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Differences among Frequency Theories

Three Distinctions Among Finite Theories:

Probability is a measured proportion vs. Probability is a
proportion in a wider population, some units of which have
been observed.

Probability is an actual proportion vs. Probability is a
hypothetical proportion

Sample space (and algebra) generated by a sequence vs.
Sample space is an arbitrary unordered set.
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Infinite Frequencies

For reasons that may or may not have been well-motivated, many
gave up on finite frequency theories, and turned to infinite ones.



Infinite Frequencies

Infinite frequentists cannot make the three distinctions we
previously employed. Why?



Infinite Frequencies

1 In the cases in which human beings cannot perform infinitely
many measurements (all cases?), an infinite frequency theory
must define probability to be a proportion in some in a wider
population, some units of which have not been observed.



Infinite Frequencies

2 It’s possible the universe contains finitely many objects (in
total and/or of the type in which one is interested), in which
case probability is a hypothetical (rather than actual)
proportion.



Formalizing Infinite Frequentism

If probability is a hypothetical proportion involving objects that we
cannot measure, then questions about ascertainability arise: how
can we ever discover or even approximate the probability of some
event?

This is ironic because one of the chief virtues of finite frequntism
was supposed to be that probabilities are easily learned via
experiments.



Infinite Frequencies

3 Finally, it’s not clear how to define proportions among
unordered sets when infinitely many objects are under
investigation). The symbol ∞

∞ does not denote a real number.

I.e., The only way of making a proportion precise is by taking
the sample space to be generated by an ordered sequence.



Formalizing Infinite Frequentism

How can we make infinite frequentism precise?



Formalizing Infinite Frequentism

Rough idea: Take an infinite sequence of coin flips
〈T ,H,T ,T ,T ,H,T ,H,H,T , . . .〉

Let E be any subset of the range of the sequence, e.g.,
“Heads” or {H}.
After every finite number of flips, there is some proportion
that have been heads. E.g., Above:

After 1 flip: 0
After 2 flips: 1

2 ,
After 3 flips 1

3 , Etc.



Formalizing Infinite Frequentism

In some sequences, these proportions approach a limiting
value. Then one can define the probability of the set E to be
this limiting proportion.

There are one or two technical snags (see Extras), but this
definition turns out to satisfy Kolmogorov’s axioms.
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Infinite Frequencies

The infinite sequences are intended to represent the outcome
of repeating an experiment over and over again.

In order to attribute an event some unique probability, the
relative frequency in the sequence must approach some fixed
value.
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Infinite Frequencies

Moreover, if a sequence exhibits patterns (e.g.
〈T ,H,T ,H,T ,H . . .〉) that are repeated indefinitely, then it
seems wrong to interpret the sequence as an outcome of the
same process.

Instead, one might assert the probability of an outcome
depends upon when it occurs.

So philosophers, mathematicians, statisticians, and computer
scientists became interested in characterizing random
sequences, i.e., ones in which the probability of an event is
fixed and constant across time.
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Infinite Frequencies

What makes a sequence random?

Let’s restrict our attention to binary sequences.



Von Mises

Von Mises’ definition of randomness is vague, but the informal idea
is clear:

If a sequence is random, then one should not be able to place bets
on values of the sequence in a way that guarantees winning.



Von Mises

Here’s an example to motivate the informal idea:

Suppose the sequence is alternating heads and tails:
〈H,T ,H,T ,H,T . . .〉

Then one could detect the pattern and bet “Heads” on odd
throws and “Tails” on even ones.

Doing so would guarantee winning.
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Von Mises

As soon as on starts asking for ways of making that precise,
however, things get hairy . . .



Von Mises

What counts as guaranteed winning?

Suppose the coin lands heads 1
3 of the time in the limit.

Recall, we are only considering randomness for sequences in
which the event in question has a limiting frequency.

If you use the observed frequency to estimate the limiting
frequency, then you’ll eventually know the coin is biased
towards tails.

On each throw, bet $1 on tails.
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Von Mises

What counts as guaranteed winning?

You win 2
3 of the time, and so you win $2 for every dollar that

you lose.

So if you start with a big enough bank account to support
your bets, then as the game goes on, you win an arbitrarily
large amount of money for sure.

This argument only fails for events with probability (exactly)
one half; there, your expected earnings are zero.
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your bets, then as the game goes on, you win an arbitrarily
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This argument only fails for events with probability (exactly)
one half; there, your expected earnings are zero.



Von Mises

Revision: There is no betting rule that is guaranteed to win
particular bets.



Von Mises

Informal idea: One can guarantee winning on particular bets if
one can identify subsequences that are exclusively ones or
exclusively zeroes.



Von Mises

So Von Mises defines what he calls a “Kollektiv”, which is a
sequence in which one cannot pick subsequences that are
exclusively ones or zeros without already knowing the values
of the sequence.



Von Mises

One (very bad) attempt to formalize this idea is as follows:

Definition: A sequence is random if every infinite
subsequence has the same (limiting) proportion of zeroes as
the whole sequence.

Problem:
Suppose the limiting proportion of zeroes is between 0 and 1.
Then the sequence has infinitely many zeroes and infinitely
many ones.
So there are some infinite subsequences with only zeroes, and
some with only ones.
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Von Mises

This objection is really unfair to Von Mises, but it was a standard
reason for dismissing discussions of randomness.



Randomness

Today:

We’ll discuss several mathematically precise definitions of
randomness that have become accepted since Von Mises work.

We’ll also discuss the argument that they capture Von Mises
intuitive ideas about randomness.

What we should discuss but won’t:

“Failed” definitions of randomness (e.g., Church’s) and why
they were dismissed (e.g., Ville’s objection)

Why do we need a theory of random sequences anyway?



Hilbert’s Problems

Hilbert’s Problems: In 1900,
David Hilbert outlined 23 open
problems in mathematics and
physics at his address at the
International Congress of Mathe-
maticians in Paris.



Hilbert’s Problems

HIlbert’s 10th Problem: Find an
“algorithm” that generates in-
teger solutions to Diophantine
Equations, if any exist. For ex-
ample:

x2 + y2 = z2

ax + by = c

x2 − ny2 = 1

x3 + y3 = z3

are all Diophantine equations.



Entscheidungsproblem

Entscheidungsproblem: Find
an “algorithm” that determines
whether any given formula of
first- order logic is valid. For
example:

(∀x)(P(x) ∨ ¬P(x))

vs.

(∃x)(P(x) ∧ ¬Q(x))



Algorithms and Mechanical Computability

The concept of an “algorithm” was not made precise in either
of Hilbert’s challenges.

Philosophical Problem: Find a precise notion of “algorithm”
that characterizes what we mean by a “mechanical”
step-by-step process.

Mathematical Problem: Show there are (or are not)
algorithms, in the precisely defined sense, meeting Hilbert’s
challenges.
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Algorithms and Mechanical Computability

In the early 20th century, logicians developed several
definitions of “mechanical” or “effectively” or
“algorithmically” computable.

They also gave several circular arguments that certain formal
definitions capture the intuitive concept of an “algorithm”
[Sieg, 2009]

Turing [1936] gives a rather ingenious argument . . .



Algorithms and Mechanical Computability

In the early 20th century, logicians developed several
definitions of “mechanical” or “effectively” or
“algorithmically” computable.

They also gave several circular arguments that certain formal
definitions capture the intuitive concept of an “algorithm”
[Sieg, 2009]

Turing [1936] gives a rather ingenious argument . . .



Turing’s Argument

Following [Sieg, 2008]’s recon-
struction, Turing argues that
humanly-executable algorithms on
symbols satisfy two types of con-
straints.



Turing’s Argument

Boundedness:

Capable of immediately
differentiating only finitely
many symbols

Capable of immediately
using only finite amounts of
memory



Turing’s Argument

Locality:

Only elements of observed
symbols can be changed

Which symbols are observed
can be changed, but each of
the new observed symbols
must be within a bounded
distance L of a previously
observed square.



Turing Machines

Turing then introduces a model of a computing device, now called
a Turing Machine.



Turing Machines

Turing gives an informal argument that his machines satisfy
the boundedness and locality conditions, and

He argues that all devices satisfying the conditions are Turing
machines.



Turing Machines

Church Turing Thesis: The set of “algorithmically” computable
functions are equal to those that can be executed on Turing
machines.



Turing’s Argument

Sieg [1994] formalizes the boundedness and locality axioms and
proves the set of functions satisfying them are precisely the Turing
machine computable functions.



Back to the topic

What does all of this have to do with probability and randomness?



Two Aspects of Randomness

Here are two intuitive features of “random” sequences:

They exhibit no pattern.

They cannot be predicted.



Patterns and Complexity

How can we make the notion of a “pattern” precise?



Patterns and Complexity

Consider the following two sequences:

Sequence 1: 001001001001001001001001001001

Sequence 2: 110010100011111100110010011100

The first one can be described succinctly: its 001 repeated ten
times.

Describing the second is harder . . .
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Patterns and Complexity

How can we capture the notion of a simple “description” of a
sequence of symbols?

Key Idea: Identify a description with the length of a Turing
machine program, as Turing machines represent the symbolic
manipulations that agents with limited computational abilities
(like us) can perform.
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Program 1: Print 001 repeated ten times.

Program 2: Print 110010100011111100110010011100.

The second program is as long as the string itself!
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Patterns and Complexity

Strings with patterns can be compressed: they can be
“encoded” in a short computer program that prints them.

Conversely, strings that can be compressed must exhibit some
sort of pattern.

Ergo, random strings are incompressible ones, i.e., ones for
which there is no short program.
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Patterns and Complexity

A little more formally . . .

The Kolmogorov Complexity K (s) of a string s is the length
of the shortest Turing machine program that prints s.

I’m omitting one technical part of this definition that won’t
concern us now.

Let n be some whole number. A string s is called
n-incompressible if K (s) ≥ l(s)− n, where l(s) is the length
of s.
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Patterns and Complexity

Kolmogorov complexity is defined for strings that are finitely long.
How can it be extended to the infinite sequences?



Patterns and Complexity

Definition 1: An infinite sequence s is random if there is
some constant n such that all of the initial segments of s are
n-incompressible.



Patterns and Complexity

What about formalizing the notion of prediction?



Patterns and Complexity

The exact mathematical ideas are rather hard. Here’s the brief
overview. For details, see Durrett [2010]

In the late 1930s, the French mathematicians Lévy and Ville
introduced what are called martingales.

For our purposes, think of a martingale is a particular way to
place bets - say on the flips of a coin.

A martingale has the property of being fair:

If you place your bets according to a martingale, then your
expected earnings at stage n + 1 are equal to your earnings at
stage n. So if you start with no earnings, then your expected
earnings on any stage are exactly 0.
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Patterns and Complexity

Some martingales are not Turing computable.

Since we are interested in what can be predicted by
computationally bounded agents like ourselves, we should
confine ourselves to computable martingales.

The definition of a computable martingale is a bit different
but satisfies a similar “fairness” condition.

Definition 2: A sequence is random if there is no computable
martingale that earns money while betting on it.
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Patterns and Complexity

Theorem (Schnorr [1971])

The two definitions of randomness are equivalent.

In fact, both are equivalent to a third notion called Martin-Löf
randomness, which is supposed to formalize the idea that
sequences exhibiting patterns for infinitely long are rare.



Randomness

Morals:

There are several precise mathematical notions of randomness.

Several definitions are equivalent, and each captures some
intuitive features about our judgments of randomness.

Finally, some of the most useful theorems from probability
theory (laws of large numbers, law of iterated logarithm, Borel
Cantelli Lemma, Hoefding’s inequality etc.) hold for such
random sequences.

Note: I’m not sure whether the central limit theorem has been
proven for such random sequences.
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Randomness

But what’s the philosophical upshot for philosophy of probability?

To be honest, I’m not completely sure.



Random Sequences and Criteria for Adequacy

How do they fair with respect to Salmon’s criteria for adequacy?

Admissibility: As Suppes argues, the infinite frequency
interpretation does satisfy Kolmogorov’s axioms, plus
countable additivity.

Applicability: As I said, some of the most useful theorems
from probability theory hold for such random sequences. But
one might still have questions:

Do data observed in scientific practice have high Kolmogorov
complexity? If not, then are such data readily dismissed as not
random?
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Random Sequences and Criteria for Adequacy

Ascertainability: One might think that because probabilities are
defined as relative frequencies in the infinite limit, that there’s no
finite time by which we can be sure of an event’s probability.

This is a standard philosophical worry [Hájek, 2009], but I’m not
sure it’s true.



Random Sequences and Criteria for Adequacy

Ascertainability:

In certain cases in which we know a lot about the process,
results like Hoeffding’s inequality can make it “probable” that
our estimates of probability are close.

Formally, the measure of random sequences deviating from the
limiting proportion decreases exponentially as a function of
sample size.

Whether such measure ought to (can be?) interpreted as a
probability itself is open for grabs.

If we don’t know a lot about the process, then our estimates
may be really far off. But I am not sure this is a consequence
of the infinite frequency interpretation of probability theory; it
may just be an artifact of the mathematics of probability
theory.

If you want a final paper topic that mixes technical questions
with philosophical ones, there’s plenty to study in this area.
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theory.

If you want a final paper topic that mixes technical questions
with philosophical ones, there’s plenty to study in this area.
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Infinite Frequencies

Let s be an finite sequence and E be any subset of the range of s.

Technical snag: The set of all E with limiting frequencies
(i.e., probabilities) may not form an algebra because it is not
closed under union Suppes [2002].

But if the number of sequence elements in a set E has a
limiting value, then there is some algebra (namely,
{∅,E ,E c ,Ω}) over which one can define a probability
measure. It’s not clear how useful such a definition is.
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