Models and Simulations

Course Mechanics

	Instructor: Email: Office: Office Hours: Course Website:	Conor Mayo-Wilson conormw@gmail.com Ludwigstraße 31, Room R131 Monday 16:00 - 18:00 and By Appointment http://www.mayowilson.org/Models.htm	
Course Description	Computer simulations have become an important tool in philosophy of science, epistemology, and value theory. In particular, simulations of so-called "agent-based models" (ABMs) have been used to address two central philosophical topics: (1) the optimal "social structure(s)" of scientific communities, (2) the emergence/evolution of norms and morality. The course is divided into two halves which are respectively dedicated to those two topics.		
	The course is "practice-based" in the following sense. In addition to discussing contemporary philo- sophical papers, students will learn how to construct and analyze the types of models that are employed regularly in philosophical debates. To this end, students will learn how to program in NetLogo, a programming language designed for the construction of ABMs. No previous program- ming experience is required.		
Course Goals	The course has three central goals. First, in the beginning of the semester, students will learn the types of questions that ABMs are used to address, how ABMs differ from models in classical economics and mathematical biology, and the difficulties in interpreting and validating ABMs. Second, by the end of the semester, students should be able to explain the central philosophical questions that are being addressed with ABMs and to identify new questions that have not yet been asked. Finally, students will learn to implement an ABM in NetLogo that addresses one such new question.		
Requirements	question about eit morality. Students answer and (ii) the must submit a det	ement is to design and implement an ABM with the purpose of answering some her the social structure of scientific communities or the evolution of norms or will write a final paper that (i) describes the question that model is intended to e results they obtained from computer simulations of said model. Each student ailed proposal (about three pages) of his or her final project after two months. but the proposal and final project can be found on the course website.	
	There will also be programming assignments due every week for the first six weeks of the course. One cannot learn to program without practicing regularly. The weekly assignments are designed to help you practice the skills and employ the concepts taught in class.		
Grading	Final Paper/Project Prop	ill be calculated via a weighted average using the following weights: Project (~ 10 pages) - 50 % osal (~ 3 pages) - 20 % ramming Assignments - 30%	
TURNING IN Assignments	To submit an assig Assignment Submit they go missing, ar	To submit an assignment, follow the procedure described in the document called "Instructions for Assignment Submission" on the website. Doing so will ensure that I can easily find your programs if they go missing, and more importantly, it ensures that I can evaluate your work and return it with feedback in a quick and orderly fashion.	

Schedule

Date	Topic	Readings
16/4	Intro. to ABMS	Railsback and Grimm. Chapter 1.
23/4	ABMS vs. Population Models	Morality. Chapters 1 and 2
30/4	Evolution of Cooperation:	Morality. Chapter 3. Pages 53-83.
	Replicator Dynamics and	
	Network Models	
6/5	Cooperation: More Network Models	Morality. Chapter 3. Pages 83-101.
14/5	Evolution of Trust	Morality. Chapter 4. Pages 101-131.
21/5	No Class	None
28/5	Multi-player Games	Morality. Pages 238-250.
4/6	Aims and Limits of ABMs	Morality. Chapter 8.
		Epstein. "Why Model?"
11/6	The "Social Structure" of Science	Kitcher. "The Division of Cognitive Labor."
18/6	Priority Rule	Strevens. "The Role of the Priority Rule in Science"
25/6	Diversity I	Weisberg and Muldoon. "Epistemic Landscapes
		and the Division of Cognitive Labor"
2/7	Diversity II	Zollman. "The Epistemic Benefits of Transient Diversity."
9/7	Communication	Mayo-Wilson. "The Reliability of Testimonial Norms
		in Scientific Communities"

Programming Schedule

Date	Programming Concepts	Assignment
16/4	NetLogo Interface	Tutorial 1 (In Class)
23/4	Manipulating Basic Data Types	Tutorial 3
30/4	If-then Statements and Loops	Assignment 1
7/5	Procedures and Reporters, Writing Pseudo-code	Assignment 2
14/5	World Commands, Patches,	
	Agents, Links, and Agentsets	Assignment 3
21/5	No Class	None
28/5	World Commands, Patches,	
	Agents, Links, and Agentsets	Assignment 4
6/4	Recursion and NetLogo Extensions	Assignment 5
11/6	Running Simulations: Plotting and Behaviorspace	Assignment 6
18/6	Randomization and Debugging	Final Project Proposal
25/6 - 15/7	None	Work on Final Projects
27/9		Final Project Due