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REVIEW

This Month: The Platonic Puzzle concerning Meaning

The puzzle consists of three different questions:
o Definition: What makes a signal meaningful?
e Evolution: How did meaningful signals evolve?

o Stability: Why are signals stable?



REVIEW

Last Two Classes:
o Lewis' answers: signaling systems, higher-order knowledge,
and coordination equlibria.
e Millikan's and Skyrms’ criticisms/improvements to Lewis’
solutions to the three questions.

@ Replicator dynamics and the evolution of signaling [Skyrms,
2010].



Today: More on Evolution: ABMs and learning to signal
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ONE-ARMED BANDITS

An old-fashioned term for a slot machine is a one-armed bandit.



MULTI-ARMED BANDITS

Consequently, the phrase multi-armed bandit problem is used to
describe a mathematical model, in which

@ There is a slot machine with several arms,

@ The expected payoff of pulling different arms is different, but
@ You don't know the expected payoffs.

@ Luckily, you get to play the slot-machine at least several times.

o Obviously, your goal is to maximize your payoff.



MULTI-ARMED BANDITS

There is an obvious trade-off in multi-armed bandit problems:

o Because you don't know that payoffs ahead of time, you must
explore different arms.

e But as you play more, you want to exploit your knowledge and
play the arm that seems to be best.



MULTI-ARMED BANDITS

Question: How should you choose which arm to pull?



MODEL SIMPLIFICATIONS

Simplifications:
e Each arm either gives (a) zero payoff or (b) a payoff of 1
dollar.

@ So you just want to play the arm that has the highest
probability of paying 1 dollar.



LEARNING ALGORITHMS

Here are two common and simple learning algorithms:
@ Roth-Erev Reinforcement learning
© Bush-Moseller Reinforcement Learning

Let's take them one at a time.



ROTH-EREV LEANING

Imagine you have a big urn full of balls.
For each arm of the slot machine, there is an associated color.

Initially, there is one ball of each color.



ROTH-EREV LEANING

On each stage, you pick a ball at random from the urn, and do the
corresponding action.

@ No payoff: Put the ball back.

@ Yes payoff: Put the ball back and add another ball of the
same color. This is called reinforcement.



ROTH-EREV LEANING

Idea: Actions with higher probabilities of success are reinforced
more often.

So the associated colored balls become more prominent in the urn.

So those actions are in turn picked more often.



ROTH-EREV LEANING

This is called Roth-Erev Reinforcement Learning.



BUSH-MOSTELLER LEANING

A second type is called Bush-Mosteller.

To explain the general model, it's helpful to digress a bit about
averaging probability distributions.



AVERAGING AND ESTIMATION

Vanilla Averages:

@ Suppose Farmer Jim and Farmer Jane are equally reliable at
estimating the weight of a cow.
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AVERAGING AND ESTIMATION

Vanilla Averages:

@ Suppose Farmer Jim and Farmer Jane are equally reliable at
estimating the weight of a cow.

@ Jim guesses the weight of a particular cow is 1173 pounds;
Jane guesses 1256 pounds.

@ An intuitively reasonable way to improve our estimate is by
averaging their guesses.



WEIGHTED AVERAGES

Now suppose Farmer Jane is more reliable than Farmer Jim at
estimating the weight of a cow. Jim, however, is also pretty good.



WEIGHTED AVERAGES

Weighted Averages:

@ An intuitively reasonable way to improve our estimate is by
taking a weighed average:

Guess = (« - Jane's guess) + (1 — «) - (-Jim's guess)

where 0 < o < 1.

@ The closer « is to one, the more strongly our guess is
determined by Jane's guess.



WEIGHTED AVERAGES

Weighted Averages:

@ An intuitively reasonable way to improve our estimate is by
taking a weighed average:

Guess = (« - Jane's guess) + (1 — «) - (-Jim's guess)

where 0 < o < 1.

@ The closer « is to one, the more strongly our guess is
determined by Jane's guess.

o When a = % then our guess is an average, and we treat Jim
and Jane as equally reliable.



ESTIMATING PROBABILITIES

Suppose now that instead of estimating the weight of the cow, Jim
and Jane are estimating several probabilities.

E.g., There is a six-sided die, and Jim and Jane must estimated
P(1), P(2), P(3), and so on.



AVERAGES OF PROBABILITY DISTRIBUTIONS
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Moral: An average of probability distributions is a probability
distribution.



WEIGHTED AVERAGES OF PROBABILITY
DISTRIBUTIONS

Fact: A weighted average of probability distributions is also a
probability distribution.

That is, suppose p and g are probability distributions. Define r so
that for all events E:

r(E) = ap(E) + (1 — a)q(E).

It is easy to check that r is a probability distribution.



BUSH-MOSTELLER LEARNING

Bush-Mosteller Learning:

o Start with an initial probability distribution p over arms in the
slot-machine.
@ On stage 1, an arm is chosen at random: the probability that
arm a is pulled is p(a).
o If no success: Let p’ =p
o If success: Let g, be the probability distribution that assigns

probability one to playing arm a. Define a new probability
distribution:

pPr=a-g+(1—a)p
In this case, the action a is reinforced if o > 0.

@ On the next round, each arm a is pulled with probability p’(a).



BUSH-MOSTELLER LEARNING

Idea 1: Actions with the highest chance of success will be
reinforced most often.

Consequently, they will be played most often.



BUSH-MOSTELLER LEARNING

Recall, when an action is reinforced:

pPr=a-qg.+(1—a) p

Idea 2: Higher oo = Greater weight placed on recent observations.
The past is less important.



Low RATIONALITY LEARNING

Both Roth-Erev and Bush-Mosteller are considered “low
rationality” rules. Why?

@ Both can be simulated by mechanical processes (e.g. drawing
balls from urns) that require no real insight.
o Neither rule requires maximizing utility.

@ There is research supporting their empirical plausibility in
animals with limited cognitive abilities.



Low RATIONALITY LEARNING

In contrast “high” rationality rules require agents to maximize
expected utility or do something similar in light of their evidence.



EXPLORATION AND EXPLOITATION AGAIN

@ According to the traditional story, rational agents ought to
maximized expected utility.

@ Neither Roth-Erev nor Bush-Mosteller do so: they choose
suboptimal actions with non-trivial probabilities.

@ On the other hand, if one always picks a seemingly optimal
action, then one may not test enough of the actions/arms.



SIMULATED ANNEALING

This motivates the following strategy, which is called simulated
annealing.

On stage n:

o With probability p,, pick the action that has been most
successful in the past.

e With probability 1 — pj,, pick another action (uniformly) at
random.



SIMULATED ANNEALING

o If pp —n—co 1, then one plays a seemingly optimal action
with increasing probability.

o If 1 — p, does not decrease too slowly, then one is guaranteed
to explore all actions infinitely often.



BEST-RESPONSE

A second “high rationality” rule is applicable only in games:
best-response.

This rule does what it sounds like it does.
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LEARNING AND SIGNALING GAMES

Group Work: Explain how these rules can be followed in signaling
games.
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