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Statistics in Science

Statistics is used in virtually every scientific discipline.



Statistics and Epistemology

During the scientific revolution, epistemology and science
were intimately connected.

In the 20th century, statistics has replaced epistemology in its
influence on working scientists.



The Need for Philosophy of Statistics

Question: So why should philosophers be interested in statistics?
Answer:

As the mathematical study of inductive inference, statistics
grapples with the many of the same difficult philosophical
questions as epistemologists.

So there are several philosophies of statistics that deserve
philosophical scrutiny.



Three Schools

Three “schools” of statistical inference:

1 Classical

2 Bayesian

3 Likelihoodism



The Central Difference

Central Difference:

Bayesians argue that an experimenter’s subjective degrees of
beliefs and subjective utility functions do influence (and
should influence) his or her inferences.

Classical statisticians argue otherwise.



Subjectivity in statistics

Question: Why should subjective degrees of belief and utility play
or not play a role in statistical inference?



Subjectivity in statistics

Question: Why should subjective degrees of belief and utility play
or not play a role in statistical inference?

Classical Statistician’s Answer: Subjectivity threatens the
objectivity of science

E.g., A medical researcher ought not tell the FDA that, given
her personal values and prior convictions, a new potentially
dangerous drug seems acceptable for widespread use.



Subjectivity in statistics

Question: Why should subjective degrees of belief and utility play
or not play a role in statistical inference?

Bayesian Answer:

All statistical procedures require subjective elements; the
difference is Bayesian techniques make the reliance explicit.

Rationality axioms entail that one ought to behave as a
Bayesian.

Subjectivity “washes out” in the long run.



Methodological Difference

Question: Why does the difference matter for methodology?

Answer:

Bayesians can calculate a posterior distribution P(θ|X1, . . .Xn)
given the data, and minimize expected loss relative to it.

Because there is no well-defined prior probability of θ in the
classical statistician’s framework, the posterior distribution is
also not well-defined.

So classical statisticians have a number of criteria used to
assess the reliability of different estimators.
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Answer:

Bayesians can calculate a posterior distribution P(θ|X1, . . .Xn)
given the data, and minimize expected loss relative to it.

Because there is no well-defined prior probability of θ in the
classical statistician’s framework, the posterior distribution is
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So classical statisticians have a number of criteria used to
assess the reliability of different estimators.



Methodological Difference

Today:

An illustration of the distinction between classical and
Bayesian hypothesis testing

Discussion of philosophical differences



Classical Hypothesis Tests



Two Traditions

vs.

“Classical” hypothesis testing is really two different sets of
techniques.

Fisher

Neyman-Pearson



Fisher vs. Neyman-Pearson

Fisher Neyman-Pearson

Alternative hypothesis? No Yes
Key Concepts P-value Size and Power
Normative Upshot Evidential Behavioral
One-shot? Single Experiment Long Run



To review the differences between two traditions, here’s a toy
example:



Hypothesis Testing - Toy Example

Suppose a coin factory produces two types of coins, one with
bias 1

4 and the other with bias 3
4 .

The bias of a coin is the objective probability that the coin will
land heads when tossed.
This objective probability might be a long-run frequency, a
“logical” fact, or a propensity.

Suppose your null-hypothesis Θ0 is that the coin has bias 1
4 .
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Hypothesis Testing - Toy Example

Suppose you have flipped the coin 52 times, and observed 26
heads.



Fisherian Testing

For each data sequence x , there is a set of “more extreme
values” Ex .

E.g., If x has nx heads, then Ex might be all data sequences
containing at least nx many heads.

In general, the P-value of the observed outcome x is defined
as:

sup
θ∈Θ0

Pθ(Ex)

where Θ0 is the null hypothesis.
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In general, the P-value of the observed outcome x is defined
as:

sup
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Pθ(Ex)

where Θ0 is the null hypothesis.



Fisherian Testing

In the example, if Ex is all sequences involving more heads
those observed, then the P-value is

P 1
4
(Number Heads ≥ 26) = 0.00009021965471400772



Test Statistics

Typically, P-values are computed using some test statistic.

A test statistic T “summarizes” the observed data:

Sample mean: Average your observations
Sample Variance: See how “spread out” your observations are.
The Sample Itself!
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Typically, P-values are computed using some test statistic.

A test statistic T “summarizes” the observed data:

Sample mean: Average your observations
Sample Variance: See how “spread out” your observations are.
The Sample Itself!



Fisherian Testing

Fisher interprets a low P-value as strong evidence against the
null hypothesis.

Notice the “evidential” interpretation.
Notice the evidence is against the null hypothesis, not for
some alternative.

Reject the null hypothesis if the P-value is low.



Fisherian Testing

Objection 1: The choice of null hypothesis is arbitrary

In the example, the sample may seem like strong evidence
against the null, but if the coin factory produces only the two
types of coins, it’s equally strong evidence against Θ1 = {3

4}.



Fisherian Testing

Objection 2: The choice of test-statistic is arbitrary.

Why the number of heads? Why not the number of heads on
even tosses?



Fisherian Testing

Objection 3: The choice of the set of extreme values is arbitrary.

Suppose 13 heads rather than 26 heads had been observed in
the example. Would Fisher reject the null hypothesis under
the reasoning the data is “too good to be true”?

Note: Fisher did something similar in rejecting Mendel’s data.



Fisherian Testing

Objection 4: Different P-values can be obtained from the same
evidence, and hence, the P-value cannot be a measure of the
strength of evidence again the null hypothesis.



Fisherian Testing

Responses:

There are ways of responding to each objection, but we have
to move on.

Neyman and Pearson tests, however, already address these
three objections (at least in special cases) . . .
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Neyman and Pearson

Neyman and Pearson argue that a null-hypothesis Θ0 ought
to always be tested against an alternative Θ1.

Consequently, they aim to minimize two types of error:

Type I Error: Rejecting the null when it’s true.
Type II Error: Accepting the null when it’s false.



Neyman and Pearson

Neyman and Pearson argue that a null-hypothesis Θ0 ought
to always be tested against an alternative Θ1.

Consequently, they aim to minimize two types of error:

Type I Error: Rejecting the null when it’s true.
Type II Error: Accepting the null when it’s false.



Neyman and Pearson

Suppose you employ a test that rejects the null hypothesis if
the data X belongs to a set R called the rejection region.

The size of a test is the greatest chance of committing a Type
I error:

sup
θ∈Θ0

Pθ(X ∈ R)

The Power is the greatest chance of committing a Type II
error:

sup
θ∈Θ1

Pθ(X 6∈ R)



Neyman and Pearson

Consider the example.

Suppose your rejection region R is the set of coin flips
containing more heads than tails:

The size of this test is

P 1
4
(Num Heads ≥ 27)

The Power of this test is:

P 3
4
(Num Heads < 27)



Neyman and Pearson

Clearly, there is a tradeoff between size and power.

You can minimize the chance of Type I error by always
retaining the null hypothesis.

You can minimize the chance of Type II error by always
rejecting the null.



How do Neyman and Pearson navigate this tradeoff?



Neyman and Pearson

First, fix the size α of the test (customary is .05).

Then find a rejection region R that maximizes the power if
the size is α.



Objections

Question: Aren’t Neyman and Pearson subject to the same
objections as Fisher?

Answer: Not always.



Objections

vs.

Objection 1: The choice of the null hypothesis is arbitrary.
Answer: Recall the difference between Fisher and Neyman and
Pearson’s interpretations of hypothesis tests . . .



Neyman and Pearson

But we may look at the purpose of tests from another view-point.
Without hoping to know whether each separate hypothesis is true or
false, we may search for rules to govern our behaviour with regard
to them, in following which we insure that, in the long run of
experience, we shall not be too often wrong. Here, for example,
would be such a “rule of behaviour”: to decide whether a
hypothesis, H, of a given type be rejected or not, calculate a
specified character, x , of the observed facts ; if x > x0, reject H, if
x ≤ x0,, accept H. Such a rule tells us nothing as to whether in a
particular case H is true when x ≤ x0, or false when x > x0. But
it may often be proved that if we behave according to such a rule,
then in the long run me shall reject H when it is true not more, say,
than once in a hundred times, and in addition we may have
evidence that we shall reject H sufficiently often when it is false.



Objections

vs.

Objection 1: The choice of the null hypothesis is arbitrary.
Answer: The null hypothesis is chosen with respect to one’s
long-term goals.

Since one hypothesis may be more important than another, it
may be more important to minimize Type I error in the long
run.

So even if the evidence is symmetric between two hypotheses,
the choice of the null is not arbitrary.
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Objection 1: The choice of the null hypothesis is arbitrary.
Answer: The null hypothesis is chosen with respect to one’s
long-term goals.

Since one hypothesis may be more important than another, it
may be more important to minimize Type I error in the long
run.

So even if the evidence is symmetric between two hypotheses,
the choice of the null is not arbitrary.



Objections

vs.

Objection 2: The choice of the rejection region is arbitrary.
Answer: For Neyman and Pearson, in the example, the choice of
rejection region in the example is uniquely determined if one fixes
the size α of the test.

Namely, it is the set of observable data sequences X such that:

P 1
4
(X)

P 3
4
(X)
≤ kα

where kα is a constant depending upon α.



Objections

vs.

Objection 3: The choice of the test statistic is arbitrary.

Answer: For Neyman and Pearson, the test statistic should be
sufficient. We can’t talk about this here.



Objections

vs.

Objection 4: The P-value is not a measure of evidential strength.

Answer: That’s right. The size of the test, which is closely related
to the P-value for Fisher, is a measure of long run correctness.



Bayesian Statistics



Bayesian statistics

Bayesianism: Statistical inference is just like all other decision
problems: maximize subjective expected utility!



Decision Matrices

Sun Rain

Read 2 3

Biergarten 4 -2

Watch “Glee” -10 -10

Decision Matrices: Represent your available actions (in rows) and
possible states of the world (in columns).
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Decision Matrices

Sun Rain

Read 2 3

Biergarten 4 -2

Watch “Glee” -10 -10

Decision Matrices: Subjective utilities (i.e., payoffs) to the
decision-maker depend upon the unknown state of nature and
what action she chooses.



Decision Rule

A decision rule is a method for choosing an action given a decision
matrix and one’s beliefs about likelihood of various states of the
world.

Formally, it is function that

takes as input (i) a decision matrix and (ii) a probability
distribution over states of the world, and

outputs an action from the decision matrix.



Dominance

Sun Rain

Read 2 3

Biergarten 4 -2

Watch “Glee” -10 -10

Dominance: If the outcome of some action a1 (e.g., Watch Glee)
is worse than that of another a2 (e.g., Read) regardless of the state
of the world, do not choose a1.
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Worst-Case

Sun Rain

Read 2 3

Biergarten 4 -3

Worst-Case: Each action has a worst-case payoff. E.g., For Read,
it’s 2. For Biergarten, it’s -3.
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Decision Matrices

But suppose you look outside, and it’s a beautiful spring day
in Munich.

You read the weather forecast, which claims the chance of
rain is .5%.

Minimax ignores how likely you think rain is.

We’d like some decision rule that simultaneously considers
payoffs/losses and likelihood.
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Decision Matrices

But suppose you look outside, and it’s a beautiful spring day
in Munich.

You read the weather forecast, which claims the chance of
rain is .5%.

Minimax ignores how likely you think rain is.

We’d like some decision rule that simultaneously considers
payoffs/losses and likelihood.



Decision Matrices

Suppose you fully believe the weather forecast, which claims the
chance of rain is .5%.

Sun Rain

Read 2 3

Biergarten 4 -3

The expected utility of Biergarten is:

seu(Biergarten) = p(Sun) · 4 + p(Rain) · −3

= 995 · 4 + .005 · −3

= 3.965



Decision Matrices

Suppose you fully believe the weather forecast, which claims the
chance of rain is .5%.

Sun Rain

Read 2 3

Biergarten 4 -3

In contrast, expected utility of Read is:

seu(Read) = p(Sun) · 2 + p(Rain) · 3
= 995 · 2 + .005 · 3
= 2.005



Three Decision Rules

Maximize (subjective) expected utility (seu)

Dominance

Minimax
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Dominance

Minimax



Rationality and Expected Utility

The Standard:

According to Bayesian statisticians, an agent is rational if she
acts as if she were maximizing expected utility.

There are a number of arguments for the claim that expected
utility maximization is the unique rational decision rule; we
won’t discuss them here.

General idea: Postulate axioms on rational preference and
show that, if an agent’s preferences obey said axioms, she
maximizes expected utility.
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Hypothesis Testing - Toy Example

Let’s reconsider our toy example:

Suppose a coin factory produces two types of coins, one with
bias 1

4 and the other with bias 3
4 .

The null-hypothesis Θ0 is that the coin has bias 1
4 .



Hypothesis Testing - Toy Example

Let’s reconsider our toy example:

Suppose a coin factory produces two types of coins, one with
bias 1

4 and the other with bias 3
4 .

The null-hypothesis Θ0 is that the coin has bias 1
4 .



Decision Matrix - Hypothesis Testing

Null is true Alternative is true

Accept null 0 -1

Reject -2 0

We can use decision matrices in scientific contexts as well.

Note: The payoffs above are arbitrary.



Prior and Posterior Distribution

Priors vs. Posteriors:

Just as in the rain example, you may believe the null is more
(or less) likely to be true.

Your prior distribution summarizes your personal probabilities
(i.e., your degrees of belief) before the experiment is
conducted.

Your posterior distribution summarizes your personal
probabilities after experiment is conducted.



Prior Distribution in Toy Example

Example: Prior Distribution

Suppose before the experiment, you think the null is twice as
likely to be true:

P(Θ0) = 2
3 and P(Θ1) = 1

3 .

This is your prior distribution.



Posterior Distribution in Toy Example

Example: Posterior Distribution

Suppose your evidence E is that 26 heads are observed in 52
throws.

Your update your degrees of belief as follows:

Pnew (Θ0) = P(Θ0|E ) =
P(E |Θ0) · P(Θ0)

P(E )



Posterior Distribution in Toy Example

P(Θ0|E ) =
P(E |Θ0) · P(Θ0)

P(E )

=
P(E |Θ0) · P(Θ0)

P(E&Θ0) + P(E&Θ1)

=
P(E |Θ0) · P(Θ0)

P(Θ0) · P(E |Θ0) + P(Θ1) · P(E |Θ1)

=
[ 1

4

26 · 3
4

26 ·
(26

52

)
] · 2

3

2
3 · [

1
4

26 · 3
4

26 ·
(26

52

)
] + 1

3 · [
1
4

26 · 3
4

26 ·
(26

52

)
]

=
2

3
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Posterior Distribution in Toy Example

Hence, after observing 26 heads, your new degrees of belief are
given by:

Pnew (Θ0) = P(Θ0|E ) =
P(E |Θ0) · P(Θ0)

P(E )
=

2

3

Pnew (Θ1) = P(Θ0|E ) =
P(E |Θ0) · P(Θ0)

P(E )
=

1

3



Posterior Distribution in Toy Example

Intuitive Explanation: Since the evidence is equally bad for both
hypotheses, your degrees of belief do not change.



Maximizing Hypothesis Testing:

Question: How does a Bayesian decide which hypothesis to accept?

Answer: She maximizes expected utility as before!



Bayesian Hypothesis Testing

Θ0 Θ1

Accept Θ0 0 -1

Reject Θ0 -2 0

The expected utility of Accept is:

seu(Accept) = Pnew (Θ0) · 0 + PNew (Θ1) · −1

= −1

3
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Θ0 Θ1

Accept Θ0 0 -1

Reject Θ0 -2 0

In contrast, expected utility of Reject is:

seu(Reject) = Pnew (Θ1) · −2 + PNew (Θ1) · 0

= −2

3

So you ought to accept!
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In contrast, expected utility of Reject is:
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= −2

3

So you ought to accept!



Contrast: Classical vs. Bayesian

Contrast:

The Bayesian experimenter’s prior distribution and utilities
dictate what she chooses to do in this example.

If the experimenter (you!) had a different prior distribution
and utility function, your decision would differ.

It is for reasons like this that classical statisticians think
Bayesian statistics is too subjective.



Posterior Distribution in Toy Example

Example: Posterior Distribution

Suppose your evidence E is that 39 heads are observed in 52
throws.

Your update your degrees of belief as follows:

Pnew (Θ0) = P(Θ0|E ) =
P(E |Θ0) · P(Θ0)

P(E )
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=
P(E |Θ0) · P(Θ0)

P(Θ0) · P(E |Θ0) + P(Θ1) · P(E |Θ1)

=
[ 1

4

39 · 3
4

13 ·
(13

52

)
] · 2

3

2
3 · [

1
4

39 · 3
4

13 ·
(13

52

)
] + 1

3 · [
3
4

39 · 1
4

13 ·
(13

52

)
]

≈ 7.86 · 10−13



Posterior Distribution in Toy Example

Hence, after observing 26 heads, your new degrees of belief are
given by:

Pnew (Θ0) = P(Θ0|E ) =
P(E |Θ0) · P(Θ0)

P(E )
≈ 7.86 · 10−13 ≈ 0

Pnew (Θ1) = P(Θ0|E ) =
P(E |Θ0) · P(Θ0)

P(E )
≈ 1



Posterior Distribution in Toy Example

Intuitive Explanation: Since the evidence is fairly strong for the
alternative hypothesis, your degrees of belief change radically.



Bayesian Hypothesis Testing

Θ0 Θ1

Accept Θ0 0 -1

Reject -2 0

seu(Accept) = Pnew (Θ0) · 0 + PNew (Θ1) · −1 ≈ −1

seu(Reject) = Pnew (Θ1) · −2 + PNew (Θ1) · 0 ≈ −2



Posterior Distribution in Toy Example

Moral: With sufficiently strong evidence, your prior distribution
“washes out” and makes no difference in inference.



The Central Difference

Central Difference:

Bayesians argue that an experimenter’s subjective degrees of
beliefs and subjective utility functions do influence (and
should influence) his or her inferences.

Classical statisticians argue otherwise.



Subjectivity in statistics

Question: Why should subjective degrees of belief and utility play
or not play a role in statistical inference?

Classical - Subjectivity threatens the objectivity of science

Bayesian

All statistical procedures require subjective elements; the
difference is Bayesian techniques make the reliance explicit.
Rationality axioms entail that one ought to behave as a
Bayesian.
Subjectivity “washes out” with enough data.
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Question: Where can I learn more?

Answer: I taught a philosophy of statistics course which contains
links to many textbooks and papers:

http://mayowilson.org/Past_Courses.htm

http://mayowilson.org/Past_Courses.htm

