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Venn’s Statement

Hájek summarizes finite frequency theories of probability by citing
Venn:

. . . probability is nothing but that proportion

Venn [1866].



Differences among Frequency Theories

That may seem like a precise definition, but you’ll notice that
discussions of “the” finite frequency theory often equivocate
between several interpretations:

Probability is a measured proportion vs. Probability is a
proportion in a wider population, some units of which have
been observed.

Probability is an actual proportion vs. Probability is a
hypothetical proportion
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Differences among Frequency Theories

There are also a few subtle technical details that are often
overlooked in discussing “the” finite frequency theory.



Venn’s Theory Mathematized?

Suppose “probability is nothing but [a] proportion.” The obvious
way of turning Venn’s definition into a mathematical theory of
probability is as follows.



Venn’s Theory Mathematized?

Let the sample space Ω be some sample set of individuals of
interest

E.g., All men between the ages of 20 and 65

Let the set of events A be the power set P(Ω)

So an event is identified with the set of individuals having
some property

E.g. The event “getting lung cancer” is the set of men
between the ages of 20 and 65 who have lung cancer.

The probability of an event A, then is just the proportion:

P(A) =
|A|
|Ω|
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Suppes’ Formalization

For Suppes [2002], the finite frequency theory is formalized as
follows:

Let s be some finite sequence. For example:

Coin Flips: s = 〈H,T ,H,T ,T ,T ,H〉
Roll a die: s = 〈3, 3, 2, 1, 5, 3, 4, 6〉
Hair Color: s = 〈Black, Brown, Black, Blonde, Blonde, Red〉

The range of a sequence is just its set of values:

Coin Flips: ran(s) = {H,T}
Roll a die: ran(s) = {1, 2, 3, 4, 5, 6}.
Hair Color: ran(s) = {Black, Brown, Blonde, Red}



Suppes’ Formalization

Let the sample space Ω be the range of a fixed sequence

Let the set of events A be the power set of Ω.

Define the probability of a set A to be the number of times it
occurs in the sequence s.

For example, if s = 〈3, 3, 2, 1, 5, 3, 4, 6〉, then

P({3}) =
3

7
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Suppes’ Formalization

Moral: In Suppes [2002] formalization, the sample space Ω
and the algebra are generated by an ordered object.

Note that, for finite sequences, reordering a sequence does not
change an event’s probability. For instance:

P({3}) = 3
7 if s = 〈3, 3, 2, 1, 5, 3, 4, 6〉,

P({3}) = 3
7 if t = 〈1, 2, 3, 3, 3, 4, 5, 6〉

And the two sequences can be obtained from each other by
reordering the elements.
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Differences among Frequency Theories

Three Distinctions:

Probability is a measured proportion vs. Probability is a
proportion in a wider population, some units of which have
been observed.

Probability is an actual proportion vs. Probability is a
hypothetical proportion

Algebra generated by a sequence vs. Sample space is an
arbitrary unordered set.



Differences among Frequency Theories

As we discuss Hájek [1996] today, we should be careful to
distinguish which interpretations of probability are undermined by
each objection.



Criteria for an Interpretation of Probability

Salmon [1967] argues that an interpretation of probability ought to
satisfy the following three requirements:

Admissibility: An interpretation ought to satisfy probability
axioms like Kolmogorov’s

Ascertainability: An interpretation ought to explain how
probabilities can be measured

Applicability: An interpretation ought to explain why
probability is so use useful (especially in the sciences).



Properties of Probability

Hájek [1996] introduces a new criterion for an interpretation of
probability:

‘Probability’, after all, is not just a technical term that
one is free to define as one pleases. Rather, it is a
concept whose analysis is answerable to our intuitions, a
concept that has various associated platitudes (for
example: “if X has probability greater than 0, then X can
happen”). Thus, it is unlike terms like ’complete metric
space’ or ’Granger causation’ or ’material conditional’, for
which there are stipulative definitions.



Properties of Probability

In fact, Hájek [1996] argues that Salmon’s three criteria are not
sufficient for an adequate “philosophical” interpretation of
probability.



Properties of Probability

[M]any quantities that have nothing to do with our intuitive notion of probability conform to

Kolmogorov’s axioms, and so in some sense provide an interpretation of them - think of mass, or

length, or volume, which are clearly non-negative and additive, and which can be suitably

normalized. . . . [T]his also shows that it is too glib to say that a satisfactory understanding of

probability is provided as long as we find a concept of importance to science that conforms to the

axioms-for that does not narrow down the field enough. In any case, the more strictly philosophical

project of analysing our commonsensical concept would remain, much as the project of analysing

our commonsensical concept of causation, say, would remain even if we had already done the job

for the concept as it appears in science. [my emphasis]

Conforms to the axioms = Admissibility
Importance to Science = Applicability
If we assume important scientific quantities can be measured (i.e.
are ascertainable) in some way, then the paragraph mentions all
three of Salmon’s criteria.



Properties of Probability

[M]any quantities that have nothing to do with our intuitive notion of probability conform to

Kolmogorov’s axioms, and so in some sense provide an interpretation of them - think of mass, or

length, or volume, which are clearly non-negative and additive, and which can be suitably

normalized. . . . [T]his also shows that it is too glib to say that a satisfactory understanding of

probability is provided as long as we find a concept of importance to science that conforms to the

axioms-for that does not narrow down the field enough. In any case, the more strictly philosophical

project of analysing our commonsensical concept would remain, much as the project of analysing

our commonsensical concept of causation, say, would remain even if we had already done the job

for the concept as it appears in science. [my emphasis]

Conforms to the axioms = Admissibility
Importance to Science = Applicability

If we assume important scientific quantities can be measured (i.e.
are ascertainable) in some way, then the paragraph mentions all
three of Salmon’s criteria.



Properties of Probability

[M]any quantities that have nothing to do with our intuitive notion of probability conform to

Kolmogorov’s axioms, and so in some sense provide an interpretation of them - think of mass, or

length, or volume, which are clearly non-negative and additive, and which can be suitably

normalized. . . . [T]his also shows that it is too glib to say that a satisfactory understanding of

probability is provided as long as we find a concept of importance to science that conforms to the

axioms-for that does not narrow down the field enough. In any case, the more strictly philosophical

project of analysing our commonsensical concept would remain, much as the project of analysing

our commonsensical concept of causation, say, would remain even if we had already done the job

for the concept as it appears in science. [my emphasis]

Conforms to the axioms = Admissibility
Importance to Science = Applicability
If we assume important scientific quantities can be measured (i.e.
are ascertainable) in some way, then the paragraph mentions all
three of Salmon’s criteria.



Question about this Argument

This argument raises two questions:
1 Why not abandon the intuitive concept of probability?

There are certain “intuitive notions” that we abandon for more
scientific ones. For example, there are no longer any
philosophers who analyze the “intuitive” concept of mass.
On the other hand, there is a ton of philosophy about the
intuitive concepts of knowledge, causation, morality, law, . . .
What makes a concept an object of philosophical
investigation? (Its normativity?)

2 What are the other useful interpretations of the probability
axioms that Hájek mentions?
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Applicability of Probability

Hajek argues there are many interpretations of probability that are
useful in some way, so the applicability criterion is vague.

What are his examples?

One is ”Normalized length”

Consider for a moment the property L(x) which is interpreted
as “length of an object x that is at most a meter long.”

If we interpret ∪ as placing two objects x and y end to end,
then L(x ∪ y) = L(x) + L(y)

And clearly 0 ≤ L(x) ≤ 1.
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Applicability Probability

But what about the event structure?

What is xc?

Idea: The algebra contains a meter stick divided into disjoint
parts.

Length is useful, but why is L(x) useful?

Does the event structure matter?
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Evaluating Finite Frequency Theories

Break into small groups. I will assign each group four of the
objections that are discussed in Suppes [2002] and Hájek [1996].
Answer the following questions.



Evaluating Finite Frequency Theories

What is the conclusion of the argument? In particular,

Does the objection conclude that a finite frequency theory fails
to meet one of Salmon’s criteria of adequacy? If so, which
criteria?
Is it an“intuition” based objection in the sense that it says the
interpretation fails to make sense of the way that we use the
word “probability”? If so, what is the intuition that is violated
by a frequency theory?
If the objection is “intuition”-based, can it be turned into an
argument that theory fails to meet one of Salmon’s criteria?

To which finite frequency theories (finite vs. infinite, actual
vs. hypothetical, measured vs. unmeasured) is the objection
directed? Which theories, if any, are not subject to the
objection (or a similar one)?
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