
The Likelihood Principle

Conor Mayo-Wilson

Philosophy of Statistics
June 30th, 2014

Review

Last Month:

Models of experiments: Classical/Frequentist vs. Bayesian

Classical/frequentist hypothesis tests and criticisms

Today

Today

Why some take objections to hypothesis testing motivate use
of interval estimates (esp. confidence intervals).

The Likelihood Principle: Why its proof attacks classical
methodology in general, and not just hypothesis tests.

To review the differences between two traditions, here’s an
example.



Hypothesis Testing - Toy Example

Suppose a coin factory produces two types of coins, one with
bias 1

4 and the other with bias 3
4 .

Θ = { 1
4 ,

3
4}.

Suppose your null-hypothesis Θ0 is that the coin has bias 1
4 .

Hypothesis Testing - Toy Example

Suppose you have flipped the coin ten-thousand times, and
observed 2575 heads.

Ω = {0, 1}104
.

Xn : Ω→ R is the map

ω = 〈ω1, ω2, . . . ω104〉 7→ ωn.

Here’s what you know about the experimental outcome
ω ∈ Ω: ∑

n≤104

Xn(ω) = 2575

Objections to Classical Hypothesis Testing
Objection 1: “Statistically significant” does not mean practically
significant.



Example

Example:

In the toy example, the probability of obtaining 2575 or more
heads is about 4%, which is significant at the .05 level.

However, unless you own a casino, you probably do not care if
your coin has bias .2575 or bias .25.

Mayo and Spanos’ Answer

vs.

Answer: Test the null µ = µ0 vs. the alternative µ > µ1, where µ1

is a “practically significant” deviation.

Mayo and Spanos [2011]

Objection 2: With a large enough sample, the smallest,
insignificant deviation from a point null will be rejected.

Example

Example:

In the toy example, suppose, unbeknownst to you, the coin
factory produces coins with bias 1

4 + ε for some very small
ε > 0.

You wouldn’t care if you had one such coin or a coin with bias
precisely 1

4 .

You are flipping one such coin.

Then, under any reasonable test, the probability of rejecting
the null hypothesis Θ0 = {1

4} at any significance level α > 0
approaches one as the number of flips approaches infinity.



Mayo and Spanos’ Answer

vs.

Answer:

If the null hypothesis is false, it should be rejected. That
doesn’t entail accepting the alternative hypothesis.

My Note: The “change the hypothesis” response also could
be used here: Test the null µ ∈ (µ0 − ε, µ0 + ε).

Mayo and Spanos [2011]

Objection 3: The choice of the null hypothesis is arbitrary.

Example

Example:

If your null hypothesis is Θ0 = {1
4}, then the probability of

obtaining 2575 or more heads is about 4%, which is
significant at the .05 level. So you reject the null.

If your null hypothesis is Θ0 = {3
4}, of obtaining 2575 or

fewer heads is approximately zero, which is significant at the
.05 level. So you reject the null.

Mayo and Spanos’ Answer

vs.

Answer: The choice of the null hypothesis can only cause
erroneous inferences if one fallaciously infers that evidence again
the null hypothesis is evidence for some specific alternative.

Mayo and Spanos [2011, pp. 175]



Objection 4: Statistically insignificant results are taken as evidence
that the null hypothesis is true.

Mayo and Spanos’ Answer

vs.

Answer:

That’s a mistake of practitioners; not of the methodology.

In certain settings, we can quantify how “large” a variation
from the null hypothesis is compatible with failure to reject.
So “statistically insignificant” results can have some
informative value.

Mayo and Spanos [2011]

Interval Estimation

Alternative Solution: Abandon hypothesis testing. Use interval
estimates.

Interval estimates quantify the effect size, not just statistical
significance.

They give a range of plausible values, not simply the verdict
“reject” or “retain.”

The Likelihood Principle



Likelihood Principle: Two data sequences (from possibly different
experiments) with the same likelihood function provide the same
evidence.

Likelihood Principle: Two data sequences (from possibly different
experiments) with the same likelihood function provide the same
evidence.

Comparing Evidence

Sometimes we may wish to compare the evidence provided by
two experiments.

For example, ceteris paribus, if we wish to say that one study
provides better evidence of climate change than another.

Can we formalize the idea of “stronger”, “similar”, and
“identical” evidence?

Formalizing Evidence

Birnbaum [1962] is completely agnostic about how to
represent evidence.

Let ExpΘ be the class of experiments whose underlying set of
states of the world are equal to Θ.

Pieces of evidence about Θ are represented by elements of a
set evidenceΘ.

There is a function Ev : ExpΘ × Rn → evidenceΘ with

Input: An experiment E and a data sequence x ∈ Rn from
that experiment.
Output: A piece of evidence Ev(E , x) ∈ evidenceΘ.



Likelihood Principle: Two data sequences (from possibly different
experiments) with the same likelihood function provide the same
evidence.

Two Experiments

Example:

Experiment 1: Flip a coin of unknown bias twelve times.

Experiment 2: Flip a coin of unknown bias until three heads
are observed.

Two Experiments

Consider two classical experiments with the same set of states of
the worlds Θ:

E1 = 〈Θ,Ω1, {Pθ}θ∈Θ, 〈Xn〉n∈N〉
E2 = 〈Θ,Ω2, {Qθ}θ∈Θ, 〈Yn〉n∈N〉

Two Experiments

The experiments may differ in any number of ways:

They may have different sets of experimental outcomes

I.e., Ω1 6= Ω2

Different sequences of observations may be possible.

I.e., 〈Xn〉n∈N 6= 〈Yn〉n∈N

The probabilities of the same data sequence may differ, even
if the world θ is held fixed.

I.e., Pθ 6= Qθ



Likelihood Principle: Two data sequences (from possibly different
experiments) with the same likelihood function provide the same
evidence.

Same Likelihood Function

Let x = 〈X1(ω), . . .Xm(ω)〉 be an outcome of the first
experiment.

Let y = 〈Y1(ω), . . .Yn(ω)〉 be an outcome of the second
experiment.

Say x and y determine the same likelihood function if there is
a constant cx ,y such that

pθ(x) = cx ,y · qθ(y)

for all θ ∈ Θ

Two Experiments

Example:

Experiment 1: Flip a coin of unknown bias twelve times.

Experiment 2: Flip a coin of unknown bias until three heads
are observed.

Two Experiments: Same Data:

Outcome: Let x = y be a data sequence consisting of 12 flips,
with 9 tails, and a heads on the last flip.



Two Experiments: Same Likelihood Function

Example:

Experiment 1: Flip a coin of unknown bias twelve times.

Regardless of the bias θ ∈ Θ of the coin:

Pθ(x) =

(
12

3

)
· θ3(1− θ)9

Experiment 2: Flip a coin of unknown bias until three heads
are observed.

Regardless of the bias θ ∈ Θ of the coin:

Qθ(x) =

(
11

2

)
· θ3(1− θ)9

Note: Here, cx ,x =
(12

3 )
(11

2 )
= 220

55 = 4.

Two Experiments: Same Evidence

Example: According to the Likelihood Principle, the sequence of
coin flips provides the same evidence about the bias of the coin,
regardless of which of the two experiments is conducted.

Two Experiments: Same Evidence

Some find this intuitive: your data is your data!

Others don’t: The fact that you could have flipped to coin for
a longer or shorter time in the second experiment should
affect the inferences you draw.

Useless counterfactuals

Here are some cases in which classical techniques make use of
counterfactual dependencies that seem irrelevant.



LP and Classical Statistics

Upshot: Classical statistical methods violate the LP. Why?

Two Experiments: Same Likelihood Function

Example: Suppose two experimenters test the null hypothesis
Θ0 = {1

2} at the .05 level in the following two experiments.

Experiment 1: Flip a coin of unknown bias twelve times.

Experiment 2: Flip a coin of unknown bias until three heads
are observed.

Same Likelihood Function, Different Verdicts

Experiment 1: Recall if the coin has bias θ, then the probability of
k many heads is: (

12

k

)
· θk(1− θ)12−k

When θ = 1
2 :

θk(1− θ)12−k = (
1

2
)12

So the probability of three or fewer heads is:

Pθ(x) =

((
12

3

)
+

(
12

2

)
+

(
12

1

)
+

(
12

0

))
· 1

212

Same Likelihood Function, Different Verdicts

Experiment 1: If you do the calculation, you’ll find:

Pθ(x) ≈ 7.3%.

So you would not reject the null hypothesis at the .05 level.



Same Likelihood Function, Different Verdicts

Experiment 2: Flip a coin of unknown bias until three heads are
observed.

The probability of needing at least k many throws is:(
k

2

)
· θ3(1− θ)k−3

When θ = 1
2 , this probability is equal to the following:(

k

2

)
· 1

2k

So the probability of needing 12 or more tosses is:

1−
((

11

2

)
1

211
+

(
10

2

)
1

210
+ . . .+

(
2

2

)
1

23

)

Same Likelihood Function, Different Verdicts

Experiment 2: If you do the calculation, you’ll find this probability
is about 3.3%. So you would reject the null hypothesis at the .05
level.

Same Likelihood Function, Different Verdicts

Moral: Classical hypothesis testing violates the LP.

Because of the close relationship between confidence intervals and
hypothesis tests, so will confidence intervals.

So what?

Birnbaum’s Theorem: LP is entailed by two principles nearly
universally endorse by classical statisticians: (i) the conditionality
principle, and (ii) the sufficiency principle.



Mixed Experiments

Suppose you want to measure the charge of an electron.

There are two experiments that you might conduct, and you
think both are equally reliable.

You flip a coin to decide which experiment to conduct.

Randomly choosing among a collection of experiments is
called a mixed experiment.

Conditionality Principle

Conditionality Principle: If you conduct a mixed experiment in
which you observe x after conducting the component experiment
E , then your evidence is the same as if you had observed x after
conducting E without randomizing among

Conditionality Principle

Making this precise requires giving a formal definition of a
mixed experiment, which I won’t do.

Important:

The randomizing device should not provide additional
information about Θ:

I.e., The probability that the randomizing device takes
particular values is not a function of θ ∈ Θ.
E.g., Don’t flip the coin of unknown bias to choose which of
the two experiments above to conduct. The extra coin flip
gives you additional information!

Birnbaum is likewise agnostic about how to formalize the
notion of evidence here.

Sufficiency Principle

Sufficiency: All evidence from an experiment concerning Θ in the
experiment is available in a sufficient statistic.



Sufficiency Principle

Note: A sufficient statistic may provide no evidence for any
θ ∈ Θ. For instance, suppose you flip a coin to determine
whether or not it will rain one year from today in Munich.

Major Lemma: The set of likelihoods is a sufficient statistic,
i.e., the function:

T : x 7→ 〈Pθ(x)〉θ∈Θ

Proof of Birnbaum’s Theorem:

Let x and y be data from experiments E1 and E2 determining
the same likelihood function, with constant cx ,y ≥ 0.

We want to show Ev(E1, x) = Ev(E2, y).

Proof of Birnbaum’s Theorem:

Consider the mixed experiment E∗ obtained by flipping a coin
with bias 1

cx,y+1 to determine whether to conduct E1 or E2.

Consider the probability of observing 〈Heads, x〉 and 〈Tails, y〉
in the mixed experiment.

Proof of Birnbaum’s Theorem: In the mixed experiment E∗:

p∗θ(〈Heads, x〉) =
1

cx ,y + 1
· pθ(x)

=
1

cx ,y + 1
· cx ,y · qθ(y)

= (1− 1

cx ,y + 1
) · qθ(y)

= p ∗θ (〈Tails, y〉)



Proof of Birnbaum’s Theorem:

sufficiency and the lemma ⇒

Ev(E∗, 〈H, x〉) = Ev(E∗, 〈T , y〉)

conditionality ⇒

Ev(E∗, 〈H, x〉) = Ev(E1, x)

conditionality ⇒

Ev(E∗, 〈T , y〉) = Ev(E2, y)

Transitivity of equality then entails

Ev(E1, x) = Ev(E2, y)

which is what we wanted to show.
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