Notes on Savages Foundations of Statistics

Conor Mayo-Wilson

July 19, 2013

1 Purpose

Below is a collection of notes about [Savage, 1972]. The purpose of this document is to provide quick and detailed proofs of theorems when said proofs are omitted from Savage. In a few cases, I have adopted notational conventions that are not adopted by Savage. This is done to make the statements of Savage's axioms more perspicuous and to make proofs more mechanical.

2 Definitions

Let S be a set called **states** and C a set called **consequences**. A set of states E is called an **event**. Given an event E, let $\neg E$ denote its complement.

An **act** is a function $f: S \to C$. Let \leq denote a binary relation on A. The relation \leq is intended to represent preference. That is, the interpretation of $f \leq g$ is that f is not preferred to g. Several axioms restricting the interpretation of \leq are introduced in the next section. Say one is **indifferent** between two acts f and g if and only if $f \leq g$ and $g \leq f$. In this case, write $f \approx g$. Say f is **strictly preferred to** g if and only if $f \leq g$ and $g \not\leq f$, and in this case write $f \leq g$.

For any consequence $c \in C$, let \tilde{c} denote the function $\tilde{c}(s) = c$ for all $s \in S$. The function \tilde{c} will be called a **constant act**. The ordering \preceq on actions, therefore, induces an ordering \trianglelefteq on C as follows. Let $c, d \in C$ be consequences. Then write $c \trianglelefteq d$ if and only if $\tilde{c} \preceq \tilde{d}$.

¹Note [Savage, 1972] defines $f \prec g$ to hold precisely if and only if $g \not\preceq f$. His definition is equivalent to the one in these notes under assumption P1 as, if $g \not\preceq f$, then $f \preceq g$ by totality of \preceq .

Given an event E and two actions f and g, say that f **agrees with** g **on** E if the restriction $f \upharpoonright E$ of f to E is equal to $g \upharpoonright E$. In this case, write $f =_E g$.

In Chapter 2.7, Savage defines the notion of f not being preferred to g on condition that event E obtains. His definition occurs mostly in prose, and so for the sake of clarity, I introduce a bit of notation to make the proofs below easier. For any two acts f and g and any event E, let f_E^g denote the action such that for all $s \in S$:

$$f_E^g(s) := \begin{cases} f(s) \text{ if } s \in E\\ g(s) \text{ if } s \notin E \end{cases}$$

Say the action f is not preferred to g given E if and only if $f_E^g \leq g$. In this case, write $f \leq_E g$. Define $f \prec_E g$ to hold if $f \leq_E g$ and $g \not\leq_E f$. Write $f \approx_E g$ if $f \leq_E g$ and $g \leq_E f$.

An event E is called **null** if and only if $f \approx_E g$ if for all actions f and g. Null events are intended to represent those to which one assigns essentially no likelihood of occurring, and so, one is completely indifferent among all available actions.

3 Savage's Axioms

The following axioms are employed throughout Savage's work. P1 is stated on page 18; P2 on page 23; P3 on page 26; P4 and P5 on page 31, and P6' on page 38.

P1: \leq is a simple ordering on *A*, or in other words:

• **Transitivity:** For all $f, g, h \in A$:

$$f \preceq g \text{ and } g \preceq h \Rightarrow f \preceq h$$

• Totality: For all $f, g \in A$, either $f \leq g$ or $g \leq f$ or both.

Note that \leq is also reflexive (i.e., that $f \leq f$ for all $f \in A$), as the totality of the relation \leq entail that either $f \leq f$ or $f \leq f$.

P2: For any event E and any four acts f, f', g and g':

- $f =_E f'$ and $g =_E g'$
- $f =_{\neg E} g$ and $f' =_{\neg E} g'$

• $f \preceq g$

together entail that

$$f' \preceq g'$$

P2 is also called the "Sure-Thing Principle."

P3: For any two consequences c and d and any non null event E:

$$\widetilde{c} \preceq_E \widetilde{d} \Leftrightarrow \widetilde{c} \preceq \widetilde{d}$$

P4: For all consequences $a, b, x, y \in C$ and all events E, F, if

- 1. $a \prec b$ and $x \prec y$,
- 2. $\widetilde{b}_E^{\widetilde{a}} \preceq \widetilde{b}_F^{\widetilde{a}}$

Then $\widetilde{y}_E^{\widetilde{x}} \preceq \widetilde{y}_F^{\widetilde{x}}$.

P5: There exist at least one pair of consequences c and d such that $c \triangleleft d$.

4 Theorems

Theorem 1

- 1. \emptyset is null.
- 2. E is null if and only if $f \leq_E g$ for all actions f and g.
- 3. If E is null and $F \subseteq E$, then F is null.
- 4. If $\neg E$ is null, then

 $f \preceq_E g$ if and only if $f \preceq g$

- 5. $f \leq_S g$ if and only if $f \leq g$, and
- 6. If S is null, then $f \approx g$ if for all actions f and g.

Proof:

1. For all actions g, one has that $g \leq g$ by reflexivity of \leq (i.e., Condition 1 of P1). By definition $f_{\emptyset}^g = g$, and so it follows that $f_{\emptyset}^g \leq g$ for all actions f and g. Thus, $f \leq_{\emptyset} g$ by the definition of \leq_E , and hence, \emptyset is null by the definition of "null."

- 2. Immediate.
- 3. Suppose $F \subseteq E$. Let f and g be arbitrary acts and E be any event. I claim that $(f_F^g)_E^g = f_F^g$. Why? If $s \in E$, then it immediately follows that $(f_F^g)_E^g(s) = f_F^g(s)$. If $s \notin E$, then $(f_F^g)_E^g = g(s)$ by definition. Moreover, as $F \subset E$, it follows that $s \notin E$. Hence, $f_F^g(s) = g(s)$ by definition. So $(f_F^g)_E^g(s) = f_F^g(s)$ as desired.

As E is null, by the second part of this theorem, it follows that $(f_F^g) \preceq_E g$. In other words:

$$(f_F^g)_E^g \preceq g$$

Since $(f_F^g)_E^g = f_F^g$, it follows that

 $f_F^g \preceq g.$

By definition of \leq_F , this entails that

 $f \preceq_F g$

As f, g and E were arbitrarily chosen, we have shown that, if E is null and $F \subseteq E$, then $f \preceq_F g$ for all actions f and g. Again by the second part of the theorem, it follows that F is null.

- 4. Assume $\neg E$ is null. We first show that if $f \preceq_E g$, then $f \preceq g$. To do so, note that
 - $f^g_{\neg E} =_{\neg E} f$ and $g =_{\neg E} f^g_E$,
 - $f_{\neg E}^g =_{\neg \neg E} g$ and $f =_{\neg \neg E} f_E^g$, and
 - $f^g_{\neg E} \preceq g$

where the third assertion follows from the fact that $\neg E$ is null, and so $f \leq_{\neg E} g$. Applying P2 yields the conclusion that $f \leq f_E^g$. By transitivity of \leq and the fact that $f_E^g \leq g$, the conclusion follows.

In the reversion direction, suppose that $f \leq g$.

- $f^g_{\neg E} =_E g$ and $f =_E f^g_E$,
- $f_{\neg E}^g =_{\neg E} f$ and $g =_{\neg E} f_E^g$, and
- $f^g_{\neg E} \preceq f$

where the third assertion follows from the fact that $\neg E$ is null. Applying P2 yields that $f_E^g \preceq g$, or in other words, that $f \preceq_E g$.

- 5. Follows from Parts 1 and 4, as $\emptyset = \neg S$ is null.
- 6. If S is null, then $f \approx_S g$ for all f and g. By Part 5, it follows that $f \approx g$ for all f and g.

Lemma 1 Suppose P1 and P2 and let E be any event. If $f \leq_E g$ and $f \leq_{\neg E} g$, then $f \leq g$. If in addition, $f \prec_E g$, then $f \prec g$.

Proof: By definition of $f \leq_E g$, we know that $f_E^g \leq g$. Similarly, $f_{\neg E}^g \leq g$. It suffices to show that $f \leq f_E^g$ because, by P1, the relation \leq is transitive (and hence $f \leq f_E^g$ and $f_E^g \leq g$ together entail that $f \leq g$).

Notice that

- $f^g_{\neg B} =_B g$ and $f =_B f^g_B$,
- $f^g_{\neg B} =_{\neg B} f$ and $g =_{\neg B} f^g_B$, and
- $f^g_{\neg B} \preceq g$

So by P2, it follows that $f \preceq f_B^g$ as desired.

For the second part of the theorem, note that $f \leq f_B^g$ and $f_B^g \prec g$ immediately entail that $f \prec g$.

5 Qualitative Personal Probability

Given events E and F, write $E \leq F$ if and only if for all consequences $c, d \in C$ and all actions $f, g \in A$:

$$c \lhd d \Rightarrow \widetilde{d}_E^{\widetilde{c}} \preceq \widetilde{d}_F^{\widetilde{c}}$$

In this case, say E is **not more probable** than F. Write E < F if and only if $E \leq F$ and $F \not\leq E$.

A binary relation \sqsubset between events is called a **qualitative probability** if and only if for all events E, F, and G, the following three conditions hold.

- \sqsubseteq is a neg ple ordering.
- If $E \cap G = F \cap G = \emptyset$, then

$$E \sqsubseteq F \Leftrightarrow E \cup G \sqsubseteq F \cup G.$$

• $\emptyset \sqsubseteq E$ and $E \sqsubset S$.

Theorem 2 P1-P5 together entail that the relation \leq is a qualitative probability.

Proof:

1. To show that \leq is a neg ple ordering, we must show that it is reflexive, transitive, and total. By P1, \leq is reflexive, transitive, and total.

Reflexivity: By definition, $E \leq E$ if and only if $\widetilde{d}_E^c \preceq \widetilde{d}_E^c$ for all consequences $c, d \in C$ such that $c \triangleleft d$. The latter is true because \preceq is reflexive by P1.

Transitivity: Suppose $E \leq F$ and $F \leq G$. We want to show that $E \leq G$. So let $c, d \in C$ be consequences such that $c \triangleleft d$. As $E \leq F$, it follows that $\widetilde{d}_E^c \preceq \widetilde{d}_F^c$, and as $F \leq G$, it follows that $\widetilde{d}_F^c \preceq \widetilde{d}_G^c$. By the transitivity of \preceq , it follows that

$$\widetilde{d}_E^{\widetilde{c}} \preceq \widetilde{d}_G^{\widetilde{c}}$$

and so $E \leq G$ as desired.

Totality: Finally, we want to show that \leq is total. Let E and F be given. By P5, there are two consequences c, d such that $c \prec d$. By the totality of \leq on actions, it follows that either:

$$\widetilde{d}_E^c \preceq \widetilde{d}_F^c$$
 or $\widetilde{d}_F^c \preceq \widetilde{d}_E^c$

Without loss of generality, assume that $\widetilde{d}_E^c \preceq \widetilde{d}_F^c$. Now let $x, y \in C$ be any constants such that $x \triangleleft y$. As (i) $c \triangleleft d$, (ii) $\widetilde{d}_E^c \preceq \widetilde{d}_F^c$, and (iii) $x \triangleleft y$, it follows from P4 that $\widetilde{x}_E^{\widetilde{y}} \preceq \widetilde{x}_F^{\widetilde{y}}$. As x and y were chosen arbitrarily, it follows from the definition of \leq that $E \leq F$.

2. Next, we must show that if $E \cap G = F \cap G = \emptyset$, then

$$E \le F \Leftrightarrow E \cup G \le F \cup G.$$

In the left to right direction, assume that $E \leq F$ and that $E \cap G = F \cap G = \emptyset$. To do so, we'll use P2, i.e., the Sure-Thing principle.

First, note that (i) $\widetilde{d}_{E\cup G}^{\widetilde{c}}$ agrees with $\widetilde{d}_{F}^{\widetilde{c}}$ over $\neg(E \cup F)$. Why? If $s \notin E \cup F$, then there are two cases to consider. If $s \notin G$, then s is not an element of either $E \cup G$ or $F \cup G$ and hence,

$$d^{\tilde{c}}_{E\cup G}(s) = c \text{ and } d^{\tilde{c}}_{F\cup G}(s) = c.$$

On the other hand, if $s \in G$, then

$$\widetilde{d}^{\widetilde{c}}_{E\cup G}(s)=d$$
 and $\widetilde{d}^{\widetilde{c}}_{F\cup G}(s)=d$

In either case, $\widetilde{d}_{E\cup G}^{\widetilde{c}}(s) = \widetilde{d}_{F\cup G}^{\widetilde{c}}(s)$ as desired.

Next, note that (ii) $\widetilde{d}_E^{\widetilde{c}}$ agrees with $\widetilde{d}_F^{\widetilde{c}}$ over $\neg(E \cup F)$, as both are identically c on $\neg(E \cup F)$.

Third, note that, (iii) $\widetilde{d}_{E\cup G}^{\widetilde{c}}$ agrees with $\widetilde{d}_{E}^{\widetilde{c}}$ over $E \cup F$. Why? If $s \in E \cup F$, either $s \in E$ or $s \in F \setminus E$. In the former case, both $\widetilde{d}_{E\cup G}^{\widetilde{c}}(s) = d$ and $\widetilde{d}_{E}^{\widetilde{c}} = d$. In the latter case, note that $F \cap G = \emptyset$. Hence, it follows that if $s \in F \setminus E$, then s is neither an element of E nor G. From this it follows that $\widetilde{d}_{E\cup G}^{\widetilde{c}}(s) = c$ and $\widetilde{d}_{E}^{\widetilde{c}} = c$.

By analogous reasoning, it follows that (iv) $\widetilde{d}_{F\cup G}^c$ agrees with \widetilde{d}_F^c over $E \cup F$.

Finally, note that because $E \leq F$, we have that $\widetilde{d_E^c} \preceq \widetilde{d_F^c}$ (by definition of \leq). Putting (i)-(v) together, we have shown that

d̃_E^c =_{E∪F} d̃_{E∪G}^c and d̃_F^c =_{E∪F} d̃_{F∪G}^c,
d̃_{E∪G}^c =_{¬(E∪F)} d̃_{F∪G}^c and d̃_E^c =_{¬(E∪F)} d̃_F^c, and
d̃_E^c ≺ d̃_E^c

By P2, we obtain that $\widetilde{d}_{E\cup G}^{\widetilde{c}} \preceq \widetilde{d}_{F\cup G}^{\widetilde{c}}$. By definition of \leq , this entails that $E \cup G \leq F \cup G$ as desired.

In the reverse direction, suppose that $E \cup G \leq F \cup G$ and $E \cap G = F \cap G = \emptyset$. We want to show that $E \leq F$. This follows from the exact same reasoning as in the left to right direction, except one uses the fact that $E \cup G \leq F \cup G$ to instantiate the third premise of P2.

3. Next, we must show that $\emptyset \leq E$ and $\emptyset < S$ for all events E. In the former case, this amounts to showing that if $c \lhd d$, then $\widetilde{d}^{c}_{\emptyset} \preceq \widetilde{d}^{c}_{E}$. Now, note that $\widetilde{d}^{c}_{\emptyset} = \widetilde{c}$. So we must show that $\widetilde{c} \preceq \widetilde{d}^{c}_{E}$, or in other words, that $\widetilde{c} \preceq_{E} \widetilde{d}$. If E is null, then $\widetilde{c} \preceq_{E} \widetilde{d}$ by definition of null. If E is not null, then because $\widetilde{c} \preceq \widetilde{d}$, by P3 it follows that $\widetilde{c} \preceq_{E} \widetilde{d}$, as desired.

Finally, we must show that $\emptyset < S$. So we must show that $S \not\leq \emptyset$. Suppose for the sake of contradiction that $S \leq \emptyset$. By P5, there are consequences c, d such that $c \lhd d$. As $S \leq \emptyset$, it follows that $\widetilde{d}_S^c \preceq \widetilde{d}_{\emptyset}^c$. Now $\widetilde{d}_S^c = \widetilde{d}$ and $\widetilde{d}_{\emptyset}^c = \widetilde{c}$. So it follows that $\widetilde{d} \preceq \widetilde{c}$. By definition of preference among consequences, it follows that $d \leq c$, contradicting the assumption that $c \leq d$.

References

L. J. Savage. The foundation of statistics. Dover publications, 1972.