
Philosophy of Probability: Problem Sets

To learn the philosophy of probability, one must know a bit of the math-
ematics of probability as well. Thus, on May 27th, there will be a short quiz
on basic probability theory. The quiz will contain fewer than ten questions
and should take you no more than 40 minutes to complete. You are required
to know both (i) the material from lecture and (ii) the entirety of Chapter
1 and Sections 2.1 and 2.2 of of DeGroot’s Probability and Statistics (Sec-
ond Edition). Specifically, you will be asked to define some of the terms
introduced in these sections (e.g., independence, conditional probability), to
perform one or two calculations, and to prove one or two simple facts. The
questions on the quiz will be very similar to the problems below.

As noted above, all of the assigned readings and exercises below are
from DeGroot’s Probability and Statistics, Second Edition, unless otherwise
noted. For weeks 1 -4, there are also additional exercises in the ensuing
pages that you ought to complete.

Week Readings Exercises

22/4 Sections 1.1 - 1.5 Section 1.4: 1, 3, 5a,b,d
Section 1.5: 3, 6-8

29/4 Chapter 1.6 - 1.7 Section 1.6: 1-4, 7
Section 1.7: 1-7

6/5 Chapter 1.8 - 1.11 Section 1.8: 2,3,5, 15.
Section 1.11: 1-3; 7-8

13/5 Chapter 2.1 - 2.2 Section 2.1: 1-3, 6.
Section 2.2: 1,2, 4, 10
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1 Additional Exercises

1.1 Week 1

Exercise 1 Let P be a probability measure and suppose that A ⊆ B. Show
that P (B \A) = P (B)− P (A), where B \A = {x ∈ B : x 6∈ A}.

In class, we defined an algebra as follows. Let Ω be a set that is called
a sample space. Then an algebra A on Ω is a collection of subsets of Ω
such that

• ∅ ∈ A,

• If S ∈ A, then Sc ∈ A, and

• If S, T ∈ A, then S ∪ T ∈ A.

Exercise 2 Let A be an algebra. Prove the following:

• Suppose that S, T ∈ A. Then S ∩ T ∈ A.

• Show that if S1, . . . , Sn ∈ A is some finite number of sets, then the
union S1 ∪ S2 ∪ . . . ∪ Sn is also a member of A.

Exercise 3 Which of the following sets are algebras? If the set A as defined
is an algebra, prove it. If not, explain which of the defining conditions of an
algebra the set does not satisfy and find some algebra B that contains A.

• Let Ω be the set of natural numbers {1, 2, 3, . . .}. Let E = {2, 4, 6, 8, . . .}
be the set of even numbers, and O = {1, 3, 5 . . .} be the set of odd num-
bers. Let A = {Ω, ∅, E,O}.

• Let Ω be a set representing three flips of a coin. So Ω contains se-
quences like 〈H,T, T 〉 and 〈H,T,H〉, which respectively represent the
outcomes in which (i) one observed a heads and then two tails, and
(ii) one observes a heads, followed by tails, followed by heads. When
i = 0, 1, 2, 3, let Ei represent the set of coin tosses in which exactly
i many heads are observed. For example, E1 contains the sequences
〈H,T, T 〉, 〈T,H, T 〉, and 〈T, T,H〉. Let A = {E0, E1, E2, E3}.

• Let Ω be the set of natural numbers {1, 2, 3, . . .}. A set S ⊆ Ω is called
cofinite if its complement is finite. For example, the set of natural
numbers greater than 10 is cofinite, as its complement {1, 2, 3 . . . , 10}
is finite. Let A be the set of all finite and cofinite subsets of Ω. (Note:
The empty set is considered to be finite)
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• Let Ω be any set. A partition of a set Ω is a collection of subsets
Π = {Ei}i∈I such that Ei ∩ Ej = ∅ if i 6= j and ∪i∈IEi = Ω.

Let Π = {Ei}i∈I be a partition of Ω, and for any subset J ⊆ I, define
E(J) = ∪i∈JEi. Let A = {E(J) : J ⊆ I}.

1.2 Week 2

Recall from class, a σ-algebra is algebra that is closed under countable
unions. That is, if S1, S2, . . . is a countable sequence of sets and Sn ∈ A
for all natural numbers n, then ∪n∈NSn ∈ A.

Exercise 4 For each of the sets A in Exercise 3, determine whether or not
A is a σ-algebra. If it is, prove it. If it is not, then provide a counterexample.

Exercise 5 (Optional) Suppose A1 and A2 are algebras on Ω. Does it
follow that A1 ∩ A2 is also an algebra? If so, prove it. If not, find a coun-
terexample.

Exercise 6 (Optional) Suppose A1 ⊆ A2 ⊆ F3 . . . is a sequence of alge-
bras on Ω. Does it follow that ∪n∈NAn is also an algebra? If so, prove it. If
not, find a counterexample.

1.3 Week 3

Recall DeGroot defines a probability measure to be countably additive.
That is, if if S1, S2, . . . is a countable sequence of pairwise disjoint sets (i.e.,
Si ∩ Sj = ∅ whenever i 6= j), then

P (∪n∈NSn) =
∑
n∈N

P (Sn).

In class, we discussed Kolmogorov’s axiomatization, which only requires a
probability function to be finitely additive. That is, if S1, S2, . . . Sn are
pairwise disjoint, then

P (∪j≤nSj) =
∑
j≤n

P (Sj).

Exercise 7 Let A be the set of all finite and cofinite subsets of the natural
numbers. Define P (E) to be zero if E is finite and P (E) = 1 if E is infinite.
Show that P is a finitely additive probability measure on A. Show that it is
not countably additive.

3



Exercise 8 (Optional) Suppose A1 and A2 are σ algebras on Ω. Does
it follow that A1 ∩ A2 is also a σ-algebra? If so, prove it. If not, find a
counterexample.

Exercise 9 (Optional) Suppose A1 ⊆ A2 ⊆ A3 . . . is a sequence of σ-
algebras on Ω. Does it follow that ∪n∈NAn is also a σ-algebra? If so, prove
it. If not, find a counterexample.

Exercise 10 (Optional and Advanced) Show that there are no count-
ably infinite σ-algebras. That is, every σ-algebra is either finite or uncount-
able.

1.4 Week 4

Exercise 11 (Base Rate Fallacies) Let T be the event that a randomly
selected person at an airport is a terrorist. Very few people are terrorists,
and so suppose P (T ) = 1

108
. Let A be the event that a randomly selected

person at an airport is of Arabic descent. About one in twenty-five people
in the world are Arab, and so suppose P (A) = 1

25 . Finally, suppose that,
given a person is a terrorist, the probability that they are of Arabic descent
is high. For instance, suppose that P (A|T ) = .99. This is what many people
who advocate racial profiling claim is true. Now suppose that airport security
stops a person because he or she is of Arabic descent. What is the probability
the person is a terrorist? I.e. What is P (T |A)?

Exercise 12 Read the introduction and section on Bayes’ theorem in the
wikipedia entry on the “Monty Hall Problem.” In a few paragraphs, explain
the solution and how Bayes’ theorem is employed in the solution.

4


	Additional Exercises
	Week 1
	Week 2
	Week 3
	Week 4


