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Review

Review: Three objective Interpretations of Probability

Frequentist

Propensity

Logical - Probability is the measure of the degree to which a
set of sentences support a conclusion.

Keynes’ theory belongs to this last category.
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Today

Today: Carnap’s Logical Theory - Another objective interpretation
of probability.



Today

Disclaimer: Today, I will present a caricature of the earlier Carnap.

Carnap’s views on probability changed during his life. In
particular:

Although I discuss Carnap’s views on logical probability (or
what he sometimes calls “strength of evidence”), Carnap
argued that logical probability was closely related to
interpretations of probabilities involving (i) betting odds and
(ii) frequencies. See pp. 162-175 of Carnap [1962]
In his later years, Carnap begins to think his definition of
logical probability was not as precise, and he more-or-less
adopts the subjectivist interpretation of probability.

For more on Carnap’s theory of probability in a historical
setting, see Zabell [2011].

For defenses of Carnap’s view from criticisms in [Hájek, 2003],
see Maher [2010]
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Predicate Logic

Early 1900s:
Frege and Russell introduced a collection
of formal, logical languages capable of
expressing all of mathematics and much
of natural language.



Basic Predicate Logic

Here’s the basic idea:

Let P(c) mean that the object denoted by “c” has property
denoted by “P”.

Example: If P means “red” and c refers to my shirt, then
P(c) means that “My shirt is red.”

In analogy with natural language, the letter P is called a
predicate, which is why the collection of formal languages with
introduced by Frege and Russell are called predicate logic.



Basic Predicate Logic

Predicate vs. Propositional Logic

In propositional logic, different sentences in natural language
are represented by completely different variables:

“My shirt is red” might be represented by the variable p.
“The apple is red” might be represented by q.

In contrast, in predicate logic, different sentences in natural
language might be represented in similar ways.

“My shirt is red” might be represented by P(c).
“The apple is red” might be represented by P(d).
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Probability and Logic

Like Keynes:

Carnap assigns probabilities to sentences in a formal language.

Carnap is interested in conditional probability c(h, e) of some
“hypothesis” h on “evidence” e.

Carnap calls c(h, e) a confirmation function.
Both h and e are sentences in the formal language.

Unlike Keynes:
Carnap considers sentences in predicate logic.

Recall, all of Keynes’ axioms concern a/h, a/h, (a+ b)/h, etc.
The sentences he considers are expressible in propositional
logic.

Predicate logic allows Carnap to formulate particular symmetry
principles that cannot be expressed in sentential logic.
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Admissibility

Last week, we ended with a central question for Keynes’ theory of
probability.

Motivation:

Keynes stipulates that a/h must obey particular mathematical
axioms.

These axioms entail Kolmogorov’s axioms if a/h is always a
real number.

a/h is intended to represent the “strength of evidence” for a
provided by h, or the degree to which h supports a.



Admissibility

Question: Why should the informal concept of “strength of
evidence” obey Keynes’ mathematical axioms for a/h?



Admissibility

To put it a different way:

Keynes simply stipulates that strength of evidence satisfies
probability axioms.

But one could do the same for any interpretation of
probability:

One could say a/h represents the propensity for a to occur
given h has happened. So propensities are probabilities.
One could assert that degree a/h represents one’s degree of
belief in a given one assumes h. So degrees of belief are
probabilities.

Keynes would not accept these as good arguments. So why
does a/h represent strength of evidence?



Confirmation is a Conditional Probability

Carnap provides two types of arguments that confirmation c(h, e),
or “strength of evidence”, satisfies the probability axioms:

Indirect: In statistical settings, confirmation is equal to
relative frequencies. Since said frequencies obey the
probability axioms, so does confirmation.

E.g. e might be the evidence that 99.9% of ravens are black,
and h is the hypothesis that most ravens are black.

Direct: Logical facts about entailment and the syntactic
structure of sentences entail that confirmation must satisfy
probability axioms.
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Carnap’s Argument

Let’s look at Carnap’s direct arguments.

First, why is probability bounded?

That is, why are there maximal degrees to which a hypothesis
can be confirmed or disconfirmed by evidence?

Why is probability not like length, which is not bounded from
above?



Logical Probability is Normalized

Carnap argues that strength of evidence is bounded as follows:

Since h ∨ ¬h is . . . true, no sentence can be more certain on

any evidence. Therefore, the strength of h ∨ ¬h on e must

have the highest possible value . . .

Carnap [1962], Section 41A. pp. 165.



Logical Probability is Normalized

An analogous argument, that no sentence can be less certain
than a contradiction, indicates that probabilities are bounded
from below.

If one assumes strength of evidence is represented by real
numbers, then one can arbitrarily stipulate that the lower and
upper bounds on strength of evidence are 0 and 1 respectively.
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Are evidential strengths probabilities?

So that leaves two of Kolmogorov’s axioms:

1 Probability is numerical.

2 Probability is finitely additive.



Are evidential strengths probabilities?

Carnap provides a rather unconvincing argument for the first and
simply stipulates the second.



Is Logical Probability Numerical?

A physicist would say, for instance, that he made six
experiments to test a certain law and found it confirmed in all
six cases. A physician would report that he tried out a new
drug in twenty cases of a certain disease and found it
successful in twelve cases, not successful in five, while in three
cases the result was not clear either way . . .

Thus, let us assume, as most scientists do implicitly, that the

concept of a confirming case can be defined . . . Then we can

determine the number of confirming cases in the observational

report e. If the confirming cases are of different kinds, we can

determine the number of confirming cases of each kind . . .

Carnap [1962], Section 42. pp. 224-225.



Logical Probability Numerical?

Carnap concludes:

We have seen that . . . it is rather plausible that [logical factors

upon which confirmation depends] can be evaluated

numerically.

Carnap [1962], Section 42. pp. 225-226.



Is Logical Probability Numerical?

Carnap recognizes this argument is not definitive, and in the next
section, he discusses five reasons why quantifying a“confirming
case” is difficult.



Additivity of Evidence

What about the additivity assumption?



Axioms for Confirmation

Like Keynes, Carnap axiomatizes properties of any acceptable
“confirmation” function.

One axiom is finite additivity.



Axioms for Confirmation

Carnap’s axioms for any acceptable confirmation function are:

1 If h and h′ are logically equivalent, then c(h, e) = c(h′, e).

2 If e and e ′ are logically equivalent, then c(h, e) = c(h, e ′).

3 Multiplication Principle: c(h ∧ j , e) = c(j , e ∧ h) · c(h, e)

4 Special Addition Principle: If e ∧ h ∧ j is a contradiction, then

c(h ∨ j , e) = c(h, e) + c(j , e)

The first two are plausibly restrictions for any “logical”
confirmation function. What about the latter two?



Axioms for Confirmation

[The last two assumptions] are generally accepted in all

theories of probability1 (and incidentally, their analogues occur

in all theories of probability2) . . . [They] are in accordance with

what reasonable people think in terms of probability, and in

particular, what they are willing to bet on particular

assumptions.

[Carnap, 1962], Section 53, pp. 285.



A Different Axiomatization of Logical
Probability

Maher [2010] provides a different axiomatization of logical
probability that entails the additivity axiom:

1 p(A|B) ≥ 0

2 p(A|B) = 1

3 p(A|B) + p(¬A|B) = 1

4 The multiplication axiom

5 The axiom that confirmation is invariant under substitution of
logically equivalent sentences.



Is Strength of Evidence a Probability?

Should we criticize Carnap for merely stipulating that
evidential strengths (i.e. confirmation or inductive probability)
is numerical and additive?

Of course, ideally, it would be nice to given a direct argument
that “strength of evidence” satisfies the probability axioms
(and Carnap would do so if he thought it were possible).



Explication

Carnap’s goal is to explicate informal concepts of probability:

One goal of explication is to stay close to an informal concept

But another goal is to develop a precise, useful concept. So
the explication often is more precise than the informal one.

Compare: The mathematical definitions of continuity is quite a
bit more precise than the informal concept.
Compare: Space, considered as a manifold in physics, is quite
a bit more precise than the informal concept of space.

One way of making a concept more precise is to employ
mathematics, but in fact, Carnap offers both a qualitative and
quantitative explication of confirmation.
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Objectivity

Even if we accept Carnap’s axioms of confirmation for the
sake of explication, they do not determine a unique
confirmation function.

In fact, the axioms don’t narrow the space of probability
measures at all.

So in what sense is logical probability objective?



Objectivity

Carnap argues for an objective logical probability in two steps:

Step 1: Reduce confirmation to unconditional probability.

Step 2: Argue that unconditional probability must obey symmetry
principles.



Reduction

Step 1: Reduction

Let > denote any tautology.

Define P(h) = c(h,>).
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Definition of P
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P(h)

Rearranging
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Reduction

So confirmation is just the ratio definition of conditional
probability!



Symmetry

Step 2: Use symmetry principles to define P.



State Descriptions

Suppose there are only finitely many distinct objects are under
investigation c1, c2, . . . cn.

That is, we know (∀x)(x = c1 ∨ x = c2 ∨ . . . cn)
And c1 6= c2 ∧ c1 6= c3 ∧ . . . cn−1 6= cn.

Similarly, there are only finitely many predicates
Q1,Q2, . . .Qm that can hold of these objects.

Note: Some predicates may be relations.
E.g. Q1(c1, c2) may mean c1 is taller than c2.
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State Descriptions

By these assumptions, all sentences in the language are
equivalent to disjunctions of state descriptions, which tell us,
for any predicate Qi , which sequences of objects it describes.

More on state descriptions in a second.

So if one defines a probability P on all state descriptions, the
additivity axiom determines the probabiity of disjunctions and
hence, of all sentences in the language.

Since c(·, ·) is defined in terms of P, this determines a
confirmation function.
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State Descriptions

Here’s a concrete example.

Suppose there are two distinct objects are under investigation
c1 and c2.

Suppose there are two predicates Q1 and Q2, which are both
unary.

Then there are sixteen state descriptions, which you can think
of as descriptions of possible worlds:

Q1(c1) ∧ Q1(c2) ∧ Q2(c1) ∧ Q2(c2)
¬Q1(c1) ∧ Q1(c2) ∧ Q2(c1) ∧ Q2(c2)
Q1(c1) ∧ ¬Q1(c2) ∧ Q2(c1) ∧ Q2(c2)
...
¬Q1(c1) ∧ ¬Q1(c2) ∧ ¬Q2(c1) ∧ ¬Q2(c2)
Here, each state description is just a binary string. There are
sixteen of length four.
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Symmetry and State Descriptions

Carnap’s Intuition: If we don’t know any relevant facts about
c1 and c2 that distinguish the objects other than their names,
then we shouldn’t draw any different inferences about them.

Example: Suppose I tell you that Jim and John are men
between the ages of 25-40. Would you estimate their
probabilities of heart disease differently?
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Symmetry and State Descriptions

Suppose X has found by observation that individuals a and b

are P; the individuals may be physical objects and P may be

an observable property. Let e be the sentence expressing these

results: “P(a) ∧ P(b).” X considers two hypotheses h and h′;

h is the prediction that another object is likewise P (‘P(c)’)

and h′ says the same for still another object d (‘P(d)’) . . . We

should find it entirely implausible if he were to ascribe different

values [to c(h, e) and c(h′, e)]. The reason is that the logical

relation between e and h is just the same as that between e

and h′.

Carnap [1962], Section 90. pp. 484.



State Descriptions

Formally: Isomorphic state descriptions should have identical
probabilities under P.

Two Isomorphic State Descriptions: Just switch c1 and c2’s
names.

¬Q1(c1) ∧ Q1(c2) ∧ Q2(c1) ∧ Q2(c2)
Q1(c1) ∧ ¬Q1(c2) ∧ Q2(c1) ∧ Q2(c2)

Two Non-Isomorphic State Descriptions:

¬Q1(c1) ∧ Q1(c2) ∧ ¬Q2(c1) ∧ Q2(c2)
Q1(c1) ∧ ¬Q1(c2) ∧ Q2(c1) ∧ Q2(c2)
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Still not a snowflake . . .

This still isn’t enough to determine a unique probability
distribution P, but it’s a significant constraint.

Carnap’s last stipulation requirement for P is much like the
principle of indifference.



Structure Descriptions

Define a structure description to be a set of isomorphic state
descriptions.

Example: A structure description if there are two objects c1
and c2, and two unary predicates Q1,Q2, then one structure
description consists of two sentences:

¬Q1(c1) ∧ Q1(c2) ∧ Q2(c1) ∧ Q2(c2)
Q1(c1) ∧ ¬Q1(c2) ∧ Q2(c1) ∧ Q2(c2)

Carnap claims that all structure descriptions ought to have
the same probability, even if different structure descriptions
contain different numbers of state descriptions.
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Structure and Symmetry

Carnap originally argued that all structure descriptions ought
to have the same probability, even if different structure
descriptions contain different numbers of state descriptions.

He later dropped this claim, as it’s not clear why this a
feature of logical probability.
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Carnap originally argued that all structure descriptions ought
to have the same probability, even if different structure
descriptions contain different numbers of state descriptions.

He later dropped this claim, as it’s not clear why this a
feature of logical probability.



Discussion

Discussion: How does Carnap’s view fare with respect to the
Salmon’s criteria?
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