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Flexible Wings and Fins: Bending by Inertial or Fluid-Dynamic Forces?1

THOMAS L. DANIEL2 AND STACEY A. COMBES

Department of Zoology, University of Washington, Seattle Washington 98195-1800

SYNOPSIS. Flapping flight and swimming in many organisms is accompanied by significant bending of
flexible wings and fins. The instantaneous shape of wings and fins has, in turn, a profound effect on the
fluid dynamic forces they can generate, with non-monotonic relationships between the pattern of deformation
waves passing along the wing and the thrust developed. Many of these deformations arise, in part, from the
passive mechanics of oscillating a flexible air- or hydrofoil. At the same time, however, their instantaneous
shape may well emerge from details of the fluid loading. This issue—the extent to which there is feedback
between the instantaneous wing shape and the fluid dynamic loading—is core to understanding flight control.
We ask to what extent surface shape of wings and fins is controlled by structural mechanics versus fluid
dynamic loading. To address this issue, we use a combination of computational and analytic methods to
explore how bending stresses arising from inertial-elastic mechanisms compare to those stresses that arise
from fluid pressure forces. Our analyses suggest that for certain combinations of wing stiffness, wing mo-
tions, and fluid density, fluid pressure stresses play a relatively minor role in determining wing shape. Nearly
all of these combinations correspond to wings moving in air. The exciting feature provided by this analysis
is that, for high Reynolds number motions where linear potential flow equations provide reasonable estimates
of lift and thrust, we can finally examine how wing structure affects flight performance. Armed with this
approach, we then show how modest levels of passive elasticity can affect thrust for a given level of energy
input in the form of an inertial oscillation of a compliant foil.

INTRODUCTION

Wings and fins deform, often dramatically, as they
propel animals through air or water (see for example
Wootton, 1992 for insects; Biewener and Dial, 1995
for birds; Swartz et al., 1992 for bats, and Fish, 1999
for fish bodies). The functional consequences of such
complex, three-dimensional patterns of deformation is
a central issue underlying our understanding of wing
and fin design for locomotion. Recent work has shown
that the kinematics of wings and fins (e.g., rotations
and supinations, fin-body interactions) can have dra-
matic consequences to the fluid forces for flight and
swimming (Sane and Dickinson, 2002; Ellington,
1995; Lauder, 2000). Associated with all of these dy-
namical processes are a host of enigmatic issues sur-
rounding the inertial mechanisms that determine the
instantaneous shape of wings and fins. The challenge
we have faced over the years is how to approach this
potential coupling between fluid dynamic loading and
wing shape.

In engineering circles, this coupled problem gave
rise to an entire field of ‘‘Aeroelasticity’’ in which
practitioners of this rarefied discipline examine how
wing bending and flutter arise from an interaction be-
tween aerodynamic loads and elastic-inertial events
(e.g., Bisplinghoff and Ashley, 1975). The crux of the
issue is that we logically presume wing shape to be
determined by a combination of the fluid dynamic
pressure forces associated with flapping and the iner-
tial-elastic processes that yield bending, even in the
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absence of surrounding fluid. Unfortunately, the in-
stantaneous curvature itself is likely to play a critical
role in determining the spatial distribution of pressure
stresses and, therefore, bending moments derived from
fluid forces. Thus coupling between fluid and solid
loads is a pervasive and often unresolved issue (Fig.
1).

For flapping wings, there is, however, a possible in-
road to this dilemma that has not been formally con-
sidered. If, for example, the inertial-elastic moments
derived from the forces of flapping motions are far
greater than those derived from fluid forces, the phe-
nomenon is no longer coupled in a practical sense.
Thus one could, in theory, predict the instantaneous
shape of a wing or fin from a combination of its me-
chanical properties as well as the dynamics of the end
motions to which it is subject. From this predicted
shape one could then compute the fluid dynamic pres-
sure forces and, in turn, the thrust or lift generated by
the wing. This then provides a significant inroad to
how we can examine the functional consequences of
the shape and mechanical properties of wings and fins.

A SIMPLE SCALE ARGUMENT FOR FLAPPING

WINGS AND FINS

Just how large is the inertial force required to os-
cillate a wing relative to the total lift that the wing
must support? Interestingly, the few studies that have
explored this issue seem to point to an overwhelming-
ly large contribution of wing inertia to the total forces
that must be generated (Lehmann and Dickinson,
1997; Zanker and Gotz, 1990; Ennos, 1988; Ellington,
1984; Weis-Fogh, 1975). To understand this issue we
develop a simple scale argument to see how the mo-
ments needed to oscillate a wing or fin compare to
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FIG. 1. The factors that affect wing shape are outlined here. Wing
structure (material properties and geometry), combined with aero-
dynamic and inertial-elastic forces conspire to determine the three
dimensional shape of a wing. How the wing is controlled at its base
(the boundary conditions) is also a critical determinant of shape.
The solid arrows indicate effects in which we can compute the in-
fluence of each factor. The broken arrows represent our uncertainty
about the relative contributions of two key underlying factors.

those needed to sustain the weight of an animal or
produce thrust. With wings and fins modeled as simple
rectangular plates we can compute these moments
rather easily.

Wings and aerodynamic forces

For a flying animal, the moment produced by a uni-
formly distributed pressure load that sustains the
weight of an animal (mbg) is:

M 5 m g L/4fluid b (1)

where mb is the mass of the body; g, the earth’s grav-
itational acceleration; and L, the length of the wing.
The factor of 4 follows from the fact that two wings
sustain the weight at their midpoint.

To oscillate a wing of density rw requires a moment
applied to the base of the wing. That moment drives
the wing through a stroke amplitude Q at a frequency
v. We assume the motion to be sinusoidal. We calcu-
late that moment by integrating the tangential acceler-
ational moment over the length (L) of the wing. Thus
the elemental oscillatory moment at any station along
the wing is:

dM (l, t) 5 lA(l)dlr a(t)oscil w (2)
2 25 l A(l)dlr Qv sin(vt)w

where l is the position along the wing; A(l), the local
cross-sectional area; and a(t), the local tangential ac-
celeration. Taking the maximum position in the cycle
(sin(vt) 5 1) and a constant cross-sectional area, we
integrate this moment over the length of the wing to

find the total oscillatory moment applied to the wing
base:

2 2 2 3M 5 l A dlr Qv 5 r Qv AL /3oscil E w w

2 25 m Qv L /3 (3)w

where mw is the total mass of the wing. The ratio of
the oscillatory moment to that sustaining the weight
of the animal is therefore:

2R 5 (m /m ) 4 Q v L/3g.w w b (4)

When this ratio is greater than 1, oscillations of the
mass of the wing dominate the total moments required
for flight; far less than 1, aerodynamic pressure forces
dominate the total moments. As an example, in the
hawkmoth Manduca sexta, with a wing length of 5
cm, wings beating at a frequency of 25 hz (v 5 2p
25) through a stroke amplitude of p/2 radians, and a
wing to body mass ratio of 0.02, we predict a moment
ratio of about 5, suggesting that inertial moments for
wing oscillations are indeed quite large. Drosophila,
despite a considerably smaller wing length, has a sim-
ilar ratio owing to a vastly higher wing beat frequency.
The square term for wing beat frequency becomes in-
creasingly important as body (and wing) size declines.

One could derive a general scale argument that fol-
lows from the correlations among wing mass, wing
length, wing beat frequency and body mass for a wide
range of flying animals (insects, birds and bats, assum-
ing size independent stroke amplitude; Greenewalt,
1962). This ratio, however, follows from a wide swath
of scale arguments and cannot be applied with any
confidence to a single taxonomic group. Within such
groups the correlations reported by Greenewalt (1962)
do not apply.

Fins and hydrodynamic forces

For neutrally buoyant, steadily swimming animals,
propulsive surfaces such as caudal fins produce thrust
to overcome average drag forces. Thus, rather than
having the weight uniformly distributed over wings as
in equation 1, we take the average drag distributed
over a fin to compute the fluid dynamic moment:

2M 5 r S C U L/4fluid b db b (5)

where r is the density of the fluid; Sb, the projected
area of the body; Cdb its drag coefficient; Ub its for-
ward speed, and L is the fin span.

As with the wings above, oscillating a fin with mass
mf, requires a moment (Mf) that depends on its length,
frequency and amplitude of motion:

2 2M 5 m Q v L /3f f (6)

Thus the ratio of the oscillatory moment to the fluid
dynamic moment is:

2 2R 5 4 m Q v L/(3 r S C U )f f b db b (7)

With a density of 1,000 kg/m3 for water, it would re-
quire extraordinarily large fins operating at very high
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frequencies for that ratio to ever exceed 1. Thus, it
appears that for swimmers, in contrast to flying ani-
mals, the moments required to overcome fluid forces
are indeed the dominant factor underlying the me-
chanical determinants of instantaneous fin shape.

THE IMPORTANCE OF WING SHAPE AND KINEMATICS

Over the past several years, considerable attention
has focused on how wing and fin kinematics and shape
affect flight and swimming performance. In insects, for
example, such kinematic parameters as wing rotations,
instantaneous angles of attack, accelerations, and ve-
locities are all key determinants of lift and thrust (Sane
and Dickinson, 2002; Ellington, 1995).

Wing and fin shape also strongly affect the total
forces that these appendages generate. In addition to
morphological characters such as aspect ratio or the
spanwise variation in chord length, the thickness and
the cross-sectional geometry of a wing or fin are im-
portant in determining lift and thrust (Batchelor, 1967).

Instantaneous camber (chordwise bending) is yet an-
other variable in fluid dynamic force production. In a
sense, this is something of an amalgam of shape and
kinematics in that temporal patterns of bending interact
with intrinsic wing structure to determine instanta-
neous shape. Such bending induced by the motion of
the appendage may significantly affect the amount of
lift and thrust an animal may generate. For example,
a very slight (2%) change in camber nearly doubles
the lift and thrust that can be generated by a wing at
low angles of attack (Batchelor, 1967).

Such bending is, importantly, not merely a static
phenomenon. As wings and fins heave and pitch, their
inertia and the pressure forces of the fluid around them
conspire to produce waves of bending that propagate
along the wing. These bending waves can greatly alter
the fluid dynamic forces generated by wings and fins.
The classic papers by Wu (1971) showed that such
chordwise bending waves propagating along a wing
(at high Reynolds numbers) are exceedingly effective
ways to produce thrust and lift. These waves interact
with wing planform shape to yield a host of possible
thrust and lift behaviors (Combes and Daniel, 2001;
Daniel, 1987) that keenly depend on both the overall
shape of the wing as well as on its motions.

Given that wing and fin bending is an important
determinant of locomotor forces, it seems reasonable
to examine the morphological, mechanical and kine-
matic factors that determine the dynamics of these de-
formations. The scaling argument developed above
doesn’t really address these dynamic issues. In that
case, we merely ask how large total wing inertia may
be relative to the average upward force. To address
dynamic issues of wing bending, we expand on the
simple argument developed above. As with that scal-
ing argument, our goal here is to compare the relative
contributions of the fluid dynamic pressure stresses
with the bending stresses derived from the geometry
and structure of wings and the kinematics of wing mo-
tions. Since our intuition, in this regard, is not partic-

ularly useful, we resort to a combination of analytic
and computational approaches.

MOTIONS OF AN ELASTIC WING

To explore the relative contributions of inertial-elastic
processes and fluid pressure stresses to wing bending,
we adopt a two-pronged approach. First, we imbue a
simple rectangular wing with a material stiffness
(Young’s modulus) E, thickness t, width w, and length
L. This wing moves up and down at its leading edge
with a frequency v and an amplitude a. This combi-
nation of motion, geometry, and mechanical properties
gives rise to waves of bending that propagate in the
length direction (chordwise) of the wing. If no appre-
ciable fluid forces act upon this wing then its motion is
described by the classic fourth order beam equation:

4 2] y r A ] yw5 2 (8)
4 2]x EI ]t

where y is the vertical position of the wing; x, the
position along the wing; E, the Young’s modulus of
the wing; I, the wing’s second moment of area; rw, the
wing’s density; A, the wing’s cross-sectional area; and
t, time. With the boundary conditions that the trailing
edge is free and the leading edge is controlled by a
pure heaving motion, and initial conditions that the
wing starts at rest, a solution to this equation can be
found by the method of displacement influence func-
tions (Timoshenko et al., 1974). For our particular
problem, the boundary conditions are (1) the wing is
heaved in an oscillatory manner at the leading edge,
(2) there is no bending moment at the trailing edge,
and (3) there is no shear at the trailing edge. At the
start of the problem, the wing is not moving. With
these initial and boundary conditions, the solution to
y(x,t) is

L` Xiy(x, t) 5 g(t) 2 X dxO E ipi51 i 0

t 2d g(t9)
3 sin p (t 2 t9) dt9 (9)E i2dt0

2k EIip 5 (10)i 1 2 !L rA

g(t) 5 a sin(vt) (11)

X 5 cosh(k x)cos(k x)i i i

2 A [sinh(B xL) 2 sin(B xL)] (12)i i i

1
B 5 (13)i 2(1 2 (v/p ) )i

cosh(k ) 1 cos(k )i iA 5 (14)i sinh(k ) 1 sin(k )i i

and the values of ki are calculated from the transcen-
dental frequency equations for our boundary condi-
tions (Timoshenko et al., 1974). In practice, the first
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FIG. 2. The moments contributed by inertial-elastic forces and fluid
dynamic stresses are plotted against time for a beating Manduca
sexta wing (2 cm chord length, EI 5 6 3 1026 Pa m4). (a) At a wing
beat frequency of 30 hz, inertial-elastic effects dominate. (b) Increas-
ing the chord length to 3 cm reduces the relative importance of
inertial-elastic forces, though they still dominate. (c) Increasing the
frequency to 60 hz also slightly reduces the relative importance of
inertial-elastic forces though, again, they still dominate.

5 terms of the series yield sufficient convergence for
the results below.

BENDING MOMENTS IMPOSED BY ELASTIC WAVES OR

FLUID PRESSURE: WHICH ARE GREATER?
The elastic bending waves described above generate

fluid dynamic pressures that yield lift and thrust. For
the high Reynolds numbers commonly associated with
insects, birds, and fish, these propulsive forces are gen-
erally well described by inviscid flow theory (e.g., Wu,
1971; Lighthill, 1975).

The key issue here is that, with prescribed motions
(y(x,t)), and known geometry and material properties,
we can compute not only the bending waves but also
the moments required to produce those waves. More-
over, these motions can be inserted into a fairly simple
fluid dynamic model of propulsion to assess the po-
tential contributions of fluid dynamic processes. Thus
we can compute the moments due to fluid dynamic
pressure stresses and ask how large they are relative
to the bending moments that arise from the elastic
wave propagation. In doing so we compute two key
terms: an average elastic bending moment and an av-
erage fluid dynamic moment. The former follows di-
rectly from the solution to y(x,t). Since the motions are
periodic and we are interested in a measure of the
bending energy, we take average root-mean-square
moment over the length of the wing and the period of
the flap (T):

T L 2EI ] y(x, t)
M̄ 5 dx dt (15)elastic E E 2TL ]x0 0

For wing motions that follow some periodic wave
function, Wu (1971) provides a straightforward way to
calculate the moment generated by the pressure distri-
bution over the wing:

1

M 5 Dpx dxfluid E
21

p 1 d
5 r U[a(t) 1 b (t)] 1 [b (t) 2 b (t)]2 1 35 62 4 dt

(16)

a(t) 5 b 2 (b 1 b )Q(s) (17)1 o 1

p2
b (t) 5 V(x, t)cos nu du (18)n Ep 0

]y ]y
V(x, t) 5 1 U (19)

]t ]x

K (is)1Q(s) 5 (20)
K (is) 2 K (is)0 1

vL
s 5 (21)

U

where the coefficients b1, b2, b3 and a follow from the
elastic bending motions we derived for the oscillating
wing. The average fluid dynamic moment is:

T L1
M̄ 5 M dx dt (22)fluid E E fluidTL 0 0

Armed with these moment estimates, we can deter-
mine the extent to which local bending is determined
by the inertial-elastic stresses or by fluid stresses. Sim-
ple inspection of the above equations does not provide
much insight, so we used Mathematica to compute and
compare fluid dynamic and inertial-elastic moments.

SIMULATION RESULTS

The flexural stiffness of insect wings varies quite
strongly with wing size and even within an individual
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FIG. 3. The moments contributed by inertial-elastic forces and fluid
dynamic stresses are plotted against frequency for beating Manduca
sexta wings (2 cm chord length, EI 5 6 3 1026 Pa m4). At frequen-
cies above 10 hz, the contribution of fluid dynamic forces is negli-
gible.

wing itself (Combes, 2002). For the purposes of sim-
ulation, we focused initially on wings of the hawkmoth
Manduca sexta. Their wings have a chord length of
about 2 cm at the midspan and an average chordwise
flexural stiffness (EI) at this position of about 6 3 1026

Pa m4 (Combes, 2002). Oscillating these wings at 25
hz yields inertial-elastic moments that are far greater
(about 10 fold) than the fluid dynamic moments (Fig.
2a). Increasing either the chord length or the flapping
frequency reduces the relative importance of inertial-
elastic moments, but these moments are still far greater
than those generated by fluid dynamic pressure stresses
(Fig. 2b, c).

The average bending moments for either fluid or
inertial-elastic processes increases nonlinearly and
non-monotonically with oscillation frequency (Fig. 3).
In the range of frequencies that correspond to those of
Manduca (20–30 hz) the ratio of moments is always
greater than 5, indicating that wing bending is, for all
practical purposes, independent of the fluid dynamic
loads.

THE INITIAL PROOF

The simulations above suggest that aerodynamic
loads are relatively unimportant in determining bend-
ing patterns in oscillating wings. Thus a wing oscil-
lated in a vacuum would bend, to a large extent, as
one oscillated in air. Indeed, Combes (2002) tested this
idea by oscillating Manduca wings at 25 hz in a cham-
ber that could be filled with either normal air (density
1 kg/m3) or helium (density 0.15 kg/m3). If aerody-
namic bending motions are important, oscillating
wings in helium, a fluid whose density is 85% that of
air would lead to dramatically different patterns of
bending. Using high-speed videography, Combes
(2002) found that the overall wing motions and bend-
ing patterns are quite similar, despite this 85% reduc-
tion in fluid density, suggesting that the contribution
of aerodynamic forces are relatively small compared

to the contribution of inertial-elastic processes. Since
a figure of such motions is rather difficult to reproduce,
we have posted the movies of wings oscillating in the
two different fluid media at http://faculty.washington.
edu/danielt/movies.

CONCLUSIONS

This study provides something of a ‘‘good news/bad
news’’ message. For studies of animal flight, we sug-
gest that the somewhat intractable problem of fluid-
solid coupling in wing design does not need to be ad-
dressed. Rather, one can use either simplified linear
beam theory (as above) or more accurate computa-
tional models (e.g., finite element models of Combes,
2002) of wing mechanical design to compute the in-
stantaneous spatial patterns of wing bending. These
predicted motions can, in turn, be inserted into analytic
models of the fluid dynamic forces (as above) or more
complex computational models (such as those of Liu
in this volume). Our ‘‘bad news’’ is that the very high
density of water requires a solution to a full set of
equations coupling fluid and solid dynamics to under-
stand the functional consequences of fin mechanical
design. However, as we learn more about exceedingly
stiff passive fins (flukes) or the role of active muscu-
lature in fins this may prove to be less problematic.
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