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Algebras

Define an algebra E to be a collection of subsets of Ω satisfying
the following properties.

If A is a member of E , then so is its complement Ac .

If A and B are members of E , then so is their union A ∪ B.

The empty set ∅ = {} is a member of E .

The members of an algebra will be called events.



Probability

Suppose E is an algebra (i.e. a collection of events).

A probability measure assigns every event A in E some number
P(A) between 0 and 1 (inclusive) such that

P(∅) = 0.

If A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B).
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So Kolmogorov’s axioms make two types of assumptions:

About the probability measure.

About the structure of events to which probability is assigned.
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Properties of Probability

Salmon [1967] argues that an interpretation of probability ought to
satisfy the following three requirements:

Admissibility: An interpretation ought to satisfy probability
axioms like Kolmogorov’s

Why should probability have particular mathematical
properties?

Ascertainability: An interpretation ought to explain how
probabilities can be measured

How do we determine or measure probabilities?

Applicability: An interpretation ought to explain why
probability is so use useful (especially in the sciences).
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Properties of Probability

Hájek [2003] argues that the the applicability criterion can be
clarified in at least three ways:

1 Frequency: An ideal interpretation would answer the
question, “What is the relationship between probability and
frequencies?”

In statistics, probabilities are learned via calculations of
frequencies in a sample.
E.g. When we want to know the probability of cancer among
smokers, we try to gather a “random” sample of smokers and
determine what percentage develops cancer.
Why are probable events more frequent? Why is the frequency
of an event a guide to its probability?



Properties of Probability
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Properties of Probability

Hajek argues that the the applicability criterion can be clarified in
at least three ways:

2 Confidence: Ideally, an interpretation would answer the
question, “In what ways are judgments of probability of events
and confidence in an event’s occurrence related?”

3 Argumentative Strength: An ideal interpretation would
answer the question, “How is probability related to assessing
the strength of arguments?”
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History of Probability

A bit of history:

One of the first applications of probability occurs in Pascal’s
famous wager, however . . .

Most of the first applications of probability concerned games
of chance.

E.g., Rolling a die, flipping a coin, pulling a card from a deck,
or taking a ball from the urn.
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Equipossibility

Games of chance normally involve a physical system that is
“symmetric” in some way

A die has a center of gravity in the middle
Balls in an urn are of similar size and weight
Coins are symmetrical and have a center of mass in the center

In these cases, it is intuitive to say there is some set of
“equipossible” outcomes:

Die: Ω = {1, 2, 3, 4, 5, 6}
Urn with one red, two black and two yellow balls: Ω = {Red,
Black, Black, Yellow, Yellow }
Coin: Ω = {H,T}
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Laplace’s Definition

So Laplace defines probability as follows:

Let Ω be any finite set. Games of chance only typically have
finitely many outcomes.

Let P(Ω) be the power set of Ω. So any collection of
outcomes is an event.

For any event A, define P(A) to be (i) the size of A (i.e., the
number of elements of A) divided by (ii) the size of Ω. In
symbols:

P(A) =
|A|
|Ω|

In Laplace’s words, the probability of A is the number of
outcomes that are “favorable” to A divided by the total
number of outcomes.
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Evaluating Laplace’s Definition

Let’s see which of the “criteria of adequacy” Laplace’s definition
satisfies . . .



Laplace’s Definition

Admissibility: Does it satisfy (Kolmogorov’s) probability axioms?

Since the size of A is always greater than or equal to zero:
P(A) ≥ 0

Since A is of size no greater than Ω, it follows that

P(A) =
|A|
|Ω|
≤ 1

Since the size of the empty set is zero, P(∅) = 0.
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Laplace’s Definition

Admissibility: Does it satisfy (Kolmogorov’s) probability axioms?

If A ∩ B = ∅, then the size of A ∪ B is the sum of the sizes of A
and B. So

P(A ∪ B) =
|A ∪ B|
|Ω|

by the definition of P

=
|A|+ |B|
|Ω|

as A ∩ B = ∅

=
|A|
|Ω|

+
|B|
|Ω|

by arithmetic

= P(A) + P(B) by the definition of P

So the definition satisfies the probability axioms.
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Admissibility

This may seem like a silly exercise, but

For two of the four most popular interpretations of probability, it’s
not immediately obvious that the interpretation satisfies
Kolmogorov’s axioms.



Ascertainability

Discussion Time

Ascertainability: How do we measure or determine probabilities
according to Laplace’s definition?
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Suppose the Americans make a new quarter with a gigantic
bald eagle on one side.

The other side is flat.

So the coin has a center of balance that is clearly towards the
“eagle” side.
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bald eagle on one side.

The other side is flat.
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Equipossibility

How should we define the set of equipossible outcomes (i.e. the
sample space) Ω?



Generating Equipossible Outcomes

Suppes claims there’s no obvious way to answer this question:

suppose we are dealing with a coin that on the basis of
considerable experience we have found to have a
probability of .55 that in a standard toss a head will
come up. It is obvious that there is no way of defining a
Laplacean probability space . . . that will represent in a
natural way the result of tossing such a coin twice.

Suppes [2002].



Equipossibility

How would Laplace answer?

Recall, for Laplace, probability arises from our ignorance, not
from objective feature of the world.
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Laplacean Determinism

We ought then to regard the present state of the universe
as the effect of its anterior state and as the cause of the
one which is to follow. Given for one instant an
intelligence which could comprehend all the forces by
which nature is animated and the respective situation of
the beings who compose it an intelligence sufficiently
vast to submit these data to analysis it would embrace
in the same formula the movements of the greatest
bodies of the universe and those of the lightest atom; for
it, nothing would be uncertain and the future, as the
past, would be present to its eyes.

[Laplace and Dale, 1995].



Laplacean Determinism

Probability is relative, in part to [our] ignorance, in part
to our knowledge. We know that of three or a greater
number of events a single one ought to occur; but
nothing induces us to believe that one of them will occur
rather than the others. [my emphasis]

[Laplace and Dale, 1995].



Principle of Indifference

Keynes [2004] massages Laplace’s definition, and calls it the
principle of indifference.

Informal Idea: If we have no evidence about which of a
collection of events will occur, we ought to assign each event
equal probability.
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Principle of Indifference

Here’s one way of trying to make this formal:

Formally: Define the sample space Ω and the algebra of
possible events A however you like.

poi: For any collection of mutually exclusive events
A1,A2, . . .An (i.e., Ai ∩ Aj = ∅ unless i = j), it must be the
case that

p(A1) = p(A2) = p(A3) = . . . = p(An)
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In Chapter 4, [Keynes, 2004] argues that poi, naively stated,
entails contradictions.

Keynes gives lots of examples; I’ll give the simplest one I
know.
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Flip a coin twice:

Ω = {〈H,H〉, 〈T ,T 〉, 〈H,T 〉, 〈T ,H〉}
A = P(Ω).

You might have no evidence that any two flips is more likely
than the other, in which case:

1

4
= P(〈H,H〉) = P(〈H,T 〉) = . . .



Paradoxes of Indifference

Flip a coin twice:

Ω = {〈H,H〉, 〈T ,T 〉, 〈H,T 〉, 〈T ,H〉}
A = P(Ω).

You might have no evidence that any two flips is more likely
than the other, in which case:

1

4
= P(〈H,H〉) = P(〈H,T 〉) = . . .



Paradoxes of Indifference

However, you might have no evidence about the number of
heads that you will observe. So let

A0 = {〈T ,T 〉} i.e., “No heads”

A1 = {〈H,T 〉, 〈T ,H〉} i.e., “One head”

A2 = {〈H,H〉} i.e., “Both heads”

Applying poi yields:

1
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= P(A0) = P(A1) = P(A2)
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But now we have a serious problem:

1

3
= P(A1)

= P({〈H,T 〉, 〈T ,H〉})
= P(〈H,T 〉) + P(〈T ,H〉) by additivity

=
1

4
+

1

4
by our first application of poi.
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Bertrand’s Paradoxes

Bertrand’s Paradox(es): The general form of Bertrand’s paradox is
as follows:

There are different ways of dividing (or “carving up”) the set
of possible outcomes of an experiment.

Formally, there are different partitions of the sample space.

If we divide the sample space in one way and apply poi, the
we get one probability measure.

E.g., Any ordered pair specifying the outcome of two flips of
the coin

If we divide the sample space in a different way and apply
poi, then we normally obtain a different probability measure
that we did the first time.

E.g., No heads vs. One head vs. Two heads
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Bertrand’s Paradox

In general, philosophers have discussed Bertrand’s paradoxes
when there are infinitely many possible outcomes of an
experiment. We’ll see why in a moment.

But the same problem, as you see, emerges in finite spaces
and is a bit easier to understand.
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Bertrand’s Paradox

Response: Whenever there are multiple ways of “carving up”
the sample space, always use the “narrowest” or most specific.

Formally: Use the finest partition.

E.g., The set of ordered pairs specifying the outcome of two
flips of the coin is narrower than the “No heads vs. One heads
vs. Two heads” carving of the space.
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Bertrand’s Paradox

Problems for the response:

Why the most narrow carving? Why not the widest? Or my
favorite one?

To see another reason this response is incomplete, let’s talk
about applicability.



Infinite Spaces

How does Laplace’s definition fair with respect to applicability?
(i.e. Is it useful?)

Many applications in science require assigning probabilities to
continuous quantities like space and time.

E.g. We may want to assign probabilities to the location of an
electron, or to the time at which an atom decays.

Note: Wanting a probability measure on an infinite sample
space does not mean that we think that space and time are
“really” continuous; it may just be mathematically useful to
imagine such quantities are continuous.
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How can we extend Laplace’s definition to infinite sample spaces?



Infinite Spaces

Let’s consider an example. Suppose John will arrive in the next
five minutes, but we don’t know when.

So John’s arrival time might be represented by a real number
between 0 and 5: he might arrive after 1 minute, 2.5 minutes,
π many minutes, etc.

Let P(r) represent the probability that John arrives after
exactly r many minutes.

The“narrowest” carving of our space consists of every real
number between 0 and 5.
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Infinite Spaces

If we use the “narrowest” carving of our space and apply the
poi, then it must be the case that P(r) = 0 for each real
number r between 0 and 5. Why?

If P(r) = ε > 0, then let n be the result of rounding up 1
ε .

So n + 1 > n ≥ 1
ε .

Take n + 1 many real numbers r1, . . . rn+1. By finite additivity,

P({r1, . . . rn+1}) = (n + 1) · ε > 1
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Thus, assigning equal probability to each element of the
“narrowest” division of the sample space does not determine a
unique probability measure.

This is why Bertrand’s paradoxes are often discussed when the
sample space is infinite.

Namely, doing so prevents one from offering the response
above.
However, the idea of the paradoxes are the same: carving up
the sample space in different ways leads to different probability
measures if one applies poi. How so?
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Infinite Spaces

Just as in the finite case, there is a uniform distribution in infinite
spaces.



Infinite Spaces

Roughly, Bertrand’s paradox reemerges “choice of measurement
units.”

Again, consider our friend John, who will arrive some time in
the next five minutes.

I count in minutes. So if I apply poi, I will conclude the
probability that John arrives in the next two minutes is 2

5 .

My friend Jenny prefers to count in squared minutes. So she
places a uniform distribution over numbers between 0 and

√
5.

So Jenny thinks there is
√
2√
5

=
√

2
5 probability that John

arrives in the next
√

2 minutes squared, i.e., that John arrives
in the next two minutes.

Because Jenny and I have chosen different units of
measurement, what we consider to be a uniform distribution
differs.
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Applicability Probability

Hajek argues there are many interpretations of probability that are
useful in some way, so the applicability criterion is vague.

What are his examples?

One is ”Normalized length”

Consider for a moment the property L(x) which is interpreted
as “length of an object x that is at most a meter long.”

If we interpret ∪ as placing two objects x and y end to end,
then L(x ∪ y) = L(x) + L(y)

And clearly 0 ≤ L(x) ≤ 1.



Applicability Probability

Hajek argues there are many interpretations of probability that are
useful in some way, so the applicability criterion is vague.

What are his examples?

One is ”Normalized length”

Consider for a moment the property L(x) which is interpreted
as “length of an object x that is at most a meter long.”

If we interpret ∪ as placing two objects x and y end to end,
then L(x ∪ y) = L(x) + L(y)

And clearly 0 ≤ L(x) ≤ 1.



Applicability Probability

Hajek argues there are many interpretations of probability that are
useful in some way, so the applicability criterion is vague.

What are his examples?

One is ”Normalized length”

Consider for a moment the property L(x) which is interpreted
as “length of an object x that is at most a meter long.”

If we interpret ∪ as placing two objects x and y end to end,
then L(x ∪ y) = L(x) + L(y)

And clearly 0 ≤ L(x) ≤ 1.



Applicability Probability

But what about the event structure?

What is xc?

Idea: The algebra contains a meter stick divided into disjoint
parts.

Length is useful, but why is L(x) useful?
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