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Review

Unit 1: Generality and Abstract Ideas

What makes a proof general?

Are there “abstract ideas” of triangles, circles, etc. that can explain
why a proof is general?

Two New Themes

Unit 2: Empiricism vs. Rationalism, Geometry vs. Arithmetic

1 How are mathematical concepts acquired? How do mathematical
theorems become known?

2 Are geometric magnitudes more conceptually primitive than
numbers? Vice versa? Are geometric proofs more rigorous than
arithmetic ones? Vice versa? Are proofs in one subject more
general?

Empiricism vs. Rationalism

Empiricists = All knowledge comes from the senses
Rationalists = Some knowledge is innate; some comes from
“rational intuition.”



Empiricism vs. Rationalism

Question: What is the relationship between the two themes?

Answer:

Paradigmatic rationalists (Descartes and Kant) develop and
promote algebraic techniques that lead to the dethroning of
geometry as the paradigm of knowledge.

Not coincidentally, algebraic proofs rely less on visual reasoning than
do geometric proofs.

Disclaimer

Disclaimer: The story is a bit more complicated.

The common distinction between rationalists and empiricists blurs
together important distinctions among the rationalists (respectively
empiricists), it and ignores similarities between certain pairs of
empiricists and rationalists.

No one in the modern period (esp. Descartes) advocated the total
elimination of geometric reasoning; it was still a paradigm source of
knowledge.

Today: The division between geometry and arithmetic prior to
(and well-after) Descartes

General Lesson: For much of the history of mathematics, geometry
and arithmetic were regarded as separate, fairly unrelated
disciplines of mathematics:

Points in the plane were not represented by pairs of numbers,

Curves in the plane were not represented by equations, etc.



This division had at least three important scientific, mathematical,
and philosophical consequences . . .

Eudoxus’ Scientific Importance

Consequence 1: Scientific applications of geometry (e.g., use of
geometric curves to study motion) could not immediately employ
arithmetic or algebraic techniques (e.g., descriptions of curves via
equations). Nor vice versa.

Because geometry, rather than arithmetic, was often seen as a
paradigm for rigor, this meant that quantification of physical
phenomena (e.g., motion) took centuries.

Eudoxus’ Mathematical Importance

Consequence 2: Mathematical discoveries in geometry did not
translate to discoveries in arithmetic or vice versa.

In particular, the discovery of the incommensurability of the diagonal
did not require the extension of the number concept to include
irrational numbers. Geometry could work with incommensurables
(i.e., lengths or areas that do not stand in relation to one another as
two integers do), even if arithmetic could not.

Eudoxus’ Philosophical Importance

Consequence 3: Philosophical theories of knowledge, justification,
and perceptual evidence had to explain both geometric and
arithmetic knowledge; understanding one was not obviously
sufficient for understanding the other.



Arithmetic and Geometry

Today: Why were arithmetic and geometry regarded as different in
Greek mathematics and in Europe after words?

1 The discovery of incommensurability

2 Eudoxus’ theory of proportion

Geometric Magnitudes vs. Numbers

As we’ve discussed, in Greek mathematics, geometric magnitudes
were not numerically quantified.

Today, however, the Greeks are credited with a number of
outstanding discoveries that seem to require numerically quantifying
geometric magnitudes.

Geometric Magnitudes vs. Numbers

For example, π is the ratio of the circumference of a circle to its
diameter, i.e., a ratio of two geometric magnitudes.

Archimedes is said to have shown π < 22/7.

The Greeks are also credited with the formula for the volume of
cones, cylinders, etc.



Question: How did the Greeks avoid numerical representation of
geometric magnitudes, and yet calculate digits of π, volumes of
cones, cylinders, etc.?

Answer: Eudoxus’ theory of proportion.

Eudoxus’ Theory of Proportions

Ratios

Definition 3: A ratio is a sort of relation in respect of size
between two magnitudes of the same kind.



Same type ratios

Examples:

Line segment: Line segment

Area: Area

Number: Number

Same type ratios

In Eudoxus’ theory, a line segment cannot stand in a ratio to an
area or number.

Comparing Ratios

However, in Eudoxus’ theory, ratios can be compared.

E.g. The ratio between two line segments can be compared to the
ratio between two numbers.

E.g. The ratio between two line segments can be compared to the
ratio between two areas.

Comparing Ratios

To permit comparisons, Eudoxus defines when

Two ratios are equal, and

One ratio is greater than another.



Comparing Ratios

Eudoxus’ definitions allow him to state (and prove) the following
theorem:

Let C be a cone and D be a cylinder with the same base and height.

Volume(C): Volume(D) = 1 : 3

Note: The left-hand side is a ratio of volumes, and the right-hand
side is a ratio of numbers.

Comparing Ratios

Similarly, Eudoxus’ definitions allow Archimedes to state (and
prove) that 223/71 < π < 22/7

Note: π is a ratio of two curves (a circumference and radius),
whereas 22/7 is a ratio of two numbers.

Equal Ratios

Definition 5: Magnitudes are said to be in the same ratio, the
first to the second and the third to the fourth, when, if any
equimultiples whatever be taken of the first and third, and any
equimultiples whatever of the second and fourth, the former
equimultiples alike exceed, are alike equal to, or alike fall short of,
the latter equimultiples respectively taken in corresponding order.

Equality of Ratios

In modern notation, write w : x = y : z if for every pair of natural
numbers n,m

nw > mx ⇒ ny > mz

nw = mx ⇒ ny = mz , and

nw < mx ⇒ ny < mz .

Notes:

The (in)equalities in the defieniens concern magnitudes themselves,
not ratios. So the definition is not circular.

The antecedent (and consequent) of each conditional concerns
comparing magnitudes of the same type.



Inequality of Ratios

Definition 7: When, of the equimultiples, the multiple of the first
magnitude exceeds the multiple of the second, but the multiple of
the third does not exceed the multiple of the fourth, then the first
is said to have a greater ratio to the second than the third has to
the fourth.

Equal Ratios

In an ideal world, I would show you how these definitions are used.
We don’t have time. See VI.1 for the simplest use of them.

We’ll return to these definitions at least twice more in the course.

Number Theory

Units and Numbers

Definition: A unit is that by virtue of which each of the things
that exist is called one.

Definition: A number is a multitude composed of units.



Book VII - Number Theory

Question: I asked you to read the definitions of Book VII, which
concerns number theory. Why didn’t I ask you to read the
postulates (i.e., axioms) like I did in Book I?

Answer: There aren’t any! Notice there are no postulates and/or
common notions beyond Book I.

Book VII - Number Theory

Numbers are one type of magnitude.

So they satisfy the same common notions that all magnitudes satisfy

The definitions that apply to all magnitudes (e.g., concerning ratios
and proportions) also apply to numbers.

Book VII - Number Theory

Two important consequences:

Some properties of numbers are implicit in definitions.

However, the Elements does not contain an axiomatization of the
natural numbers in the same way the postulates axiomatize
geometry.

Archimedean Property

Definition 4: Magnitudes are said to have a ratio to one another
which are capable, when multiplied, of exceeding one another.



Book VII - Euclidean Algorithm

Proposition VII.1: Two unequal numbers being set out, and the
less being continually subtracted in turn from the greater, if the
number which is left never measures the one before it until an unit
is left, the original numbers will be prime to one another

Book VII -Euclidean Algorithm

Euclid is describing the following algorithm for finding the greatest
common divisor of two numbers a and b.

The algorithm is now called the Euclidean algorithm.

Book VII -Euclidean Algorithm

Take any two numbers, say a = 81 and b = 35. Then form the
following table:

Remainder

81 33 15
33 15 3
15 3 0

Algorithm:

The right-hand column is the remainder left when dividing the
left-column by the middle one.

The left-hand column in row n + 1 is the middle column from row n.

The middle column in row n+ 1 is the right-hand column from row n

Book VII -Euclidean Algorithm

Remainder

81 33 15
33 15 3
15 3 0

Notice: 3 is the last number in the table greater than zero, and it
is also the greatest-common divisor of 81 and 33.



Book VII -Euclidean Algorithm

Student Exercise: Fill in the following table.

Remainder

96 36 24
36 24 12
24 12 0

Notice: 12 is the greatest-common divisor of 96 and 36.

Book VII - Euclidean Algorithm

Proposition VII.1: Two unequal numbers being set out, and the
less being continually subtracted in turn from the greater, if the
number which is left never measures the one before it until an unit
is left, the original numbers will be prime to one another.

Modern Statement: If the last positive number in the algorithm
above is 1, then a and b are relatively prime, i.e., their GCD is 1.

Question: Are there any features of Proposition VII.1 and/or its
proof that you find strange?

Here are three features that are important for our purposes.

Book VII - Euclid’s Geometric Representation

Feature 1: Propositions VII.1 and VII.2 are about numbers, but
lines are pictured!

In Greek number theory, lines often represent numbers.

The reverse (using numbers to represent lines) is problematic.



Symbolic Representation

Feature 2: The Euclidean algorithm is only carried out two steps!

This seems to have been a limit of the symbolic representation at
the time, which lacked a way of representing functions, sequences,
and iterated processes generally.

Other limitations of Greek algebraic symbolism:

No separate numeral symbols (α = 1, β = 2, etc.)
Before Diophantus, there was no way to represent algebraic
expressions like 3x2 + 2x + 7 succinctly,
No notation for coefficients

Book VII - Axioms for number theory?

Feature 3: Euclid assumes the algorithm stops.

This is equivalent to assuming that one number cannot be
subtracted from another an infinite number of times.

Given the definition of magnitudes “in ratio to one another”, this is
similar to assuming that all numbers are in ratio to one another.

The failure to employ any postulate or definition to just this move is
indicative of a lack of an axiomatic basis for arithmetic in Greek
mathematics.

Incommensurability

Incommensurability Defined

A

E

F

A A A

A . . . A

Definition 1: Those magnitudes are said to be commensurable
which are measured by the same measure, and those
incommensurable which cannot have any common measure.

Example: Commensurable line segments are pictured above.



Incommensurability and Numbers

Propositions X.5 and X.6: Two magnitudes are commensurable
if and only if their ratio to one another is equal to a ratio of two
numbers.

Incommensurability and Irrationality

Propositions X.9: . . . [S]quares which do not have to one another
the ratio which a square number has to a square number also do
not have their sides commensurable in length either.

Modern Statement: If
√
n is not an integer, then it is irrational.

Incommensurable Line Segments

Propositions X.9: . . . [S]quares which do not have to one another
the ratio which a square number has to a square number also do
not have their sides commensurable in length either.

Greek Takeaway: Pairs of incommensurable line segments exist.

Incommensurability, Arithmetic, and Geometry

In Eudoxus’ theory, incommensurable geometric magnitudes (e.g.,
lines) can bear ratios to one another.

Those ratios are not equal to ratios of numbers.

Moral 1: So there are geometric ratios that are not numerically
representable.

I.e., The Pythagorean discovery of incommensurability created a rift
between arithmetic and geometry.



Incommensurability, Arithmetic, and Geometry

Moral 2: Eudoxus’ theory allows one to use numerical ratios to
study geometric ratios, but it does not require the concept of an
irrational number.

I.e., Eudoxus’ theory sustained the rift between geometry and
arithmetic.

Preview

Where We’re Going

Next Month: We’ll explore various rationalist and empiricist
philosophies of mathematics, paying close attention to
developments in the relationship between geometry and arithmetic
at the time.

Today’s Response Question

Response Question: Explain some reasons why arithmetic and
geometry were regarded as separate disciplines, and why they could
be studied independently of one another.


