

Understanding the theorems and postulates The Generality Problem and Diagrams Geometric Equality Up Next

Why The Elements?

Why did I have you read sections of Euclid's Elements?

- To appreciate how different mathematics is during different time periods, and
- To know what philosophers prior to the 20th century are talking about when they discuss mathematics!

Two Types of Theorems and Postulates

There are two types of theorems and postulates in Euclid's

- "Equivalences"

Constructions:

- For now, think of a construction postulate or theorem as giving you an idealized drawing ability.
- No one can draw a perfect circle or produce an infinitely thin straight line with no area, but Euclid's postulates allow you to do so

Understanding the theorems and postulates The Generality Problem and Diagrams Geometric Equality Up Next

Understanding the theorems and postulates

Philosophy for the mathematician

Construction Postulates

- Postulate 2: To produce a finite straight line continuously in a straight line.
- I.e., If a give you a line segment $A B$, you can draw a line (or line segment) extending $A B$ to any length.
- Postulate 3: To describe a circle with any center and radius.
- l.e., If I give you a point A and line segment $A C$, then you can draw a circle

Note: Sometimes, Euclid implicitly assumes the constructed object in Postulates 1 and 2 is unique.

Generality and Euclidean Geometry

Idealization

These postulates are idealizations of your ability to use particular instruments

- Postulates 1 and 2: Idealize you ability to use a straight edge
- Postulate 3: Idealizes your ability to use a compass.

Understanding the theorems and postulates

Understanding the theorems and postulates
 Other Constructions

(1)
(2)

- Constructions involving the idealized use of a straight-edge and compass are the most important in the history of mathematics for reasons we'll discuss in the second unit.
- However, most Greek mathematicians did use other construction techniques, e.g., the use of conic sections and moving instruments. We'll also discuss these later.

There are at least three reasons why diagrams are necessary in Euclidean Geometry:
(1) "Underspecified" objects [Netz, 1999]
(2) Existence of objects is not guaranteed by the postulates alone

- This is a common criticism of Euclid in the 19th and 20th centuriesCase distinctions
- Euclid's use of diagrams raises a central question for mathematicians and philosophers:
- The Generality Problem: How do we know the proof applies/works for all triangles, circles, etc.? [Mumma, 2010]

Understanding the theorems and postulates The Generality Problem and Diagrams)

Solving the generality problem

Potential Solution: The diagram is unnecessary.

Necessity of the diagram

Understanding the theorems and postulates	The Generality Problem and Diagrams)	Geometric Equality
		Up Next
	Underspecification	

Specification

Example: Proposition 1 says defines C as "the point ... in which the circles cut one another." But looking at the diagram, there are in fact two such intersection points.

Proof: Let A be the the given point, and $B C$ the given straight line... From the point A, to the point B, let the straight line $A B$ be joined [Post. 1]. and on it, let the equilateral triangle $D A B$ be constructed [I.1]. Let the straight lines $A E, B F$ be produced in a straight line with $D A$ and $D B$ [Post. 2]; with center B and distance $B C$, let the circle $C G H$ be described ...
straight line equal to a given straight line.

Understanding the theorems and postulates The Generality Problem and Diagrams Georn Completely unspecified objects
 Completely unspecified objects

Proposition 2: To place at a given point (as an extremity) a

Exercise: Follow Euclid's instructions to draw the following diagram. Do not look at Euclid's text.

Completely unspecified objects

Questions:

- Is the line segment $D E$ in your picture longer than the given line segment $B C$? What about $D F$?
- Does the point G in your picture lie on the line segment $D F$?

Specification

An object completely unspecified if it appears in a declarative statement without being defined anywhere in the text or mentioned in some construction statement. See [Netz, 1999] for an example.

The difference between "underspecified" and "completely unspecified" is not very important for us right now.

Understanding the theorems and postulates The Generality Problem and Diagrams

Underspecified objects

- In Euclid's diagram, both $D E$ and $D F$ are longer than $B C$.
- In Euclid's diagram, the point G lies on the segment $D F$.
- The points E, F and G are underspecified. Why? They occur in construction imperatives and are not unique because
- One could continue the line segments $D A$ and $D B$ for as long or as short as one would like given only the directions in the text.
- G could lie anywhere on the circle with center B and radius $B C$.

Specification and the Generality Problem

Question: Why does underspecification lead to the generality problem?

Answer: By definition, underspecified objects are not determined uniquely. So sometimes it's not clear whether choosing different points (e.g., chosen different points E, F and G in I.2) undermines the proof, or whether Euclid just needed to be a bit more specific about how to choose the objects.

Modern Statement: You are given a line segment $A B$. Using only a straight-edge and compass, construct an equilateral triangle with $A B$ as one of its sides.

Problem: None of Euclid's postulates or common notions seem to guarantee the existence of the intersection point C. It seems just to be "read off the diagram."
diagram. Connect points A and B to the point C, which lies at the intersection of the two circles. The triangle $A B C$ is equilateral because $A B=A C$ (as both are radii or circle 1) and $A B=B C$ (because both sare radii of circle 2).

Understanding the theorems and postulates The Generality Problem and Diagrams

Specification and the Generality Problem

Question: Why does the existence problem lead to the generality problem?

Answer: It's not clear whether, had we drawn the diagram differently, the constructed objects (e.g., posited intersection points) will exist.

Euclid I. 2

Answer: A does not lie on the line segment $B C$, nor is A collinear with $B C$.

```
Understanding the theorems and postulates The Generality Problem and Diagrams
Unstated Cases
```

Case 1

A

Case 2

Undestanding the theorems and postulates The Generality Problem and Diagrams Coementic Equality Up No
Cases and the Generality Problem
Question: Why do unstated cases lead to the generality problem?
Answer: We don't know whether the proof works in the unstated
cases! Understanding the theorems and postulates The Generality Problem and Diagrams Geometric Equality Up Ne,
Cases and the Generality Problem
Question: Why do unstated cases lead to the generality problem?
Answer: We don't know whether the proof works in the unstated
cases! Understanding the theorems and postulates The Generality Problem and Diagrams Geometric Equality Up Ne,
Cases and the Generality Problem
Question: Why do unstated cases lead to the generality problem?
Answer: We don't know whether the proof works in the unstated
cases! Understanding the theorems and postulutes The Generality Problem and Diagrams Geometric Equality Up Ner
Cases and the Generality Problem
Question: Why do unstated cases lead to the generality problem?
Answer: We don't know whether the proof works in the unstated
cases!

Understanding the theorems and postulates The Generality Problem and Diagrams Geometric Equality Up Next
 Was Euclid just sloppy?

Question: Should we just conclude that Euclid was a sloppy, careless mathematician?

Answer: Absolutely not.

- Cases of underspecification can be eliminated.
- In I.2, Euclid could have first constructed the circle with center B and radius $B C$; then he could have required E and F to lie outside that circle; finally, he could have required that G lie on $D F$.
- Euclid followed particular rules for what could be "read off" the diagram (e.g., which points exist, and which don't) [Manders, 2008].
- It was (and still is) standard mathematical practice to leave certain cases in proofs to readers.

Two Types of Theorems and Postulates

Nonetheless, the given proofs raise the generality problem because one can ask

- Is there a method for eliminating underspecification?
- What information can be inferred from the diagram?
- Which are cases left for the reader?

Readers unfamiliar with the cultural and mathematical context in which the Elements was written may not know the answers to these questions, and so they present genuine philosophical concerns.

There are two types of theorems and postulates in Euclid's Elements:

- Constructions
- "Equivalences"

Let's discuss "equivalence" theorems now.

Euclid's Statement: In right-angled triangles the square on the side opposite the right angle equals the sum of the squares on the sides containing the right angle.

- There are no numbers mentioned at all.
- E.g., The length of the sides of the triangle are not numerically represented; nor is the area of the squares.
Euclid's $\mathrm{I} .47=$ The Pythagorean theorem.

Euclid's Statement: In right-angled triangles the square on the side opposite the right angle equals the sum of the squares on the sides containing the right angle.

Question: How can we check whether one angle, area, or length is bigger than another geometric object of the same kind?

In general, geometric magnitudes (angles, lengths, areas, volumes, etc.) were not numerically quantified in Euclidean geometry, as we do today (e.g., in the above picture).

Euclid's Common Notions

- Euclid's Common Notions tell us how to compare angles (or lengths, or areas) when they are touching or contained within one another.
- Common Notion 5: The whole is greater than the part.
- In these cases, we can just see whether one angle (or segment, or circle) is contained in another.
- These notions are "common" because they apply to all geometric magnitudes.
- E.g. Common Notion 2 asserts, "If equals are added to equals, then the wholes are equal." This entails:
- If two line segments $A B$ and $C D$ are equal in length, and two line segments $B F$ and $D G$ are equal (where F and G do not lie on $A B$ and $C D$ respectively), then the line segment $A F$ and $C G$ are equal in length.
- Two squares, equal in area, when added to two other (disjoint) squares of equal area, will produce geometric figures of the same total area.

Euclid's Common Notions

Euclid's Common Notions

- Euclid's Common Notions tell us how to compare angles (or lengths, or areas) when they are contained within one another.
- Question: How do we compare the sizes of areas, lengths, etc. that are not contained within one another (nor can they be moved to fit within one another), as the Pythagorean theorem requires?

Where We're Going

- Solution to generality problem? Be more careful with logic.
- Next Class: Aristotle's logic is insufficient for reconstructing the proof of Euclid I.1.
- Locke's Solution: abstract ideas.
- You'll also see how Locke's theory of demonstration is based upon the above ideas about showing equality of geometric magnitudes.

Understanding the theorems and postulates The Generality Problem and Diagrams Geometric Equality (Up Next)
 Today's Response Question

Response Question: Explain what the generality problem is and two reasons that Euclid's diagrammatic proofs raised this problem.

Manders, K. (2008). The euclidean diagram. In Mancosu, P., editor, The Philosophy of Mathematical Practice, pages 80-133. Oxford University Press.
Mumma, J. (2010). Proofs, pictures, and Euclid. Synthese, 175(2):255-287.
Netz, R. (1999). The shaping of deduction in Greek mathematics: A study in cognitive history. Cambridge University Press Cambridge.

