
Flapping wings produce a variety of forces as they accelerate
and decelerate through a fluid medium. Some of these forces,
such as aerodynamic and added-mass forces, are related to the
fluid through which the wing moves, while others, such as
inertial-elastic forces, are determined solely by the mass of the
wing and its material properties. In insects, these forces bend
and twist the wings during flight, resulting in passive shape
changes that may affect many aspects of flight performance,
from the lift-to-drag ratio of wings (Batchelor, 1967) to thrust
production and fluid-dynamic efficiency (Combes and Daniel,
2001; Daniel, 1987; Wu, 1971). Because insect flight muscles
are restricted to the wing base, these passive shape changes are
controlled primarily by the architecture and material properties
of the wing; in many cases, these design features appear to
permit certain beneficial deformations (e.g. lift-enhancing
torsion; Wootton, 1990), while preventing detrimental bending.
Being able to predict large, dynamic shape changes is essential
for developing a comprehensive understanding of insect flight,
as instantaneous wing shape helps determine the direction and
magnitude of fluid-dynamic forces generated by the wing
(Batchelor, 1967). If, in turn, these fluid-dynamic forces are
important in determining dynamic wing shape, predictions of

wing bending must be coupled in each time step to calculations
of the aerodynamic forces generated by these shapes, a difficult
and time-consuming task. However, if inertial-elastic (fluid-
independent) forces dominate wing bending, the dynamic shape
of flapping wings could be predicted prior to calculations of
aerodynamic force production, avoiding the coupled aeroelastic
problem.

In some insect species, such as Drosophila, wing bending is
limited, and physical or mathematical models that assume the
wings are rigid can provide significant insights into mechanisms
of unsteady force production (e.g. Dickinson et al., 1999;
Ramamurti and Sandberg, 2002; Sane and Dickinson, 2002; Sun
and Tang, 2002a). However, the wings of many species, such as
Manduca, bend and twist dramatically during flight (Dalton,
1975; Wootton, 1990), particularly during slow flight and
hovering (Willmott and Ellington, 1997). Most computational
models of flight in Manducahave accounted for wing bending
by incorporating simplified shape changes that are specified in
advance (Liu et al., 1998; Liu and Kawachi, 1998); these
approaches have contributed substantially to our understanding
of fluid dynamic force generation in specific situations, such
as during hovering flight. However, models of insect flight
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During flapping flight, insect wings must withstand not
only fluid-dynamic forces, but also inertial-elastic forces
generated by the rapid acceleration and deceleration of
their own mass. Estimates of overall aerodynamic and
inertial forces vary widely, and the relative importance of
these forces in determining passive wing deformations
remains unknown. If aeroelastic interactions between a
wing and the fluid-dynamic forces it generates are minor
compared to the effects of wing inertia, models of insect
flight that account for passive wing flexibility would be far
simpler to develop. We used an experimental approach to
examine the contributions of aerodynamic and inertial-
elastic forces to wing bending in the hawkmoth Manduca
sexta. We attached fresh Manduca wings to a motor and
flapped them at a realistic wing-beat frequency and stroke
amplitude. We compared wing bending in normal air
versus helium (approx. 15% air density), in which the

contribution of fluid-dynamic forces to wing deformations
is significantly reduced. This 85% reduction in air density
produced only slight changes in the pattern of Manduca
wing deformations, suggesting that fluid-dynamic forces
have a minimal effect on wing bending. We used a
simplified finite element model of a wing to show that the
differences observed between wings flapped in air versus
helium are most likely due to fluid damping, rather than
to aerodynamic forces. This suggests that damped finite
element models of insect wings (with no fluid-dynamic
forces included) may be able to predict overall patterns of
wing deformation prior to calculations of aerodynamic
force production, facilitating integrative models of insect
flight. 

Key words: insect flight, wing flexibility, wing bending, aerodynamic
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incorporating passive wing deformations could be used to
address further questions of functional wing morphology and
evolution, as well as to explore the effects of alternative
kinematic patterns on dynamic wing shape and insect flight
performance. 

Unfortunately, the development of these integrative models
has been hindered by uncertainty about the relative importance
of fluid-dynamic and inertial-elastic forces in determining
dynamic wing shape. Some estimates of overall wing inertia
(averaged spatially and/or temporally) suggest that inertial
forces are generally higher than aerodynamic forces (Ellington,
1984b; Lehmann and Dickinson, 1997; Wilkin and Williams,
1993; Zanker and Gotz, 1990), whereas other studies conclude
the opposite (Sun and Tang, 2002b; Wakeling and Ellington,
1997). A limited number of theoretical studies addressing local
bending moments in flapping wings suggest that inertial-elastic
forces may play a larger role than aerodynamic forces in
determining instantaneous wing shape. For example, Ennos
(1989) estimated that spanwise bending moments due to the
inertia of flapping wings are at least twice as large as those due
to aerodynamic forces, and showed that wing inertia alone
could cause the tip-to-base torsional wave seen in many insect
wings during supination (Ennos, 1988). Daniel and Combes
(2002) showed that chordwise bending moments generated by
elastic wave propagation in flapping insect wings (inertial-
elastic effects) are significantly larger than the moments
exerted on wings by the surrounding fluid.

In this study, we used an experimental approach to examine
the relative contributions of inertial-elastic and fluid-dynamic
forces to passive wing bending. We attached fresh Manduca
sexta wings to a motor and flapped them around the
dorsal–ventral axis of the wing hinge at a realistic wing-beat
frequency and stroke amplitude, mimicking the large-
amplitude motions of freely flying moths. We used high-speed
video recording to compare instantaneous wing deformations
of wings flapped in normal air versushelium (approx. 15% air
density). The lower density of helium substantially reduces the
contribution of fluid-dynamic forces to the observed wing
deformations, allowing us to determine the relative importance
of these forces in passive wing bending. 

At the same time, however, this lower fluid density also
reduces external damping of the wing’s motions. We used a
simplified finite element model based on a Manducawing to
explore how damping alone (in the absence of fluid-dynamic
forces) affects wing motions. Because the finite element
analysis does not include fluid-dynamic forces, the motions of
the model wing depend solely on structural features and inertial-
elastic effects. We subjected the model to the same motions as
real wings, and compared bending patterns in the undamped
model wing to those of the model with damping added.

Materials and methods
Dynamic bending experiments

We anaesthetized hawkmoths Manduca sexta (Linnaeus
1763) from a colony at the University of Washington at 0°C

for 5·min, then removed one forewing at the base and recorded
wing mass. We did not include the smaller, overlapping
hindwings in this study, as their position relative to the
forewings is variable during flight, and this interaction is
difficult to recreate when the wings are detached from the
animal. We marked three spots on the forewing with a small
dot of reflective white paint (weighing ≤1.5% of total wing
mass) on both the dorsal and ventral sides: the wing tip, the
trailing edge (where chord length is maximum, approximately
50% wing span), and the leading edge (at the same spanwise
position; Fig.·1A). We used cyanoacrylate glue cured with
baking soda to attach the base of the wing to a brass rod that
could be rotated by an oscillator constructed from the pen
motor and amplifier of a Gould chart recorder (Fig.·1A). 

The motor was attached to a platform inside a 30·cm
Plexiglass box (with 1·cm thick walls) and its motion was
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Fig.·1. Apparatus used to visualize Manduca sextawing bending in
normal air and helium. (A) Each wing was marked with dots of
reflective paint at the wing tip (wt), leading edge (ld) and trailing
edge (tr) and filmed from orthogonal views while flapping around the
dorsal–ventral axis of the wing hinge (the y-axis). After filming, air
was repeatedly removed from the box and replaced with helium until
the box was filled with>95% helium. Wings were then filmed while
flapping at the same amplitude and frequency. (B) Coordinates of the
marked points were digitized and converted into angular position (θ),
with the origin at the wing base and position (viewed from the
leading edge) measured from the center of rotation. 
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controlled with a function generator. Wings were flapped
sinusoidally around the dorsal–ventral axis of the wing hinge
at room temperature. Total amplitude varied between 107° and
110°, corresponding to intermediate stroke amplitudes in free-
flying hawkmoths (Willmott and Ellington, 1997). Wing
motions were recorded by two high-speed video cameras
(Redlake Inc., San Diego, CA, USA) at 1000 frames·s–1, one
viewing the wing from its leading edge and the other from its
tip (Fig.·1A).

Each wing was filmed while flapping at 0.5·Hz, as a control
for the shape and position of the wing when no dynamic
bending occurs, and at 26·Hz, a typical wing-beat frequency
for Manduca sexta (Willmott and Ellington, 1997). The density
of fluid inside the chamber was then reduced by repeatedly
removing air through an opening near the bottom of the box
and adding helium through an opening near the top (Fig.·1A).
The wing was filmed flapping at 26·Hz in a mixture of no
less than 95% helium, which has a density of 0.164·g·l–1

(approximately 14% of normal air density; CRC, 2001).
Finally, the box was opened to release the helium and the wing
was again filmed at 26·Hz in normal air, to check for potential
wing damage. All filming was completed within 1·h, during
which time the flexural stiffness of the wing does not change
appreciably (Combes, 2002). The procedure was repeated on
four different wings from three individuals.

Wing bending analysis

We analyzed frames from three complete flaps in the
middle of each filming sequence, to avoid bending artefacts
at the onset of motion. A custom Matlab program (developed
by M. S. Tu) identified the coordinates of the wing tip,
leading edge and trailing edge in each frame. These three-
dimensional Cartesian coordinates were converted to
spherical coordinates, using the wing base as the origin and
measuring the position of the wing (viewed from the leading
edge) in degrees, with 0° at the center of rotation (Fig.·1B).
Flapping frequency was found by dividing the number of
complete flaps by the total number of frames and multiplying
by 1000. Amplitude applied by the motor was measured at
the leading edge in the control sequence (0.5·Hz) to avoid
wing bending, using the maximum excursion of the leading
edge marker to define the sides of a right triangle. To
determine if amplitude applied at the base changes
significantly with flapping frequency, a brass rod of the same
length and mass as a Manduca wing was attached to the
motor and filmed at 0.5·Hz and 26·Hz. 

To examine temporal patterns of bending at each wing
location, we compared the trajectory of a wing flapping at
26·Hz and at 0.5·Hz (where no dynamic bending occurs),
adjusting the time base of the control sequence to match that
of the experimental sequence and splining data to equal time
intervals in Matlab. We then calculated the difference in
position at each time point and performed a Fourier analysis
on this wing bending data to determine the dominant
frequencies of wing motion and the amplitude coefficient at
each frequency. 

Finite element modeling

As a wing is flapped through the air and deformed by inertial
and/or aerodynamic forces, its motions are damped by some
combination of internal (e.g. elastic or structural) and external
(fluid) mechanisms. When the surrounding fluid is less dense
(as is the case with the Manducawings flapped in helium) the
wing experiences less external damping. We explored how
damping affects wing bending by constructing a simplified
finite element model (FEM) based on a male Manduca
forewing, and comparing bending in the undamped wing to
bending in the model wing with damping added. The model
was created in MSC Marc/Mentat and is composed of thin
shell elements of uniform thickness, recreating the planform
configuration of veins and membranes in a real wing (but
omitting details of three-dimensional wing structure; see
Combes and Daniel, 2003b). We applied declining values of
material stiffness to the model wing in 12 strips, oriented
diagonally (Fig.·2); these strips are perpendicular to most of
the wing veins, which decrease in diameter towards the wing
edge and thus are likely to decrease in stiffness along this axis.
This configuration results in an exponential decline in flexural
stiffness EI (the product of Young’s modulus E and the second
moment of area I) in both the spanwise and chordwise
directions of the wing, approximating patterns of flexural
stiffness measured in real wings (Combes, 2002; Combes and
Daniel, 2003b). Within each strip, vein elements have a higher
material stiffness than membrane elements, mimicking the
increased flexural stiffness of tubular veins. We used an
element density of 1200·kg·m–3 (as measured in insect wings;
Wainwright et al., 1982), a thickness of 45·µm, and a Poisson’s
ratio of 0.49 (consistent with measured values of biological
materials; Wainwright et al., 1982). To determine the
minimum number of elements necessary to capture the bending

ld
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z

Fig.·2. Finite element model based on a Manduca sextawing. The
model approximates the planform geometry, vein configuration and
spatial variation in flexural stiffness of a real wing. Declining
material stiffness (E) of membrane and vein elements results in an
exponential decline in flexural stiffness (EI), as measured in
Manducawings (Combes, 2002; Combes and Daniel, 2003b). Each
color represents a different value of material stiffness, which varies
from 4.7×107N m–2 to 4.5×109N m–2 in membrane elements, and
from 1.9×1011N m–2 to 1.8×1013N m–2 in vein elements. The wing
was rotated at its base around the y-axis, and bending was analyzed
by tracking the positions of nodes at the wing tip (wt), leading edge
(ld) and trailing edge (tr). 
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behavior of wings, we performed a sensitivity analysis with
models composed of 200, 350, 865 and 2300 total elements,
and found that 865 elements are sufficient to ensure asymptotic
performance of the model. 

We applied boundary conditions to the nodes at the wing
hinge so that they could not translate in any direction and could
rotate only along the dorsal–ventral axis, as in experiments on
real wings (Fig.·2, red arrows). We began the simulation with

initial conditions of zero displacement and zero velocity at all
nodes, and gradually increased the rotation at the wing hinge
to a sinusoidal motion with the following function:

θ(t) = (1–e–t/τ)sin(ωt)·, (1)

where θ is rotation at the base nodes, t is time in s, τ is the time
constant and ω is the angular frequency (2πf, where f is the
flapping frequency). We flapped the wing at 26·Hz, and found
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Fig.·3. (Ai–Ci) Angular position and bending at the wing tip (A), leading edge (B) and trailing edge (C) of a Manducawing flapped in normal
air versushelium. The time base of 0.5·Hz control sequences (slow rotation) was adjusted to match 26·Hz experiments for comparison. At each
of the wing locations, angular position during the control sequence (slow rotation; black line) was subtracted from position during the 26·Hz
sequences in normal air or helium (green or orange lines) to quantify temporal patterns of wing bending (blue or red lines). (Aii–Cii) Amplitude
coefficients from Fourier analyses of wing bending in normal air and helium are shown on the right, with the driving frequency of 26·Hz
indicated by asterisks. 
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that a time constant (τ) of 1/20·s avoids transient artefacts of
rapid initial acceleration and allows the wing to reach its full
stroke amplitude of 108° (the mean amplitude of experiments
on real wings) after 6.5 flaps.

We performed one simulation with no damping added to the
computational analysis, and another in which we added mass
damping, adjusting the level of damping to best represent the
observed changes in motion between real wings flapped in
normal air versushelium. We ran each simulation for 19200
time steps, recreating 12.5 flaps in 0.48·s, and measured
displacement of nodes at the wing tip, leading edge and trailing
edge (in the same locations as on real wings; Fig.·2), through
six flaps after the wing motion had reached full amplitude. To
provide a control with no dynamic bending (analogous to the
slow rotation in the experiments), we created a stiff wing
by changing the Young’s modulus of all elements to
1×1016·N m–2, and subjected this wing to the same motions as
the flexible wings. We quantified temporal patterns of wing
bending at each of the wing locations by finding the difference
in position between the stiff wing and the flexible wing (with
and without damping), and performed a Fourier analysis on the
resulting data. 

Results
Wing bending experiments

The frequency at which Manducawings were flapped varied
from 25.5 to 26.9·Hz (x̄ =26.2·Hz) in experimental sequences,
and from 0.56 to 0.57·Hz (x̄ =0.565) in control sequences.
Flapping amplitude during control sequences varied from
107.1° to 109.9° (x̄ =108.0°). Amplitude of the brass rod
changed by only 1.7% when flapped at 0.57·Hz and 26.3·Hz,
indicating that amplitude applied at the base during

experimental sequences is not significantly different from that
applied during control sequences. Wing tip, leading edge and
trailing edge trajectories from sequences recorded in normal air
at the end of the experiment were indistinguishable from those
recorded at the beginning (Combes, 2002), confirming that the
experimental procedure does not damage wings. Data from only
the initial sequence in normal air were used for further analysis. 

In control sequences, the angular positions of the wing tip,
leading edge and trailing edge were nearly identical (black
lines, Fig.·3) and total amplitude was equivalent to the
amplitude applied at the base, demonstrating that no dynamic
bending occurs at these low frequencies. When flapping
frequency was increased during experimental sequences, peak
amplitudes at the wing tip and trailing edge increased,
indicating that wings bent considerably at the end of each
stroke (Fig.·3Ai–Ci), while amplitude at the leading edge
changed only slightly (Fig.·3Bi). 

Wings flapped in helium displayed slightly higher peak
amplitudes than those flapped in normal air, but patterns of
bending were similar (Fig.·3Ai–Ci; see also http://faculty.
washington.edu/danielt/movies for movies of flapping wings).
Fourier analysis reveals that the dominant frequencies of wing
bending were the same in both helium and normal air, and that
only the amplitude of some higher harmonics differed
(Fig.·3Aii–Cii; Table·1). Amplitude coefficients were similar in
normal air and helium at the driving frequency (26·Hz), but were
often larger in helium at higher harmonics, particularly at the
second harmonic (78·Hz; Table·1).

Finite element modeling

In the stiff FEM wing, the angular positions of the wing tip,
leading edge and trailing edge were identical (Fig.·4, black
lines) and equivalent to amplitude at the base; thus, as in

Table·1. Amplitude coefficients from Fourier analyses of wing bending at the tip, leading edge and trailing edge of
Manducawings

Amplitude coefficient

26 Hz* 52 Hz 78 Hz 104 Hz

Wing Normal Helium Normal Helium Normal Helium Normal Helium

Wing tip 1 12.675 10.641 1.540 3.999 3.747 9.012 1.347 1.190
2 12.196 10.706 1.289 3.496 3.050 9.083 1.437 3.367
3 13.235 11.856 2.783 2.744 2.710 10.049 1.514 3.739
4 12.545 13.097 3.613 3.041 2.465 7.077 1.372 4.025

Leading edge 1 4.620 4.323 0.906 0.798 1.524 2.564 0.1190.614
2 3.486 4.452 1.026 0.911 1.126 3.014 0.231 0.436
3 3.801 5.280 0.901 0.687 0.896 2.906 0.469 0.858
4 5.236 6.817 1.561 1.175 1.092 2.045 0.595 1.120

Trailing edge 1 11.386 9.904 1.157 2.677 3.626 10.295 1.227 5.581
2 12.589 9.794 1.341 2.536 4.467 9.553 1.519 4.666
3 14.034 10.564 0.870 1.629 5.228 10.714 1.377 4.206
4 14.965 13.062 1.222 2.856 5.680 9.485 2.779 4.470

Coefficients at the driving frequency (26·Hz; asterisk) and first three harmonics are shown for each wing in normal air and in helium.
Cases where the coefficient in helium varied by more than 100% from the coefficient in normal air are shown in bold. 
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control sequences on real wings, the stiff FEM wing displayed
no dynamic bending. In the flexible FEM wings, maximum tip
and trailing edge amplitudes were higher than the amplitude
applied at the base, while the leading edge amplitude changed
only slightly (Fig.·4Ai–Ci). Although bending amplitude at the
trailing edge of the FEM wings was lower than in real
Manduca wings, temporal patterns of wing bending were
similar (Figs·3Ai–Ci, 4Ai–Ci). 

In addition, the differences between the FEM wing with no

damping and the wing with mass damping were similar to
those seen between real wings flapped in helium and in normal
air. The undamped model wing showed slightly higher peaks
in wing bending (Fig.·4Ai–Ci), but the same overall bending
pattern as the damped wing. Fourier analysis revealed that the
dominant frequencies of bending were the same in the two
simulations, and that amplitude coefficients were similar at the
driving frequency and larger in the undamped model at higher
frequencies (Fig.·4Aii–Cii). 

S. A. Combes and T. L. Daniel

Fig.·4. (Ai–Ci) Angular position and bending at the wing tip (A), leading edge (B) and trailing edge (C) of a finite element model based on a
Manducawing. Wing bending was calculated as in Fig.·3, by finding the difference between the angular position of a stiff wing (black line;
analogous to the 0.5·Hz control sequence in real wings) and that of a flexible model wing, with or without mass damping (green or orange
lines). (Aii–Cii) Amplitude coefficients from Fourier analyses of wing bending in the damped versusundamped model are shown on the right,
with the driving frequency of 26·Hz indicated by asterisks. 
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Discussion
Aerodynamic versusinertial-elastic forces in Manducawing

bending

Our measurements of regional wing bending show that
flapping Manducawings undergo significantly more dynamic
bending at the wing tip and trailing edge than along the leading
edge, confirming previous static measurements of regional
flexural stiffness (Combes and Daniel, 2003b). Wings flapped
in helium displayed similar spatial and temporal bending
patterns and the same dominant frequencies of motion as wings
flapped in normal air, despite an 85% reduction in fluid density.
This demonstrates that the contribution of aerodynamic
loading to instantaneous wing shape in Manduca is minor
compared to the contribution of wing inertia.

Although overall patterns of bending were remarkably
similar, high-frequency components of bending motion were
more pronounced in wings flapped in helium (Fig.·3Aii–Cii);
this was manifested visually as rapid oscillations in the more
flexible regions of the wing, particularly as the wing slowed
and began to move in the opposite direction. Simulations of
wing bending in the finite element model suggest that reduced
damping may explain this difference. Adding damping to the
finite element analysis reduced higher-frequency components
of motion in the model wing, just as increasing the density of
the fluid (by using normal air as opposed to helium) reduced
higher-frequency components of motion in real wings
(Figs·3Aii–Cii, 4Aii–Cii). 

These results suggest that a damped finite element model
(with realistic, three-dimensional forces applied at the base)
could be successful in predicting the overall pattern and
magnitude of Manduca wing deformations during flight,
independent of aerodynamic calculations. The finite element
model used in this study contains several simplifications in
three-dimensional geometry that may limit its ability to predict
wing motions precisely. In addition, we did not incorporate an
accurate distribution of wing mass, which declines sharply
towards the tip and trailing edges (although preliminary
simulations suggest that mass distribution affects primarily the
magnitude, not the pattern of wing bending). Yet even this
simplified model was able to simulate temporal and regional
wing bending patterns relatively well, suggesting that a slightly
more detailed finite element model could provide very accurate
results.

To recreate Manducawing motions during flight precisely,
the boundary conditions at the base of the model wing would
also need to be altered. The experimental work and dynamic
modeling in this study were based on a relatively simple
kinematic pattern, in which the wing was rotated around only
the dorsal–ventral axis of the wing hinge. In most insects,
muscular forces transmitted to the wing base not only propel
the wing with large amplitude motions such as these, but also
rotate the wing around its leading edge, controlling the angle
of attack of the wing and, in some cases, causing significant
spanwise twisting. The rapid wing rotations evident in some
species during stroke reversal (e.g. Dickinson et al., 1999)

may involve increased aerodynamic forces, as well as rapid
accelerations and decelerations that could augment inertial-
elastic forces. The extent to which more detailed kinematics
might alter our findings about the relative contributions of
aerodynamic and inertial-elastic forces to wing bending
remains a subject of future study.

It is also important to note that the relative contributions of
aerodynamic and inertial-elastic forces to wing bending are
likely to vary along a continuum, from hovering, where
inertial-elastic forces appear to dominate in Manduca, to the
extreme case of steady, forward flight with no flapping, where
inertial forces are negligible and any wing bending would be
due solely to aerodynamic forces. In many insects, however,
the most pronounced wing bending and twisting occurs during
slow flight or hovering (e.g. in Manduca; Willmott and
Ellington, 1997), so passive deformations may in fact decrease
as aerodynamic forces begin to dominate.

Insect size and wing design

Because the Manducawings used in this study are relatively
large and heavy, it is possible that inertial-elastic effects are
more important in determining wing bending in this species
than in other species with smaller, lighter wings. A simple
analysis of average bending moments can be used to assess
the relative magnitudes of inertial-elastic and aerodynamic
moments on the flapping wings of different species (Daniel and
Combes, 2002):

R= (mw/mb)4Θω2L / 3g·, (2)

where R is the ratio of inertial-elastic to aerodynamic bending
moments, mw is mass of one wing,mb is mass of the body, Θ
is angular stroke amplitude, ω is angular frequency, L is wing
span and g is earth’s gravitational acceleration. The ratio of
wing to body mass in insects has been shown to vary from
0.5% in bees to 6% in hawkmoths (Ellington, 1984a), and wing
span varies widely. However, because the frequency term in
the above equation is squared, wing-beat frequency has a large
effect on the moment ratio. Thus, many small insects (with
higher wing beat frequencies; Dudley, 2000) may actually have
higher ratios of inertial-elastic to aerodynamic bending
moments, despite having smaller, lighter wings. Our estimates
suggest that this ratio is quite large in insects over a broad size
range (R=7 in Manducaand R=6 in Drosophila). Although the
magnitude of passive wing bending that actually occurs during
flight depends on additional factors (such as the scaling of wing
stiffness; Combes and Daniel, 2003a), these results indicate
that the spatial and temporal patterns of whatever passive
bending does occur are likely to be determined primarily by
inertial-elastic effects in many species.

In addition to large variations in size, insect wings display
tremendous variability in design features, such as planform
wing shape and the arrangement of supporting veins, which
could affect how their wings respond to aerodynamic and
inertial-elastic forces. Interestingly, despite dramatic visual
differences in wing design, overall wing stiffness appears to
scale strongly with wing size in a broad range of species
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(Combes and Daniel, 2003a). Patterns of regional stiffness
variation in insect wings may in fact be affected by wing shape
and venation; however, we have measured very similar
patterns of stiffness variation in the wings of hawkmoths and
aeshnid dragonflies, insects with strikingly different wing
designs (Combes and Daniel, 2003b). These results suggest
that large differences in insect wing design do not necessarily
lead to equivalent differences in wing stiffness and bending
behavior.

Concluding remarks

Because aeroelastic effects appear to be relatively
unimportant in determining dynamic wing shape, an
integrative model of insect flight that incorporates passive wing
flexibility may be easier to develop than previously thought.
Although the experimental work presented in this study
addresses the relative contributions of aerodynamic and
inertial-elastic forces to wing bending in only one species using
a particular kinematic pattern, these results verify recent
theoretical studies (Daniel and Combes, 2002) suggesting that
fluid-dynamic forces have only a minor effect on passive
bending when flexible structures are flapped in air (versus
water, where fluid forces dominate). In addition, while detailed
numerical methods (e.g. Liu et al., 1998; Ramamurti and
Sandberg, 2002; Sun and Tang, 2002a; Wang, 2000) will
undoubtedly continue to contribute to our understanding of
three-dimensional fluid flow around flapping wings, recent
work suggests that far simpler analytical methods are able to
predict temporal patterns of unsteady force production
remarkably well (Sane and Dickinson, 2002). Inserting the
dynamic shape of wing sections (as determined by finite
element analysis or other inertia-based methods) into quasi-
steady models of flight that account for unsteady effects may
yield a tractable modeling tool that could be used to explore
the effects of wing flexibility on unsteady force production.
Models of this type could be used to determine when and how
wing flexibility affects aerodynamic force generation, and
ultimately contribute to an integrative model of insect flight
linking sensory feedback and patterns of muscle force
production to dynamic wing motions, force generation and
insect flight performance.
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