̂ = 0.36 and δ̂ = 0.27). The ρ
(ar)
|d| model is such

that, if we were to extract a profile by taking equally spaced samples along a line, we

would obtain the autoregressive model for the SCICEX 1997 profile; similarly, the ρ
(fd)
|d|

model yields the fractionally differenced model. While it is well known that ρ
(ar)
|d| is a

valid correlation function for a stationary and isotropic two-dimensional random process

[Chilès and Delfiner, 1999, p. 84], the use of ρ
(fd)
|d| as such has evidently not been proposed

before in the literature. To show that ρ
(fd)
|d| is a valid correlation function, note that

ρ
(fd)
|d| =

Γ(1 − δ)

Γ(δ) Γ(1 − 2δ)

Γ(|d| + δ) Γ(1 − 2δ)

Γ(|d| + 1 − δ)
(25)

=
Γ(1 − δ)

Γ(δ) Γ(1 − 2δ)

∫ 1

0
u|d|+δ−1(1 − u)−2δdu (26)

=
Γ(1 − δ)

Γ(δ) Γ(1 − 2δ)

∫ ∞

0
e−s|d| e−sδ(1 − e−s)−2δds (27)

by the definition of the Beta integral and a straightforward change of coordinates. Hence

ρ
(fd)
|d| can be written as a probability mixture of ρ

(ar)
|d| = φ|d| = e−s|d|, where s = − log φ

ranges from 0 to ∞. Since probability mixtures of valid correlation functions are correla-

tion functions [Stein, 1999, section 2.3], the proof is complete. (The very same argument

shows that ρ
(fd)
|d| is a valid correlation function for a stationary and isotropic random

process in Euclidean spaces of any dimension.)
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Let H1 be a vector whose nth element is H1,xn , and let 1N be a vector of the

same size N , all of whose elements are one. The sample mean of all of the elements

in H1 is given by 1T
NH/N . The analog of the estimator in equation (18) for σ2

1 is

σ̂2
1 = H

T

1 H1/N − (1T
NH/N)2. Let Σ be the N × N covariance matrix whose (i, j)th

component is cov {H1,xi
, H1,xj

}. We then have

E{σ̂2
1} =

trace(Σ)

N
− 1T

NΣ1N

N2
, (28)

where the second term is the variance of the sample mean 1T
NH/N . The expression for

E{σ̂2
L} for general L is analogous to the above, with the elements of Σ being adjusted to

take into account the averaging operation. Evaluation of E{σ̂2
L} under the three models

yields the three curves shown in Figure 2a.

Appendix D: Correcting for Bias in Standard Deviations

Here we document the bias-correction procedure used to form the standard deviations

plotted in Figure 7. For m = 1, 2, . . . , 5, let Hm be a vector of length N = 50 representing

the 1 km averages used to form the 50 km average 1T
NHm/N . These five averages consti-

tute one of the 274 groups of 50 km averages discussed in section 4. The sample variance

of these five averages is given by

σ̂2
50 =

1

5

5∑
m=1

(
1T

NHm/N − 1

5

5∑
n=1

1T
NHn/N

)2

. (29)

Under the assumption that the elements of Hm are random variables from a stationary

and isotropic two-dimensional random process with mean µ, variance σ2
1 and a correlation

function given by ρ
(fd)
|d| of equation (24), we can write

E{σ̂2
50} = σ2

50V
2, where V 2 = 1 − 1

σ2
50

E

⎧⎨
⎩

[
1

5

5∑
m=1

(1T
NHm/N − µ)

]2
⎫⎬
⎭ . (30)
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With δ assumed to be 0.27, we can compute V 2 for a particular group of five 50 km

averages based upon the distances between the 1 km averages in the Hm’s (the term σ2
50

in the expression for V 2 ratios out). The bias-corrected estimates of the standard deviation

shown in Figure 7 are given by σ̂50/V . Over the 274 groups, the average correction factor

1/V was 1.4, with the range being from 1.3 to 2.0.
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Table 1. Standard Deviation σL of Mean Sea-Ice Draft for Various Sampling Lengthsa

L (km) 5 10 15 20 50 100 150 200

σL (m), fractionally differenced 0.49 0.42 0.38 0.36 0.29 0.25 0.23 0.21
σL (m), white noise 0.92 0.65 0.53 0.46 0.29 0.21 0.17 0.15
σL (m), autoregressive 0.85 0.63 0.52 0.45 0.29 0.21 0.17 0.15

a The values in the top row are based on equation (10); in the middle row, on equation (1)

with σ1 determined by setting σ50 = 0.29; and in the bottom row, on equation (2) with φ = 0.36

and again σ50 = 0.29.

Table 2. Standard Deviation σL of Mean Sea-Ice Draft for Various Sampling Lengths and

Rosette Patterns under the Fractionally Differenced Modela

L (km) 5 10 15 20 50 100 150 200

σL (m), n = 1 0.49 0.42 0.38 0.36 0.29 0.25 0.23 0.21
σL (m), n = 2 (θ = 90◦) 0.45 0.39 0.35 0.33 0.27 0.23 0.21 0.19

n = 3 (θ = 60◦) 0.44 0.38 0.34 0.32 0.26 0.22 0.20 0.19
n = 4 (θ = 45◦) 0.43 0.37 0.34 0.32 0.26 0.22 0.20 0.19
n = 5 (θ = 36◦) 0.42 0.37 0.33 0.32 0.26 0.22 0.20 0.19
n = 10 (θ = 18◦) 0.42 0.37 0.33 0.31 0.25 0.22 0.20 0.18

a The first row of tabulated values is repeated from Table 1. Using the same settings as in that

table (L0 = 50 km, σL0
= 0.29 and δ = 0.27), the remaining rows are given by (1T

NΣ1N)1/2/N ,

where N is the number of distinct measurements in a rosette pattern, and 1N and Σ are as given

in equation (28) of Appendix C. The four standard deviations in bold font in the first row make

use of the same number of observations as the corresponding bold values in the bottom row.
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Figure 1. Locations of ten rosette profiles from SCICEX October 1996 (short thin curves in

right-hand plot) and of a single profile from SCICEX 1997 (long thick curve), shown to scale

in the Arctic Ocean (left) and enlarged (right). The coordinate system is Cartesian overlaid on

a Lambert azimuthal equivalent projection; its origin is at the North Pole, and the x axis is

positive along 35◦E.
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Figure 2. Plots of σ̂2
L versus L (circles) for (a) rosette draft profiles and (b) the 1997 SCICEX

profile. In (a) and (b), the thin lines depict the expected pattern of σ̂2
L versus L under an

assumption of independence. The dotted curves give the expected pattern under the assumption

that the data have a first-order autoregressive correlation structure. The thick curves gives the

corresponding pattern for a fractionally differenced process, discussed in section 3.
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Figure 3. Residual draft profile from SCICEX 1997. As explained in Appendix B, a model-

based stochastic interpolation scheme was used to fill in missing values in this residual profile at

locations indicated by the dashes near the bottom of the plot.
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(a)  autoregressive model (b)  fractionally differenced model

Figure 4. Sample autocorrelation sequence for residual draft profile from SCICEX 1997 (cir-

cles in both plots). Plot (a) shows the mean value (thick curve) and 2.5% and 97.5% percentage

points (thin curves) from the distribution of the sample autocorrelation sequence for an autore-

gressive process. The autocorrelation sequence for this process depends on just the unit lag

autocorrelation φ, which was estimated from the SCICEX profile via the maximum likelihood

method. In (b) the curves are for a fractionally differenced process, with its associated parameter

δ estimated again by maximum likelihood.
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Figure 5. Sample spectrum for residual draft profile from SCICEX 1997 (thin wiggly line).

The theoretical spectra are also shown for the fitted fractionally differenced (thick curve) and

autoregressive (dotted) processes as presented in Appendix A. A 95% confidence interval for

the true spectrum at the lowest displayed wavenumber based upon the sample spectrum is also

plotted. While the fractionally differenced spectrum falls within this confidence interval, the

autoregressive spectrum does not.
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Figure 6. Plots of white noise (δ = 0) and four fractionally differenced series with long-range

dependence (δ = 0.1, 0.2, 0.3 and 0.4). Each series was formed using an ‘exact’ simulation

technique that transforms 1024 random numbers from a standard normal distribution into a

correlated time series of length 512 [Davies and Harte, 1987; Wood and Chan, 1994; Dietrich and

Newsam, 1997; Gneiting, 2000; Craigmile, 2003]. To better illustrate how δ influences a time

series, we used the same random numbers to create each series.
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Figure 7. Bias-corrected sample standard deviations versus sample means for 274 groups

of H50 (circles in plot (a)). The dotted line is the least squares fit for the Wadhams model

σ50 = bH50; the horizontal dashed line, for the constant model σ50 = a; and the solid line, for

the linear model σ50 = c + dH50. Plot (b) shows an estimated probability density function for

the sample standard deviations, with their sample mean indicated by the dashed line (this is the

same as the estimate â for the constant model).
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Figure 8. Weights ψj used in Appendix A to create autoregressive (thin curve) and frac-

tionally differenced (thick) processes from a weighted average of white noise. The weights for

the autoregressive process are below 0.01 for j ≥ 5, while those for the fractionally differenced

process are above this threshold for j ≤ 102.
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