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Today:

Models of experiments: Classical/Frequentist vs. Bayesian

Classical/frequentist hypothesis tests and criticisms

Common Model of an Experiment

Common Model of Experiments

Θ - Set of experimental setups.

E.g., Number of red balls in an urn
E.g., Biases of coin

Ω - Set of experimental outcomes.

E.g., Which ball is selected
E.g., Sequences of coin tosses (which might have, for example,
different angular velocities)

A sequence of random variables Xn : Ω→ R representing the
observable parts of the experimental outcome:

E.g., The color of the selected ball
E.g., Sequences of Heads or Tails



Common Model of Experiments

A subset A ⊆ P(Θ) representing permissible estimates or
actions.

E.g., Single elements of Θ = Point Estimates
E.g., Intervals of Θ = R = Interval Estimates
E.g., Elements of a collection of disjoint subsets of Θ =
Hypotheses

Estimators θ̂n : Rn → A take observations as input and return
a permissible estimate or actions.

E.g., The sample mean θ̂(x) = x is a point estimator.
E.g., Interval estimators
E.g., Hypothesis Tests

A loss/utility function L : A×Θ→ R representing the payoff
L(a, θ) of action a if the true experimental setup is θ.

The central difference between the two models concerns what
events can be assigned probability.

Bayesian Model

Bayesian: A single probability distribution P is defined over both
experimental setups Θ and their outcomes Ω.

The distribution P is often taken to represent a single agent’s
degrees of belief.

Nothing in the mathematics prohibits interpreting P as an
evidential probability or as a propensity (if experimental
setups Θ are also produced by some chance device).

Bayesian Model

Classical: For each experimental setup θ ∈ Θ, there is a probability
distribution Pθ over only the outcomes Ω.

Pθ is often interpreted as saying something about long-term
frequencies.

For reasons I’ve explained, I think it is better to interpret Pθ

as a propensity, but any objective view of probability is
consistent with the mathematics.



The Central Difference

Question: Why does the difference matter for methodology?

Answer:

Bayesians can calculate a posterior distribution P(θ|X1, . . .Xn)
given the data, and minimize expected loss relative to it.

Because there is no well-defined prior probability of θ in the
classical statistician’s framework, the posterior distribution is
also not well-defined.

So classical statisticians have a number of criteria used to
assess the reliability of different estimators.

Classical Hypothesis Tests

Two Traditions

vs.

“Classical” hypothesis testing is really two different sets of
techniques.

Fisher

Neyman-Pearson

Fisher vs. Neyman-Pearson

Fisher Neyman-Pearson

Alternative hypothesis? No Yes
Key Concepts P-value Size and Power
Normative Upshot Evidential Behavioral
One-shot? Single Experiment Long Run



To review the differences between two traditions, here’s a toy
example:

Hypothesis Testing - Toy Example

Suppose a coin factory produces two types of coins, one with
bias 1

4 and the other with bias 3
4 .

Θ = { 1
4 ,

3
4}.

Suppose your null-hypothesis Θ0 is that the coin has bias 1
4 .

Hypothesis Testing - Toy Example

Suppose you have flipped the coin 52 times, and observed 26
heads.

Ω = {0, 1}52.

Xn : Ω→ R is the map

ω = 〈ω1, ω2, . . . ω52〉 7→ ωn.

Here’s what you know about the experimental outcome
ω ∈ Ω: ∑

n≤52

Xn(ω) = 26

Fisherian Testing

For each data sequence x ∈ R52, there is a set of “more
extreme values” Ex .

E.g., If x has nx heads, then Ex might be all data sequences
containing at least nx many heads.

In general, the P-value of an observed outcome x is defined as:

sup
θ∈Θ0

Pθ(〈X1, . . . ,X52〉 ∈ Ex)

where Θ0 is the null hypothesis.



Fisherian Testing

In the example, if Ex is all sequences involving more heads
those observed, then the P-value is

P 1
4
(
∑
n≤52

Xn ≥ 26) = 0.00009021965471400772

Test Statistics

Typically, P-values are computed using some test statistic.

A test statistic is a series of functions Tn : Rn → Rk (for
some k) that “summarize” the observed data:

Sample mean: Tn(X1(ω), . . . ,Xn(ω)) = 1
n

∑
j≤n Xj(ω)

Sample Variance:

Tn(X1(ω), . . . ,Xn(ω)) =
1

n

∑
j≤n

(Xj − X )2

where X is the sample mean.
The Sample Itself!:
Tn(X1(ω), . . . ,Xn(ω)) = 〈X1(ω), . . . ,Xn(ω)〉

Fisherian Testing

Fisher interprets a low P-value as strong evidence against the
null hypothesis.

Notice the “evidential” interpretation.
Notice the evidence is against the null hypothesis, not for
some alternative.

Reject the null hypothesis if the P-value is low.

Fisherian Testing

Objection 1: The choice of null hypothesis is arbitrary

In the example, the sample may seem like strong evidence
against the null, but if the coin factory produces only the two
types of coins, it’s equally strong evidence against Θ1 = {3

4}.



Fisherian Testing

Objection 2: The choice of test-statistic is arbitrary.

Why the number of heads? Why not the number of heads on
even tosses?

Fisherian Testing

Objection 3: The choice of the set of extreme values is arbitrary.

Suppose 13 heads rather than 26 heads had been observed in
the example. Would Fisher reject the null hypothesis using
“too good to be true” that caused him to question Mendel?

Fisherian Testing

Objection 4: Different P-values can be obtained from the same
evidence, and hence, the P-value cannot be a measure of the
strength of evidence again the null hypothesis.

Fisherian Testing

Responses:

We’ll discuss some responses next week.

Neyman and Pearson tests, however, already address these
three objections (at least in special cases) . . .



Neyman and Pearson

Neyman and Pearson argue that a null-hypothesis Θ0 ought
to always be tested against an alternative Θ1.

Consequently, they aim to minimize two types of error:

Type I Error: Rejecting the null when it’s true.
Type II Error: Accepting the null when it’s false.

Neyman and Pearson

Suppose you employ a test that rejects the null hypothesis if
the data belongs to a set R called the rejection region.

The size of a test is the greatest chance of committing a Type
I error:

sup
θ∈Θ0

Pθ(X ∈ R)

The Power is the greatest chance of committing a Type II
error:

sup
θ∈Θ1

Pθ(X 6∈ R)

Neyman and Pearson

Consider the example.

Suppose your rejection region R is the set of coin flips
containing more heads than tails:

The size of this test is

P 1
4
(
∑
n≤52

Xn ≥ 27)

The Power of this test is:

P 3
4
(
∑
n≤52

Xn < 27)

Neyman and Pearson

Clearly, there is a tradeoff between size and power.

You can minimize the chance of Type I error by always
retaining the null hypothesis.

You can minimize the chance of Type II error by always
rejecting the null.



How do Neyman and Pearson navigate this tradeoff?

Neyman and Pearson

First, fix the size α of the test (customary is .05).

Then find a rejection region R that maximizes the power if
the size is α.

Objections

Question: Aren’t Neyman and Pearson subject to the same
objections as Fisher?

Answer: Not always.

Objections

vs.

Objection 1: The choice of the null hypothesis is arbitrary.
Answer: Recall the difference between Fisher and Neyman and
Pearson’s interpretations of hypothesis tests . . .



Neyman and Pearson

But we may look at the purpose of tests from another view-point.
Without hoping to know whether each separate hypothesis is true or
false, we may search for rules to govern our behaviour with regard
to them, in following which we insure that, in the long run of
experience, we shall not be too often wrong. Here, for example,
would be such a “rule of behaviour”: to decide whether a
hypothesis, H, of a given type be rejected or not, calculate a
specified character, x , of the observed facts ; if x > x0, reject H, if
x ≤ x0,, accept H. Such a rule tells us nothing as to whether in a
particular case H is true when x ≤ x0, or false when x > x0. But
it may often be proved that if we behave according to such a rule,
then in the long run me shall reject H when it is true not more, say,
than once in a hundred times, and in addition we may have
evidence that we shall reject H sufficiently often when it is false.

Objections

vs.

Objection 1: The choice of the null hypothesis is arbitrary.
Answer: The null hypothesis is chosen with respect to one’s
long-term goals.

Since one hypothesis may be more important than another, it
may be more important to minimize Type I error in the long
run.

So even if the evidence is symmetric between two hypotheses,
the choice of the null is not arbitrary.

Objections

vs.

Objection 2: The choice of the rejection region is arbitrary.
Answer: For Neyman and Pearson, in the example, the choice of
rejection region in the example is uniquely determined if one fixes
the size α of the test.

Namely, it is the set of observable data sequences X such that:

P 1
4
(X)

P 3
4
(X)
≤ kα

where kα is a constant depending upon α.

Objections

vs.

Objection 3: The choice of the test statistic is arbitrary.
Answer: For Neyman and Pearson, the test statistic should be
sufficient.

More on this in a second . . .



Objections

vs.

Objection 4: The P-value is not a measure of evidential strength.
Answer: That’s right. The size of the test, which is closely related
to the P-value for Fisher, is a measure of long run correctness.

Today

Next Class:

Why some take objections to hypothesis testing motivate use
of interval estimates (esp. confidence intervals).

The Likelihood Principle: Why its proof attacks classical
methodology in general, and not just hypothesis tests.
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