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Classical Theory of Rationality in Economics
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Networks and their Properties

Boundedly Rational Learning in Networks

Today

Today: Can the concepts of bounded rationality and networks help
to explain how cooperative behavior might evolve?

First, let’s see why this question is sometimes thought to be
difficult from a classical perspective in economics . . .
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Three Decision Rules

Name three decision rules:

Maximize (subjective) expected utility (seu)

Dominance

Minimax

Dominance

Recall the following two observations about dominance . . .

Dominant Actions Maximize Utility

Observation 1:

Theorem

Suppose a is a dominant action. Then a is a minimax action and
also maximizes subjective expected utility.

Dominant Actions Maximize Utility

Observation 2: Dominance is a well-defined decision rule even if

Agents’ preferences are only qualitative, in the sense that they
are not represented by numerical utilities.

Agents’ assessment of likelihood are only qualitative, in the
sense that they are not represented by numerical probabilities.



Dominance in One Shot Prisoners’ Dilemmas

A classical prisoner’s dilemma has the following structure:

Cooperate Defect

Cooperate 2,2 0,3

Defect 3,0 1,1

From the standpoint of row player, is there a dominant action?
What about column player?

Dominance in One Shot Prisoners’ Dilemmas

In a Prisoner’s Dilemma, the dominant action is to defect.

By the previous, it is also an seu maximizing action.

So according to the classical economic view, rational actors
will defect in a prisoner’s dilemma.

By the second remark, rational actors will defect regardless
of the

Numerical payoffs in the outcomes and
Likelihood that their opponent employs a particular strategy.

Explaining Cooperation with Classical

Economics

Using classical economics, it is difficult, therefore, to explain the
existence of cooperation . . .

Explaining Cooperation with Population

Models

Perhaps we can find cooperative behavior if agents play prisoner’s
dilemmas repeatedly in a large population.

Let’s use the only population model we’ve discussed thus far: the
replicator dynamics.



Replicator Dynamics: One-Shot Prisoners’

Dilemmas

Suppose we have a prisoner’s dilemma with the following payoffs.

Cooperate Defect

Cooperate 2,2 0,3

Defect 3,0 1,1

Suppose p percent of the population is cooperating, and 1− p are
defecting.

What are the fitnesses of cooperating and defecting respectively?

Replicator Dynamics: One-Shot Prisoners’

Dilemmas

Let p denote the proportion of the population that
cooperates, and 1− p that which defects.

Then, as the conspecifics encounters other random members
of the population, the fitness (i.e. expected utility) of
cooperate and defect respectively are:

F (Cooperate) = p · 2 + (1− p) · 0
F (Defect) = p · 3 + (1− p) · 1

Replicator Dynamics in Prisoner’s Dilemmas

So which has the higher fitness?

Just as dominant actions have higher expected utility regardless of
one’s subjective probabilities, so do dominant actions have higher
fitness regardless of the current composition of the population.

Replicator Dynamics

Let F (ave) denote the average fitness of all phenotypes in the
population. In this case,

F (ave) = p · F (Cooperate) + (1− p) · F (Defect)

In large populations, after one round of play the actual
number of offspring for each phenotype will (with high
probability) be close to the expected value, i.e. to the fitness
of the phenotype.



Replicator Dynamics

In large populations, therefore, one can show that proportion of
Defect(ing) players change as follows:

p′ − p = p(F (Defect)− F (ave))

where p′ is the proportion of defectors after one round of play.
This equation is called the replicator dynamics.

Question: What happens to the proportions of defectors and
cooperators in the population?

Replicator Dynamics

Moral: The replicator dynamics predicts that defectors overtake
the population eventually; how long it takes depends upon the
payoffs.

Let me show you some simulations . . .

Replicator Dynamics

Defection spreads because

interactions among agents are random and take place on a
global scale.

the population is large.

PDs on Networks

Idea: Perhaps cooperation can evolve if agents interact locally?



Networks

Nodes = Agents
Edges = Indicate which agents “interact”
Colors = Current strategy of the agent

Four Types of Networks

Name four “types” of networks discussed by [Alexander, 2007]:

1 Lattice

2 Bounded degree

3 Small worlds
4 Dynamic - This really isn’t specific, as a network might be

dynamic in many different ways.

We’ll talk more about dynamic networks at the end of class.

Lattice Networks

A Lattice Network

Lattice Networks

Lattice networks

Were some of the first studied in abms, likely because they
are easy to program

Exhibit a number of formal properties (e.g. regularity) that
are uncommon in social networks.

Nonetheless, provide an easy starting point to experiment.



Common Features of Social Networks

Question: What happens when rational agents play a one-shot
PD on lattice networks?

Answer: Defection spreads because agents are rational, and
rational agents immediately choose the dominant action.

Common Features of Social Networks

Question: What happens when agents employ a boundedly
rational strategy - say “Imitate the Best Average” - in a PD on a
lattice network?

Answer: It depends upon the payoff structure. Let’s run some
simulations.

Common Features of Social Networks

Question: What happens in more complex networks?

Answer: It depends upon the payoff structure, the learning rule,
and the network structure. Let’s run some simulations.

Repeated PDs

Perhaps we short-changed classical economics’ ability to explain
cooperation, as we only considered one-shot prisoner’s dilemmas.



Repeated PDs

What happens if a prisoner’s dilemma is repeated?

For concreteness, let’s assume its repeated five times, and the total
payoff to a player is the sum of his payoffs of each play.

Repeated PDs

The strategy space is now much larger for players.

One strategy is to defect all the time; one is to cooperate
always.

But a player’s actions may also depend upon previous moves
by his opponent. E.g.,

grim: Cooperate until one’s opponent does not. Defect on
every subsequent stage.

Repeated PDs

Is always defecting the dominant strategy in a repeated prisoner’s
dilemma?

Generally not.

Repeated PDs

Suppose the PD is repeated five times:

Cooperate Defect

Cooperate 2,2 0,3

Defect 3,0 1,1

Always cooperate vs. grim ⇒ 5 · 2 = 10
Always defect vs. grim ⇒ 3 + (4 · 1) = 7



Repeated PDs

So always defecting is not a dominant action in some repeated
PDs!

Have we saved ourselves from a pessimistic conclusion about
rational actors in PDs?

Not so fast.

Iterated Elimination of Dominated Strategies

Left Center Right

Top 0,2 3,1 2,3

Middle 1,4 2,2 4,1

Bottom 2,1 4,4 3,2

Is there any action that is dominated? (Hint: Look at row player
first, whose payoffs are on the left).

Iterated Elimination of Dominated Strategies

Left Center Right

Top 0,2 3,1 2,3

Middle 1,4 2,2 4,1

Bottom 2,1 4,4 3,2

For Row, Bottom dominates Top. So if Row is rational, then Row
won’t choose Top.

Suppose Column knows Row is rational. What outcomes will
Column consider?

Iterated Elimination of Dominated Strategies

Left Center Right

Middle 1,4 2,2 4,1

Bottom 2,1 4,4 3,2

Column knows Row won’t play Top. So she considers the above
game matrix.

Are there any actions that are dominated from Column’s
perspective?

Yes. Center dominates Right. So if Column is rational, she won’t
play Right.



Iterated Elimination of Dominated Strategies

Left Center Right

Middle 1,4 2,2 4,1

Bottom 2,1 4,4 3,2

Suppose Row knows that Column is rational.

And Row knows that Column knows that Row is rational.

Then what outcomes will Row consider?

Iterated Elimination of Dominated Strategies

Left Center

Middle 1,4 2,2

Bottom 2,1 4,4

Row’s game matrix now looks like this.
Repeating this reasoning we get . . .

Iterated Elimination of Dominated Strategies

Center Right

Bottom 4,4 3,2

As Bottom dominates Middle.

Iterated Elimination of Dominated Strategies

Center

Bottom 4,4

As Center dominates Right.



Iterated Elimination of Dominated Strategies

Moral: In a game with rational players who knew each other to be
rational, contestants will not choose strategies that can be
eliminated by considerations of dominance in this manner.

Iterated Elimination of Dominated Strategies

Let’s apply this reasoning to a repeated PD.

Backwards Induction in PDs

Suppose a PD is repeated five times.

Take any strategy you like (E.g. always cooperate, grim,
etc.). Call it s.

Suppose s cooperates in round five.

Define a strategy s∗ that is just like s, except that s defects
on the fifth stage, regardless of what has happened previously
in the game.

What is the relationship between s and s∗?

Backwards Induction in PDs

I claim s∗ dominates s.

Suppose your opponent plays strategy t.

Then s and s∗ earn the same payoffs up to stage five versus t.

So the difference between s and s∗ comes down to the last
stage.

Remember: defecting is dominant in a one shot game.

So regardless of the opponent’s strategy t, the strategy s∗ will
have better outcomes than s on the last stage.



Backwards Induction in PDs

In other words, regardless of the strategy t employed by one’s
opponent, s∗ is at least as good as s on the first four stages,
and it is strictly better on the last.

So s∗ dominates s.

Backwards Induction in PDs

Rational players, who know each other to be rational, will
defect on the last stage of a repeated prisoner’s dilemma.

What about the second to last stage?

Backwards Induction in PDs

Repeat the same reasoning.

Let s be any strategy that defects on the last stage.

Suppose s cooperates on the second to last stage.

Define s∗ to be just like s, except that s∗ defects on the
second to last stage.

By the same reasoning as before, s∗ dominates s against
strategies that defect on the last stage.

Backwards Induction in PDs

Moral 1: In a repeated PD, the only strategy that survives the
repeated elimination of dominated strategies is to defect always.

Again, this argument did not depend upon agents making
judgments of probability.

It also does not depend upon payoffs being numerical, but I don’t
want to state the assumption that is necessary . . .



Iterated Elimination of Dominated Strategies

Moral 2: If agents are rational in the classical sense, it seems hard
to explain how cooperation might emerge in repeated prisoners’
dilemmas.

Repeated PDs and Replicator Dynamics

Does cooperative survive in the replicator dynamics if each agents
plays a repeated prisoners’ dilemma with a random member of the
population?

Repeated PDs and Replicator Dynamics

Inspired by Axelrod [2006]’s PD tournament, [Alexander, 2007]

Randomly assigns each agent in a large population a strategy
for a repeated PD.

Let’s the population evolve according to the replicator
dynamics

Repeated PDs and Replicator Dynamics

Result: Strategies that sometimes cooperate and sometimes
defect were the ones left after many stages of evolution.



Repeated PDs on Networks

Question: According to Alexander, what happens if, on each stage
of evolution, agents play repeated prisoners’ dilemmas on the
various types of networks?

It’s a trick question. [Alexander, 2007] develops no models of this
sort and runs no simulations.

Purpose of Models

Question: What does all this tell us about cooperation, especially
if the models give different results?

In the last few classes, we’ll talk about the purposes of modeling,
the pitfalls, the advantages, and the disadvantages.

Purpose of Models

Answers for Today:

How possible stories vs. How so

Given the problems with classical economic explanations, we
are often just interested in explaining how it is possible that
cooperation evolved.

Provides motivation and framework for particular empirical
investigations:

Many social scientists have characterized properties of real
social networks.
Biologists can sometimes quantify the energy spent by
organisms in acting; that is, they can measure the payoff
structure.
Both biologists and social scientists study learning rules
employed by organisms.

How Possible

Question: If we were just interested in “how possible” stories for
the evolution of cooperation, then why consider so many models?
Isn’t one sufficient?



Robustness

Potential Answer: Robustness.

“How possible” stories are not convincing if they are fragile,
i.e., if slight changes to the model cause drastic changes in
behavior.

If many different models behave similarly, however, then “how
possible” explanations become more convincing. Such
behavior is said to be robust.

Different models are more-or-less realistic in different ways
and so may provide different reasons to believe a
“how-possible” story.

Robustness

For discussions of robustness, see [Muldoon, 2007] and [Parker,
2011]; the former defends the value of robust models and the latter
questions it.

Topics

Topics we’ll discuss today:

World Commands

Agents: Turtles, Patches, and Links

Agent Sets
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