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The Structural Evolution of Morality

It is certainly the case that morality governs the interactions that take place between
individuals. But what if morality exists because of these interactions? This book argues
for the claim that much of the behavior we view as “moral” exists because acting in
that way benefits each of us to the greatest extent possible, given the socially structured
nature of society. By drawing upon aspects of evolutionary game theory, the theory of
bounded rationality, and computational models of social networks, this book shows
both how moral behavior can emerge in socially structured environments, and how it
can persist even when it is not typically viewed as “rational” from a traditional
economic perspective. Since morality consists of much more than mere behavior, this
book also provides a theory of how moral principles and the moral sentiments play an
indispensable role in effective choice, acting as “fast and frugal heuristics” in
social-decision contexts.
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Preface

The central claim of this book is that morality provides a set of heuristics that,
when followed, serves to produce the best expected outcome, for each of us,
over the course of our lives, given the constraints placed by other people. That’s
quite a mouthful, but the basic idea is straightforward. Each of us has goals
we would like to attain and ends we wish to achieve. However, your ability
to attain your goals and achieve your ends is constrained by the fact that you
are a social being. You live in a society where other people are trying to attain
their goals and achieve their ends and, on some occasions, their goals and ends
are incompatible with yours. The heuristics embedded within moral theories
prescribe ways of acting so that the majority of people wind up sufficiently
satisfied with their lot in life the majority of the time.

That description, while accurate as it stands, still leaves out one key aspect
of the account developed in this book: societies have structure. The structure of
society is composed of social relations, friendship networks, kinship networks,
professional networks, and so on. The structure of society constrains how
people interact, how people learn, and what people do in order to attain their
goals. Social structure proves to be a powerful influence and is, I shall argue,
the main reason why our moral theories have the form that they have.

What does evolution have to do with all of this? Plenty, although I must admit
that the kind of evolution I am primarily concerned with is cultural evolution
rather than biological evolution. The few places I will talk about biological
evolution are places where – curiously enough – models of cultural evolution
and biological evolution have the same form.

By cultural evolution, I mean nothing more than change in belief over time.
Sometimes the social structure of society is causally efficacious in how belief
changes over time. For example, we learn new things all the time, but we learn
new things more frequently from our friends and acquaintances than from
a randomly selected individual from the society in which we live. Because
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viii Preface

our network of friends plays a causal role in determining (or, at the very least,
influencing) what we learn, this is an example of what I call structural evolution.

All of these ideas, plus a few more, are covered at length in chapter 1. That
chapter sets the stage for the rest of the book by introducing the core concepts of
the book: bounded rationality, strategic choice, and evolutionary game theory.
It also provides an argument for why one should adopt bounded rationality and
evolutionary game theory as the core tools for studying the evolution of society.

Chapter 2 provides a detailed introduction of the evolutionary models cov-
ered in this book. I discuss several models of cultural evolution, arguing that
an agent-based approach provides the most empirically satisfactory way to
proceed. Although it is a bit abstract, this material provides the necessary
foundation for making sense of the next four chapters.

The bulk of the book (chapters 3–6) considers the evolution of cooperation,
trust, fairness, and retribution, using a number of well-known games. Since
all of these games are elementary two-player games, chapter 7 considers what
happens when we approach the question of the evolution of cooperation, trust,
and fairness in an environment where groups matter. The moral of the story –
in all of these chapters – is that social structure often favors the evolution of
what we typically take to be the “right thing to do” in these games.

The final chapter broaches a number of philosophical questions concerning
what, exactly, these evolutionary results imply for our understanding of moral-
ity. It would be hubristic to think that an actual solution has been provided.
I do hope, though, to have achieved a bit more than an extended exercise in
hand-waving. But only a bit.

A good friend who had the wherewithal to read through this manuscript
suggested that I include a note identifying the target audience. The answer,
I’m afraid, is that this book is aimed at anyone interested in the evolution of
morality from both a philosophical and a social-scientific perspective, and who
also possesses that ill-defined quality known as “mathematical sophistication”
but no particular pre-requisites. Where possible, I have flagged slightly more
mathematical passages that can be skipped at no loss with a vertical line in the
left margin.
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Introduction

1.1 Darwin’s decision problem

On a list of history’s great romantics, Darwin is an unlikely candidate for
inclusion. He was a man unusually devoted to the study of barnacles and, when
the time came for him to decide whether to marry, he divided a sheet of paper
into two vertical columns and listed the reasons for and against marriage:

MARRY Not MARRY
Children—(if it please God)—constant com-
panion, (friend in old age) who will feel in-
terested in one, object to be beloved and
played with—better than a dog anyhow—
Home, and someone to take care of house—
Charms of music and female chit-chat. These
things good for one’s health. Forced to visit
and receive relations but terrible loss of time.
My God, it is intolerable to think of spending
one’s whole life, like a neuter bee, working,
working, and nothing after all.—No, no won’t
do.— Imagine living all one’s day solitarily in
smoky dirty London House.— Only picture to
yourself a nice soft wife on a sofa with good
fire, and books and music perhaps—compare
this vision with the dingy reality of Grt
Marlboro’ St.

No children, (no second life) no one to care
for one in old age . . . Freedom to go where
one like—Choice of Society and little of it.
Conversation of clever men at clubs.—Not
forced to visit relatives, and to bend in ev-
ery trifle—to have the expense and anxiety of
children—perhaps quarrelling.

Loss of time—cannot read in the evenings—
fatness and idleness—anxiety and
responsibility—less money for books
etc—if many children forced to gain one’s
bread.—(But then it is very bad for one’s
health to work too much)

Perhaps my wife won’t like London; then the
sentence is banishment and degradation with
indolent idle fool—

At the bottom of the sheet of paper, Darwin concluded that he should in-
deed “Marry—Marry—Marry.” Whether his closing remark was intended to
be tongue-in-cheek or as a serious comment on these reflections is difficult
to say: Darwin signed off on these deliberations with “Q.E.D.” An interesting
proof indeed (Barlow, 1987).

I suspect few people would recommend basing one’s decision to marry
on the outcome of such workmanlike calculations and comparisons of pros
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2 Introduction

and cons. Yet the hope that such calculations could be applied to all matters
of importance – including questions underlying lifelong happiness – drove the
early Utilitarians. If a “hedonic calculus” could be found, it would be a relatively
simple task, they thought, to achieve the greatest good for the greatest number.
One such process is in fact suggested by Darwin’s decision procedure: in order
to select the best outcome from a set of alternatives, simply pick any two from
the set at random, determine the better of the two, discard the inferior option,
and then draw a new option from the (now slightly smaller) set. Repeat this
procedure until only one option remains. At the end of the process, through a
simple algorithm involving only pairwise comparisons, the best of all possible
options has been found.1 Had Bentham’s notion of utility values corresponded
to some real, measurable quantity, they could have been used by a social planner
to chart the future course of society.

Utility does not exist – at least not in the objective, measurable sense sup-
porting the interpersonal comparisons needed for a hedonic calculus of the
Benthamite kind. Hence Bentham’s dream, and with it the Utilitarian project
in its purest form, failed. We do not have a prudential calculus for settling
important problems and, in the absence of such a calculus with methods for
quantitatively comparing the real values of alternatives, Darwin’s decision pro-
cedure seems to illustrate only a mere choice heuristic. Some will, no doubt,
find Darwin’s use of this heuristic unsettling when applied to the marriage
question. Mere heuristics seem appropriate when little is at stake – such as
choosing an entrée at dinner or a film to see – but for important decisions our
intuitions suggest that other procedures, ones more appropriate for treating the
weighty matters at hand, should be used. An appropriate procedure would give
due consideration to all of the important and relevant factors of the problem at
hand, such as personal values, moral principles, individual goals, and the likely
causal consequences stemming from the action chosen. These are the factors
one ought to consider when choosing, rather than merely tabulating salient fea-
tures of the situation. The intuition is that serious thought and rational reflection
are necessary in order to make the right decision; methods that skimp on the
amount of reflection are less likely to identify the right choice. In cases where
much is at stake, like marriage for example, one should think long and hard
about what to do. This strikes us as common sense.

Love and marriage are difficult topics to think about from the point of view
of proper decision procedures. Let us turn our attention to a subject where the

1 One complication exists if two options may be equally good. In this case, the procedure can be
extended by including a randomization device, such as a coin, to choose between two equally
good options.
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connection between choice and outcome is clear, unlike love and marriage, but
which some people care for almost as much: chess. The game of chess has
been viewed as a metaphor for life – it has three main outcomes: Win, Lose,
and Draw. If one keeps score by counting the value of pieces, you can even
Win Big or Lose Badly. More importantly, from our point of view, the game of
chess has an optimal strategy. It can be proven that either White has a winning
strategy, or Black has a winning strategy, or that each player has a strategy
which guarantees at least a draw.

Chess thus seems the perfect arena in which to observe people engaged in
rational, deliberative calculations that approach the ideal standard. If a perfectly
rational player knew the optimal strategy to employ when playing chess, he or
she would always win, or at least force a draw. Hence, one might think that
the closer a player approached the ideal, deliberative standard, the better they
would be at playing chess. Or, stating the connection the opposite way, one
might think that the better a person is at playing chess, the closer they approach
the ideal, deliberative standard. If by “ideal deliberative standard” one means
a careful consideration of all the available alternatives, combined with an
assessment of the respective merit of each alternative, there turns out to be very
little correlation between the strength of a chess player and the breadth of their
search. Although it is true that chess players “spend much of their time searching
in the game tree for the consequences of the moves they are considering,” it
is also true that “the search is highly selective, attending to only a few of the
multitude of possible continuations” of play (Newell and Simon, 1972, p. 750).

The author of one particular study (de Groot, 1965) attempted to measure
the number of positions typically considered by grandmasters in the course of
determining their next move. Surprisingly, the number of positions considered
ranged between only 20 and 76, even though many more moves were possible.
The narrowness of this search becomes all the more remarkable in light of the
fact that, until relatively recently, people were consistently better chess players
than computers, the very model of the “ideal, deliberative agent” which exhaus-
tively examines all possible positions (to the extent of the computer’s ability,
at least). Consider the following: Gary Kasparov can evaluate roughly three
chess positions a second, whereas IBM’s Deep Blue can evaluate 200 000 000 a
second. In the first game of the 1997 match between Kasparov and Deep Blue,
each player was given three minutes per move to think. In this time, Deep Blue
could examine and evalute 36 000 000 000 moves compared with Kasparov’s
540. Yet Kasparov won the first match.2

2 Kasparov lost the overall tournament. The results of the six-game match were as follows:
Kasparov, Deep Blue, draw, draw, draw, Deep Blue.
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If human chess players fall so short of the ideal deliberative standard, why
do they do so well? Newell and Simon note several key differences between
how people play chess and how computers play chess. First, people tend to re-
define the problem they are considering.3 Although the human player attempts
to choose the best possible next move, he typically conceives of the task quite
differently. Instead of simply choosing the best next move with the intention
of forcing checkmate, the human player will choose the best next move which,
for example, “strengthens my defensive position on the right side of the board.”
This ties into a second, related point: people describe and analyze chess posi-
tions using classificatory terms that are rich in their implications. The meaning
attached to these classificatory terms, such as a particular board position’s “vul-
nerability,” are difficult to operationalize and translate into computational terms.

Another reason offered by Newell and Simon for the success of human
chess players actually credits the use of heuristics. In a different experiment,
Newell and Simon had players from a wide range of abilities assess a given
board configuration in order to determine the future course of play. Even
though the players differed greatly in their abilities and were tested separately,
the set of possible moves considered tended to have considerable overlap. In
particular, “the seven moves mentioned by the largest number of subjects (16
to 6) accounted for about two-thirds

(
62
94

)
of all mentions” (Newell and Simon,

1972, p. 757). To explain this overlap, Newell and Simon speculated as follows.

How are we to account for this high degree of consensus? First, we may look at it
from a sociological standpoint. All the players, even the weakest of those studied,
belong to a common chess culture. This culture is transmitted in across-the-board
play, in conversation among chess players, and in writing on chess (move-by-move
reports and analyses of games among grandmasters, books on chess strategy and
tactics) . . . Thus, all of these players know . . . substantially all the heuristic
principles that have been incorporated in existing chess programs and a great many
more. They approach the position, therefore, with a common body of beliefs
acquired through participation in a common culture. The beliefs are not identical,
of course—else all the players would be grandmasters—but their commonality in
terms of the task requirements is substantial.

(Newell and Simon, 1972, pp. 757–758)

Players tend to focus on the same set of possible moves because they use
shared heuristics to determine what the set of possible moves should be. These
heuristics incorporate “a common body of beliefs acquired through participa-
tion in a common culture.” Since these beliefs are based on analyses of past
games, move-by-move reports, and so on, this common body of beliefs has

3 See Newell and Simon (1972), p. 753.
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considerable evidence supporting it, which justifies the adoption of that com-
mon body of beliefs. We might then refer to “common knowledge” acquired by
participation in the common culture instead of just “common beliefs.” Heuris-
tics encapsulate this common knowledge in comprehensible, and readily ap-
prehended, forms, which can then be applied in contexts different from the one
in which it was originally acquired.

Life is not chess, but decision procedures used by humans in chess mimic
decision procedures used by humans in life, at least in the following sense:
many of the decision problems we face in real life have determinate, optimal
solutions in terms of maximizing our expected payoff. If we were perfectly
rational machines equipped with unlimited computational capacity, we would
have little difficulty in choosing the best action to take. Since we are not these
machines, we instead muddle our way through life relying on less-than-perfect
calculations derived from heuristics and rules of thumb.

Given our unavoidable reliance on heuristics, any project that attempts to
explain and predict individual choice in decision contexts by positing man as
a perfectly rational agent appears misguided. Nevertheless, the model of man
as a perfectly rational agent, the homo economicus so beloved by economic
theorists, has been adopted by many as the standard model of the rational agent.
Not everyone finds this model satisfying. In the late nineteen fifties, Herbert
Simon introduced the concept of bounded rationality in direct opposition to
the concept of perfect rationality then so commonly assumed:

The alternative approach [to economic man] . . . is based on what I shall call the
principle of bounded rationality:

The capacity of the human mind for formulating and solving complex problems
is very small compared with the size of the problems whose solution is required
for objectively rational behavior in the real world—or even for a reasonable
approximation to such objective rationality.

If the principle is correct, then the goal of classical economic theory—to predict the
behavior of rational man without making an empirical investigation of his
psychological properties—is unattainable. For the first consequence of the principle
of bounded rationality is that the intended rationality of an actor requires him to
construct a simplified model of the real situation in order to deal with it. He
behaves rationally with respect to this model, and such behavior is not even
approximately optimal with respect to the real world.

(Simon, 1957, pp. 198–199)

Rejecting homo economicus, Simon sought to introduce a new conception of
rationality, more applicable to real people, which, at the same time, improved
our ability to predict the choices people make.

Simon is perhaps too pessimistic in claiming that bounded rationality is not
even approximately optimal with respect to the real world. If by “approximately
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optimal” one means “likely to identify the optimal choice, or a nearly optimal
choice,” in the case of chess, human behavior is approximately optimal. We
can, and do, divide human chess players into ranked levels of ability, where
a player belonging to level N can generally beat a player belonging to level
N − 1, and the probability that a player belonging to level N+ will beat a player
belonging to level N−, where N+ > N−, rapidly converges to 1 as the distance
between N+ and N− increases. A grandmaster will always beat a neophyte.
Since a perfectly rational player would have the strategy that allowed him to
win (or draw) regardless of his opponent, and a grandmaster can always win (or
draw) when he plays people of significantly lesser ability, the heuristics used
by the grandmaster are, in this sense, “approximately optimal.”

Bounded rationality, in Simon’s sense, means that individuals should be
thought of as satisficing rather than optimizing agents. Each individual has a
given aspiration level he wishes to attain and will take action believed to be
conducive to meeting his aspiration level. Consider the problem of selling a
house: the seller selects a price that she wishes to obtain, and as soon as an
offer that exceeds her set price arrives, she agrees to sell the house. However,
since people presumably adjust the price of a house up or down on the basis
of the nature of the market, Simon allowed for the possibility that individual
aspiration levels may vary in light of recently acquired information. Thus,
Simon’s conception of bounded rationality also includes a dynamic aspect in
which people’s aspiration levels vary over time.

Conceiving of people as boundedly rational agents, in Simon’s sense, makes
for a more descriptively accurate theory, and may even describe Darwin’s
deliberation reasonably well. Seeking to attain a certain level of happiness in
the future, Darwin considers two courses of action and, after due deliberation,
chooses marriage as more likely to make him happy. Moreover, his deliberation
involves appeal to general principles best viewed as rules of thumb: he believes
that marriage generally requires forced family visits and leads to a loss of time
in the evenings. Even though these general principles are based on a simplified
model of the real situation, Darwin entrusted his happiness to them.

The greater descriptive accuracy of bounded rationality does not mean that
all vestiges of the perfectly rational agent have been removed from the the-
ory. Gigerenzer et al. (1999) rightly point out that Simon omits an account of
how a boundedly rational agent chooses his initial aspiration level, or how a
boundedly rational agent should adjust his aspiration level in light of new evi-
dence. In part, this is understandable since the exact procedures of adjustment
will presumably be both context- and agent-dependent. One concern, though,
is that many procedures for selecting an appropriate aspiration level, and for
modifying the aspiration level in light of new evidence, will assume a level
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of rationality that again overshoots the meagre cognitive abilities of ordinary
individuals.

In order to avoid commitment to assumptions of perfect rationality, Gigeren-
zer et al. espouse a theory of “fast and frugal heuristics”4 that downplays talk of
aspiration levels and their dynamic adjustment. Rather, they argue, the heuris-
tics people use for making decisions and taking action are efficient, easy to
implement, and require minimal cognitive abilities – hence the name “fast
and frugal.” Such heuristics often work because they take advantage of certain
structural features of the problem. As an example of such heuristics in action,
consider the problem faced by a baseball outfielder who wishes to catch a fly
ball in a baseball game. It seems that catching the ball requires a great deal of
cognitive machinery, for the outfielder needs to infer where the ball will land
given its initial trajectory and then move to that location. Determining where
the ball will land, given its initial conditions, requires solving a problem in
multivariable calculus. This must be done extremely quickly and accurately
in order for the outfielder to have time to be at the proper location when the
ball lands. As we may expect, a simpler and equally effective heuristic exists.
Gigerenzer notes that, if the outfielder simply runs toward the ball so as to
maintain the angle of his gaze constant, he will reach the point where the ball
hits the ground at the same time as the ball arrives. This simple heuristic is
extremely efficient, effective, and widely used. Gigerenzer, along with others
from the Center for Adaptive Behavior and Cognition at the Max Planck In-
stitute in Berlin, have found numerous instances in which people use other
fast and frugal heuristics to reduce complex decision problems to manageable
levels, many of which work surprisingly well.

In most cases, unlike the example of the outfielder and the fly ball, the
heuristics provide no guarantee that the “right” answer or “best” outcome will
be achieved. Each heuristic works well for a certain class of problems whose
structure satisfies certain necessary conditions required for the reliable func-
tioning of the heuristic. A heuristic recommending that an individual, when
faced with a choice problem, should choose the option most recently encoun-
tered in the past will work well only when there is a correlation between the
most recently encountered option and the optimality of that option. An attempt
to apply such a heuristic to a new problem, for which no such correlation holds,
means that, in those problem instances, the misapplied heuristic will likely
perform no better than randomization, and may in fact do worse. Heuristics
belong to an “adaptive toolbox” (Gigerenzer and Selten, 2001) and, just like

4 See also Gigerenzer and Selten (2001).
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tools, are guaranteed to work well only for the set of tasks they were constructed
to do well. A hammer serves as a paperweight just as well as it drives nails, but
the fact that the hammer performs the former function well is by accident, not
design.

People are cognitively limited beings and, as such, often make choices using
heuristics that homo economicus would scoff at. When possible, we do engage
in rational deliberation, but only to the extent of which we are capable, given the
limits on our abilities and the information we possess. If Gigerenzer et al. are
correct in claiming that (1) people do use fast and frugal heuristics for many, if
not most, of their decisions; and (2) Simon’s conception of bounded rationality
as satisficing requires a higher degree of rationality than does the use of fast and
frugal heuristics, we should revise our reaction to Darwin’s decision procedure
accordingly. By approaching the marriage question as a problem of satisficing,
we might say that Darwin did, in fact, show due respect for the solemnity of
marriage. After all, he used a decision procedure that requires a higher degree
of rationality than the fast and frugal heuristics he employed in other decision
contexts.

1.2 Parametric and strategic choice

A careful reader, attuned to modern sensibilities, will detect an important omis-
sion from Darwin’s deliberation. Whereas a great deal is made about the costs
and benefits of attendant social obligations and the virtues of having children,
virtually no thought is given to the possible responses by the prospective Mrs.
Darwin to the marriage offer. Darwin’s deliberation concerns the expected value
of outcomes – Marry, Not Marry – with little regard for the connection between
his choosing to get married and the actual occurrence of marriage. In short,
Darwin’s decision problem is one of parametric choice. If Darwin decides that
he wants to marry, he will; if he decides that he does not want to marry, he
won’t. Whether the future Mrs. Darwin will accept the marriage offer, what
Darwin might need to do to increase the probability of his offer’s acceptance,
and how the burden of these negotiations affects the overall expected benefit of
being married are not subjects of consideration.

In retrospect, Darwin’s framing of the marriage problem as one of parametric
choice might make sense. In Victorian England few women had opportunity
for meaningful careers outside of the home. For many women, ensuring a
comfortable existence meant marrying well and, Darwin’s love of barnacles
notwithstanding, he could reasonably assume that an offer of marriage would
not be turned down, provided that it was made to a woman of comparable
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status. Therefore, an offer of marriage would likely lead to marriage, and so
the problem really was one of parametric rather than strategic choice.

Darwin’s decision problem is not ours. We live in a world where people’s
reactions to our choices can have a significant effect on the resulting outcome.
If we recognize this, and take it seriously when deciding what to do, we soon
find ourselves engaging in spiraling calculations of the form “I think that you
think that I think that . . . ”5 Decision methods that work well for problems
of parametric choice do not adapt well to problems of strategic choice. This
point is important because problems of strategic choice tend to characterize
better the choice problems faced by people in social contexts. The fact that
Darwin could reasonably conceive of the marriage problem as one of parametric
choice derives from peculiarities of Victorian culture more than from the nature
of interdependent choice in society. Most interdependent choice problems in
society have the structure of the modern marriage problem, where the outcome
reflects a mutual agreement among rational persons.

The expression “a mutual agreement among rational persons” suggests the
outcome of a process of rational deliberation in which all parties negotiate a
settlement. Negotiating a settlement is a complex process, with many consid-
erations by each party. Such considerations include whether one should state
everything one wants from the agreement at the beginning of negotiations
or refrain from stating these wants until later. The best course of action for
each person depends upon what everyone else does. Interdependent decision
problems of this type fall within the scope of that branch of mathematics and
decision theory known as game theory.

Game theory was developed to analyze interdependent decision problems.6

However, even though interdependent decision problems occur in many differ-
ent social contexts, game theory has been, for the most part, a tool of analysis
used almost solely by economists. Given the prevalence of interdependent deci-
sion problems, it is well worth asking why other disciplines have been reluctant
to adopt the formal tools of game theory. I suspect part of the reason for game

5 For example, consider the following game: members of a group of people are told to guess a
number between 0 and 1, and the person whose guess is closest to the mean guess of the group
will win $100. In the case of a tie, the money is split between those who tie. What number
should a player P guess? P’s guess depends upon what P thinks each other player will guess.
But every other player’s guess depends on what they think that P will guess. Reiterating these
kinds of strategic reflections gives rise to expressions of the form “I think that you think that I
think that . . . ”

6 It originated in von Neumann’s seminal work on the theory of games published in 1928, and
was later developed at length by von Neumann and Morgenstern in Theory of Games and
Economic Behavior (1944). Significant resources were poured into game-theoretic research by
the RAND corporation at the beginning of the Cold War. After all, what is global thermonuclear
war but a game in which the only winning move is not to play?
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theory’s predominant confinement to economics stems from the model of the
individual it employs.7 Game theory assumes a perfectly rational agent who
possesses an amazingly complete and consistent set of preferences, as well as
usually perfect information about the game and the preferences of her fellow
agents (although this need not always be the case). The model of man as homo
economicus underwrites all results in game theory.

It has already been noted how real people are boundedly rational and rely on
heuristics. Even with this difference between homo economicus and real people,
one could argue that there was good reason for studying homo economicus as
a model of real people. After all, relying on heuristics to cope with cognitive
limitations effectively is a rational response. Real people might not be homo
economicus, but they might approximate homo economicus in their behavior.
Yet even this attempted justification for the use of homo economicus as a model
of man faces problems, because people fail to conform to the assumptions of
homo economicus in several important ways.

For one, people in experimental settings frequently violate the Sure Thing
principle, which orthodox game theory assumes. In essence, this principle
states that if a, b, and c denote possible outcomes, then one’s choice between
the sets { a, c } and { b, c } is determined solely by one’s preference for a or b.
On the surface, this seems plausible enough; since one gets the “sure thing” c

regardless of what one chooses, it should not affect the choice.
Suppose that you are a contestant on a television game show and are told that

you will play two games. The games are very simple and require no particular
talent or ability. You are told that the game show’s host will roll a fair, 100-
sided die to determine what prize you win, and the only thing you have to do is
choose what reward scheme you want before each roll of the die. That is, the
choice is among reward schemes that map outcomes of the roll of the die onto
personal payoffs. Suppose that, for the first game, you must choose between
the following reward schemes:

p1: receive $100 no matter what the roll is;
p2: receive $0 if the host rolls a 1, $100 if the host rolls 2–90, and $500 if

the host rolls 91–100.

For the second game, you have the following choice:

q1: receive $0 if the host rolls 1–89 and $100 if the host rolls 90–100;
q2: receive $0 if the host rolls 1–90 and $500 if the host rolls 91–100.

7 It must be noted that evolutionary game theory – of considerable theoretical interest in
evolutionary and population biology – adopts a very different model of the individual from that
in traditional game theory, which in part explains its increasing use.
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Marcias Allais, who introduced this scenario in 1953, speculated that most
people would choose p1 and q2. His speculation has since been confirmed by
experiment – most people do choose p1 and q2. This violates the Sure Thing
principle.

One can see that this pattern of choice violates the Sure Thing principle by
comparing the two choices as follows. Suppose that, in the first game, one prefers
p1 to p2. This game can be written in the following equivalent form.

p′1: receive $100 if the host rolls 1, $100 if the host rolls 2–90, and $100 if the
host rolls 91–100.

p′2: receive $0 if the host rolls a 1, $100 if the host rolls 2–90, and $500 if the
host rolls 91–100.

All we have done is rewrite the payoff options of p1 in an expanded form. Now,
let c denote “Lose $100 if the host rolls 2–90.” According to the standard theory of
expected utility, if one prefers p1 to p2, then one prefers p1 and c to p2 and c. These
outcomes are the following.

p′1 and c: receive $100 if the host rolls 1, $100 if the host rolls 2–90, $100 if the
host rolls 91–100, and lose $100 if the host rolls 2–90.

p′2 and c: receive $0 if the host rolls a 1, $100 if the host rolls 2–90, and $500 if
the host rolls 91–100, and lose $100 if the host rolls 2–90.

Receiving a payoff of $100 in addition to losing $100 is the same as receiving
nothing, so these outcomes can be simplified further.

p′1 and c: receive $100 if the host rolls 1, $0 if the host rolls 2–90, and $100 if
the host rolls 91–100.

p′2 and c: receive $0 if the host rolls a 1–90, and $500 if the host rolls 91–100.

Receiving a payoff of $100 if the host rolls a 1 or 91–100, and nothing if the host
rolls 2–90, is equivalent (in terms of expected payoff) to receiving $100 if the host
rolls 90–100 and nothing if the host rolls 1–89. So from the point of view of expected
payoffs, p′1 and c is equivalent to q1, and p′2 and c is equivalent to q2.

The fact that most people choose p1 and q2 is known as “Allais’s Paradox.”
See Allais (1953a, 1953b, 1953c) and Allais and Hagen (1979). One implication
of Allais’s Paradox is that, if most people’s considered preferences are such that
they really do prefer p1 and q2, then people’s preferences do not conform to the
pattern required of homo economicus. The preferences of homo economicus
must conform to the axioms of the standard theory of expected utility, one of
the main tools used by game theory to analyze problems of strategic choice.

We can incorporate additional assumptions into the theory of expected utility
such that the new theory can explain the phenomenon of preference reversal (of
which Allais’s Paradox is an instance). But is the standard theory of expected
utility worth preserving? If we take seriously the point made by advocates
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of bounded rationality – namely, that people are limited in their cognitive
ability, then we should dispense with the standard theory of expected utility on
descriptive grounds because many of the assumptions it makes are incompatible
with the conception of people as boundedly rational individuals.

The standard theory of expected utility constructs a utility function for an
individual that maps outcomes of choice onto numerical values by considering
that individual’s particular preferences. Initially, one might not think that defin-
ing a utility function for an individual would require terribly strong rationality
assumptions. If you ask someone to develop a procedure for constructing utility
functions from individual preferences, one natural method that occurs to most
people is the following: present the subject with every possible pair of goods
and ask him to identify which of the two goods in the pair he prefers, if any.
If the expressed preferences form a linear ordering,8 the notion of a “utility
function” can be defined by mapping the goods over which those preferences
exist onto numbers that preserve that ordering. For example, suppose that a
subject prefers three goods in the order g1 � g2 � g3, where “x � y” indicates
that the subject either prefers or is indifferent to y over x. One “utility function”
compatible with this preference ordering assigns g1 a utility of 0, g2 a utility of
1, and g3 a utility of 2.

Although this approach assigns numerical values to particular goods, it
suffers from one important problem: the actual values assigned are meaningless.
Any function that assigns numbers so as to preserve the relative ordering of the
goods will suffice. Instead of assigning the values 0, 1, and 2 to g1, g2, and
g3, we could have assigned the values −100,

√
π , and π instead. Both “utility

functions” reflect the preference ordering for the individual in that the more-
preferred goods receive a higher numerical value.

The following example reveals why this method of constructing utility func-
tions is fundamentally inadequate. Suppose that Joe prefers g3 to g2 and g2 to
g1. Two “utility functions” compatible with Joe’s preference ordering, and
derived using the above method, are the following:

1. f1(g1) = 0, f1(g2) = 1, f1(g3) = 2;
2. f2(g1) = 0, f2(g2) = 1, f2(g3) = 10.

Furthermore, suppose that Joe is given a choice of playing one of two lotteries.
Lottery 1 rewards g1 with probability 7

12 , g2 with probability 1
6 , and g3 with

8 A subject’s preferences are linearly ordered if they satisfy reflexivity, antisymmetry, transitivity,
and comparability. That is, for any goods A, B, and C, A is weakly preferred to A; if A is
weakly preferred to B and B weakly preferred to A, then the subject is indifferent between A

and B; if the subject weakly prefers A to B and B to C, the subject weakly prefers A to C; and,
lastly, either A is weakly preferred to B or vice versa.
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probability 1
4 . Lottery 2, on the other hand, rewards g1 with probability 1

3 , g2

with probability 1
2 and g3 with probability 1

6 . Which lottery will Joe prefer to
play? If we take f1 as the description of Joe’s preferences, lottery 1 gives Joe
an expected utility of 1

6 + 1
2 = 4

6 and lottery 2 gives Joe an expected utility
of 1

2 + 1
3 = 5

6 , so Joe would prefer to play lottery 2. However, if we take f2

as the description of Joe’s preferences, lottery 1 gives Joe an expected utility
of 1

6 + 10
4 = 32

12 and lottery 2 gives Joe an expected utility of 1
2 + 10

6 = 13
6 , so

Joe would prefer to play lottery 1. The two “utility functions” lead to different
predictions as to which lottery Joe would play.

The problem, of course, is that one cannot meaningfully speak of expected
utility if our utility theory gives us utility functions whose only meaningful
properties concern the ordering. In order to speak of expected utility, we must
be able to compute the average utility of various outcomes. This requires us to be
able to add and multiply the resultant values of the utility function – operations
that are meaningful only if the utility values themselves have meaning beyond
their ordinal properties.

Modern utility theory allows one to speak meaningfully of the notion of
expected utility. This is achieved by restricting the set of possible functions
that might serve as an individual’s utility function. It requires the individual
to have a complex set of preferences (more complex than the naı̈ve example
above) because that allows us to restrict the range of possible utility functions.
If an individual has a sufficiently rich set of preferences, it becomes possible to
define a utility function for the individual such that the numerical values have
meaning beyond their ordinal properties.

The key requirement is that the subject must have preferences over all possible pairs
of lotteries defined over the basic goods. What does it mean to require that our
subject be able to specify preferences over all possible pairs of lotteries? Consider
our subject with his preferences over the goods g1, g2, and g3, and consider a lottery
awarding g1 with probability p and g3 with probability 1− p. Now suppose that
our subject can choose between determinately receiving g2 or participating in the
lottery. If p is very large and our subject knows this, he should prefer receiving
g2 with certainty to participating in the lottery, since he has a very slim chance of
being awarded g3. On the other hand, if p is very small (but not 0), most people
would choose the slight uncertainty of the lottery over receiving g2 with certainty
because the lottery, though the outcome is not determinate, still favors their attaining
their most desired good. This suggests that, at some intermediate value of p, our
subject should be indifferent between the choice of receiving g2 with certainty and
participating in a lottery between the goods g1 and g3.

For sake of completeness, I will run through a formalization of the standard
theory of expected utility to highlight its underlying assumptions. (The axioms cited
are taken from Luce and Raiffa’s classic 1957 text, Games and Decisions.) The point
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I wish to call attention to is that, although many of the axioms have considerable
intuitive appeal, they commit one to a conception of individuals as highly rational
beings. Thus the standard theory of expected utility stands in stark contrast with the
view of people as, at best, only boundedly rational.

To begin, assume that a rational agent has preferences defined for every possible
pairwise combination of basic goods. This means that, whenever an agent faces
a choice between two goods, she can either identify which of the two goods she
prefers, or will admit to being indifferent between the two. In addition, assume that
a rational agent’s preferences are transitive, so that if she prefers A to B, and prefers
B to C, then she prefers A to C. If we denote the preference or indifference relation
by �, then the first axiom can be stated.

Axiom 1 (Ordering of alternatives). For any gi and gj , either gi � gj or gj � gi ;
and if gi � gj and gj � gk , then gi � gk .

Since all of the basic goods are comparable and the preference relation is tran-
sitive, it is possible to reindex the set of basic goods { g1, . . ., gn} as { gi1 , . . ., gin}
so that gi1 � gi2 � · · · � gin . Since the particular index assigned to a good does not
matter, we can assume without loss of generality that g1 � g2 � · · · � gn.

A compound lottery is a lottery over a set of lotteries. Imagine, as an example, a
coin toss for which one receives a certain lottery ticket if the coin lands heads, and
a different lottery ticket if the coin lands tails. The thought is that the “rewards” of
a compound lottery are not basic goods, but rather are themselves lotteries.

Now, given knowledge of the probability calculus, one might think that it should
be possible to eliminate compound lotteries by replacing each compound lottery
with an equivalent ordinary lottery, namely one having the appropriate probabilities.
For example, consider the following compound lottery (call it C): a coin is flipped
and, if it lands heads, you have a 10% chance of getting X and a 90% of getting Y ;
if it lands tails, you have a 33% chance of getting X and a 67% chance of getting
Y . How should you, as a rational agent, feel about the choice between C and the
ordinary lottery which gives you a 21.5% chance of getting X and a 78.5% chance
of getting Y ? There is a strong intuition that you should be indifferent between C

and the ordinary lottery because, regardless of which you choose, you have the same
chance of receiving X or Y . The following axiom formalizes this intuition.

Axiom 2 (Reduction of compound lotteries). Any compound lottery is indifferent
to a simple lottery with g1, g2, . . ., gn as goods, their probabilities being
computed according to the ordinary probability calculus. In particular, if

L(i) = (p(i)
1 g1, p

(i)
2 g2, . . ., p(i)

n gn), for i = 1, 2, . . ., s

then (
q1L

(1), q2L(2), . . ., qsL
(s)

) ≈ (p1g1, p2g2, . . ., pngn)

where
pi = q1p

(1)
i + q2p

(2)
i + · · · + qsp

(s)
i .

Consider the following scenario: suppose that we have a set of basic goods that
contains one hundred items, where g1 is a bowl of mud and g100 is a brand-new
Ferrari. (I assume, for the sake of argument, that we strictly prefer the brand-new
Ferrari to the bowl of mud.) Let us also assume that g17 is a brand-new laptop
computer.
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Let L = ((1− p)g1, pg100) denote the lottery which awards the bowl of mud
with probability 1− p and the Ferrari with probability p. The following choice
behavior seems highly plausible: when p = 0, so that L awards the bowl of mud
with certainty, if we are given the choice between L and the laptop, we will always
choose the laptop. However, when p = 1, so that L awards the Ferrari with certainty,
we will always choose the lottery L over the laptop. For values of p between 0 and 1,
it also seems clear that the same choice behavior will hold for values very close to 0
and values very close to 1. For intermediate values of p, though, it’s less clear what
will happen. It seems plausible that, for some value of p, given a choice between
L and the laptop, we will be perfectly indifferent between the two. The following
axiom formalizes this intuition.

Axiom 3 (Continuity). Each good gi is indifferent to some lottery involving just
g1 and gn. That is to say, there exists a number ui such that gi is indif-
ferent to (1− ui)g1, 0g2, . . ., 0gn−1, uign). For convenience, we write gi ≈
((1− ui)g1, uign) = g̃i .

It seems that part of what it means to say that one is indifferent between two
things is that the things can be interchanged in certain contexts without affecting
a person’s behavior. Given this, it seems plausible that, if we are truly indifferent
between g̃i and gi , then we should be able to interchange the lottery for the basic
good in certain contexts. The following axiom states one particular context in which
such interchanges are allowed.

Axiom 4 (Substitutability). In any lottery L, g̃i is substitutable for gi , that is,

(p1g1, . . ., pigi, . . ., pngn) ≈ (p1g1, . . ., pi g̃i , . . ., pngn).

The next axiom says that the preference relation over lotteries behaves much like
the preference relation over basic goods.

Axiom 5 (Transitivity). Preference and indifference among lotteries are transitive
relations.

Recall that, under our indexing scheme, g1 is either the least-preferred good or
one of the least-preferred goods. Likewise, gn is either the most-preferred good or
one of the most-preferred goods. When should we prefer the lottery ((1− p)g1, pgn)
to the lottery ((1− p′)g1, p′gn)? Simply when our chance of receiving gn in the first
lottery is greater than the chance of receiving gn in the second lottery. This is the
intuition behind the following axiom.

Axiom 6 (Monotonicity). A lottery ((1− p)g1, pgn) is preferred or regarded indif-
ferently to ((1− p′)g1, p′gn) if and only if p ≥ p′.

Given a subject whose preferences satisfy the above six axioms, the existence of
a utility function defined over all possible lotteries over the set of basic goods can
be proved. To see this, notice that axioms 1 through 5 provide a way of reducing
two lotteries L and L′ (complex or not) to the canonical form mentioned in axiom 3.
Call the reduced forms of these lotteries L̂ and L̂′, respectively. Axiom 6 provides
a method of comparing the reduced lotteries L̂ and L̂′, and axiom 4 allows us to
transfer the resulting comparison back to the original lotteries L and L′. One can
then prove the following theorem (see Luce and Raiffa, 1957, p. 29).
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Theorem 1. If the preference or indifference relation � satisfies axioms 1 through 6,
there are numbers ui associated with the basic goods gi such that for two lotteries L

and L′ the magnitudes of the expected values

p1u1 + p2u2 + · · · + pnun and p′1u1 + p′2u2 + · · · + p′nun

reflect the preference between the lotteries.

Some variant of the above theory of expected utility underwrites all contemporary
work in traditional game theory and formal decision theory. Such schemes assume
the following.

1. Any two goods are comparable (this is explicitly assumed in axiom 1).

2. Only the basic goods matter (this is implicitly assumed in axiom 2).

Compound lotteries can be reducible to ordinary lotteries only if people do not
feel “differently” about receiving a lottery as a prize rather than receiving an
ordinary good as a prize.

3. People have an uncountably infinite set of preferences (this is implicitly assumed
in axiom 2).

If there are at least two basic goods, there is an uncountably infinite number
of compound lotteries9 and each compound lottery must be equivalent to some
lottery defined over basic goods. Each person’s preference set must be such that
this equivalence of lotteries is recognized by the indifference relation, which
implies that each person must have an uncountably infinite set of (coherent)
preferences.

4. People’s preferences are transitive (this is explicitly assumed in axioms
1 and 5).

The crucial question is that of how likely it is that real people have prefer-
ences that are “sufficiently rich” in the way needed for one to be able to define
a utility function. Consider the fact that the standard theory of expected utility
requires that any two goods need to be comparable. Are any two goods always
comparable? It would seem not. Do you prefer the life of your mother over
the life of your father? The lives of five randomly chosen children over the
life of your mother? The lives of five randomly chosen mothers over the life of
your child? Ten billion dollars over the life of 10 000 children?10 These are
not intended to be read as merely rhetorical questions, for it is quite possible
that a person may be able to answer them. If one can, it is worth reflecting on
whether these express actual preferences or the conclusion of an argument that

9 For any two basic goods g1 and g2, there is a lottery Lp = (pg1, (1− p)g2) for each
p in [0, 1]. Given p, q, r in [0, 1], the lottery L(p, q, r) = (pLq, (1− p)Lr ) is a compound
lottery. There is an uncountably infinite number of such lotteries.

10 Think of how much good one could do with ten billion dollars. One could easily save the lives
of one million children from less-developed countries – and this includes giving each and
every one of them a college education.



1.3 Evolutionary game theory 17

one has constructed for rationalizing the choice, in the event that one should
encounter such a choice situation.11 If the latter, it seems that the standard
theory of expected utility assumes too much, for you did not actually have a
preference for one of the pair of goods prior to engaging in some serious (and
perhaps troubling) reflection. The conclusion to draw is twofold. First, while
many goods are comparable, many goods are not. Second, even among those
goods which are comparable, we might not have well-defined preferences until
we are actually presented with a choice situation in which we have to choose
among them, in which case we come to realize what our preference is, or come
to form that preference in the first place.

The assumption that, for any choice problem, only the basic goods matter, is
a point which Allais’s Paradox calls into question. If only the basic goods matter,
then the Sure Thing principle seems eminently plausible. The fact that people
choose the way they do in Allais’s Paradox-type situations suggests that the way
in which the choice is presented has an important effect on the resultant choice.12

If so, then more is factored into people’s preferences than just the basic goods.
However, the most important assumptions to focus on concern the possession

of an uncountably infinite set of preferences and the transitivity of the pref-
erence relation. It is unlikely that cognitively limited individuals would have
an uncountably infinite set of preferences, much less a coherent uncountably
infinite set of preferences. Given this, there is a fundamental conflict between
the conception of individuals as boundedly rational and the standard theory of
expected utility assumed by traditional game theory.

This poses a problem. If interdependent decision problems are an in-
escapable feature of individual choice in social situations, we need to be able to
analyze them. Yet, if the proper analysis of interdependent decision problems
requires that they be viewed as problems of strategic choice, and the traditional
theory of games is incompatible with a conception of people as boundedly
rational, how is one to analyze them?

1.3 Evolutionary game theory

One important characteristic, perhaps the most important characteristic, about
decision problems occurring in social contexts is that they recur. Social agents

11 Also, realize that, if it is the latter, there is now a nontrivial question as to whether your
preference set is consistent. Many of the choices involve moral questions. Is the moral theory
on which you based your argument consistent?

12 A point reflected both in prospect theory and in regret theory (see Bell, 1982; Loomes and
Sugden, 1982).
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play the same game over and over again, often against the same individuals.
The one-shot games played between anonymous individuals that have been
so heavily studied provide a poor account of the decision problems faced by
real social agents. A better approach would study repeated games. An ideal
approach would combine a study of repeated games with a model of man as
boundedly rational. Such is the approach of evolutionary game theory.

Evolutionary game theory originated in the work of R. A. Fisher13 in his
attempt to explain the approximate equality of the sex ratio in mammals. The
puzzle Fisher faced was this: why is it that the sex ratio is approximately equal
in many species in which the majority of males never mate? In these species, the
non-mating males would seem to be excess baggage carried by the rest of the
population, having no real use. Fisher realized that, if we measure individual
fitness in terms of the expected number of grandchildren, then individual fitness
depends on the distribution of males and females in the population. When there
is a greater number of females in the population, males have a higher individual
fitness; when there are more males in the population, females have a higher
individual fitness. Fisher pointed out that, in such a situation, the evolutionary
dynamics lead to the sex ratio becoming fixed at equal numbers of males and
females.14 The fact that individual fitness depends upon the relative frequency
of males and females in the population introduces a strategic element into
evolution. Equality of the sex ratio is a Nash equilibrium in this game of
fitness: provided that everyone else does not change their behavior, you do not
increase your expected fitness by changing yours.

The concept of a Nash equilibrium is the central solution concept used
in traditional game theory. However, in the case of the equality of the sex
ratio among mammals, the Nash equilibrium emerges not by being selected
by perfectly rational agents, through a process of rational deliberation, but
rather as a consequence of the invisible hand of natural selection. The agents
participating in this evolutionary process are very far removed from being
perfectly rational agents. Nonetheless, the outcome is precisely that which one
would expect to occur if this “game” of the sex ratio were played by perfectly
rational agents, interested in maximizing their expected fitness, and capable of
freely choosing what strategies they will play.

In the social world, we do not typically make choices with the explicit intent
of maximizing Darwinian expected fitness. Although there is some correlation
between the strategies people employ in choice problems in social settings and
those adopted by their offspring, this is not the primary mechanism determining

13 See The Genetic Theory of Natural Selection (1930).
14 Modulo several important assumptions that I shall not discuss here.
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how people respond to choice problems in society. Nonetheless, as we will see
in greater detail in chapter 2, certain processes of imitative learning allow us to
formulate models of individual choice in repeated decision problems that are
worthy of the name “evolutionary” in every respect. The “evolution” in this
new setting is cultural rather than biological evolution.

Ever since Dawkins first introduced the idea of a “meme,” the unit of cultural
inheritance, in The Selfish Gene (1976), some have been reluctant to talk of
cultural evolution. Whereas we typically think that we have a good idea of
what we mean by a gene,15 the concept of a meme lacks a similar degree
of clarity. What are memes made of? How are memes transmitted from one
person to another? Talk of memes, and with it talk of cultural evolution, seems
mysterious.

Yet cultural evolution is not mysterious. It is not magical. One does not need
to invoke “memes” in order to speak of cultural evolution. Cultural evolution,
as I understand the term, means nothing more than change in belief over
time. The change in belief may occur as a result of a combination of factors:
experimentation with new behaviors or strategies (the cultural analogue of
mutation), conscious imitation of another person’s behavior or strategy (the
cultural analogue of reproduction), deliberate instruction of one’s children
(another cultural analogue of reproduction), the random fluctuation of beliefs
that do not have significant impact on people’s well-being (the cultural analogue
of genetic drift), and the introduction or elimination of beliefs from a population
through immigration or emigration of the holders of those beliefs. None of these
factors requires strong rationality assumptions, and all of them are present in
real populations.

1.4 The evolution of morality

Darwin’s approach to his decision problem nicely illustrates one of the many
possible procedures that a boundedly rational creature may use when con-
fronted with a difficult decision. Taking the boundedly rational nature of man
as given, we then saw that evolutionary game theory provides a better way
of analyzing the interdependent decision problems that occur in human soci-
ety than traditional game theory. Darwin, evolution, game theory – what, if
anything, does all this have to do with the origins of morality?

15 Yet even this concept proves particularly difficult to make sense of. See Sarkar (1998), Falk
(2000), and Moss (2003) for a discussion of some of the difficulties encountered in reconciling
the concept of a gene with our contemporary understanding of molecular biology.
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Darwin’s thoughts on the connection between man’s social nature and the
origin of the moral sense are recorded in The Descent of Man (2004). It is worth
quoting at length.

The following proposition seems to me in a high degree probable – namely, that
any animal whatever, endowed with well-marked social instincts, the parental and
filial affections being here included, would inevitably acquire a moral sense or
conscience, as soon as its intellectual powers had become as well, or nearly as well
developed, as in man. For, firstly, the social instincts lead an animal to take pleasure
in the society of its fellows, to feel a certain amount of sympathy with them, and to
perform various services for them. The services may be of a definite and evidently
instinctive nature; or there may be only a wish and readiness, as with most of the
higher social animals, to aid their fellows in certain general ways. But these
feelings and services are by no means extended to all the individuals of the same
species, only to those of the same association. Secondly, as soon as the mental
faculties had become highly developed, images of all past actions and motives
would be incessantly passing through the brain of each individual; and that feeling
of dissatisfaction, or even misery, which invariably results, as we shall hereafter
see, from any unsatisfied instinct, would arise, as often as it was perceived that the
enduring and always present social instinct had yielded to some other instinct, at
the time stronger, but neither enduring in its nature, nor leaving behind it a very
vivid impression. It is clear that many instinctive desires, such as that of hunger, are
in their nature of short duration; and after being satisfied, are not readily or vividly
recalled. Thirdly, after the power of language had been acquired, and the wishes of
the community could be expressed, the common opinion how each member ought
to act for the public good, would naturally become in a paramount degree the guide
to action. But it should be borne in mind that however great weight we may
attribute to public opinion, our regard for the approbation and disapprobation of our
fellows depends on sympathy, which, as we shall see, forms an essential part of the
social instinct, and is indeed its foundation-stone. Lastly, habit in the individual
would ultimately play a very important part in guiding the conduct of each
member; for the social instinct, together with sympathy, is, like any other instinct,
greatly strengthened by habit, and so consequently would be obedience to the
wishes and judgment of the community.

Darwin’s argument for the inevitable appearance of the moral sense is
grounded on the feeling of sympathy. Sympathy inclines one individual to
perform “various services” for another. If one does not follow the inclinations
of sympathy, these feelings of sympathy will reappear to haunt one later, as
some apparent precursor to the conscience. Yet sympathy is not the only cor-
nerstone on which the structure of morality is built. Culture, in the form of
common opinion, plays an important role. Here we see the first appearance of
the importance of strategic thinking. If I seek approbation and wish to avoid
disapprobation, when choosing to act I need to reflect upon what reaction you
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will have to what I do. The first link of the “I think that you think that I think . . . ”
chain has thus been forged.

From these humble beginnings, the moral sense eventually produces moral-
ity. However, one should not confuse Darwin’s intuition that all sufficiently
intelligent social animals will inevitably acquire a moral sense with the
Kantian conclusion that all sufficiently intelligent social animals will in-
evitably acquire the same moral sense. Darwin explicitly disavows the latter
claim:

It may be well first to premise that I do not wish to maintain that any strictly social
animal, if its intellectual faculties were to become as active and as highly developed
as in man, would acquire exactly the same moral sense as ours. In the same manner
as various animals have some sense of beauty, though they admire widely different
objects, so they might have a sense of right and wrong, though led by it to follow
widely different lines of conduct. If, for instance, to take an extreme case, men
were reared under precisely the same condition as hive-bees, there can hardly be a
doubt that our unmarried females would, like the worker-bees, think it a sacred
duty to kill their brothers, and mothers would strive to kill their fertile daughters;
and no one would think of interfering. Nevertheless, the bee, or any other social
animal, would gain in our supposed case, as it appears to me, some feeling of right
or wrong, or a conscience.

How does this feeling of right or wrong affect the actions of the social animal?

[A]n inward monitor would tell the animal that it would have been better to have
followed the one impulse rather than the other. The one course ought to have been
followed, and the other ought not; the one would have been right and the other
wrong . . .

Darwin’s account of the origin of the moral sense is a fascinating, speculative
Just So Story16 wrapped in enough naturalistic clothing to be plausible – but
only barely. From a contemporary point of view, it would be imprudent to
attribute too much of a theory of moral sentiments to sympathy, especially since
it remains an open question just how much sympathy – in a robust, biological
sense – really does influence our choices and actions. However, Darwin’s
identification of the importance of culture and habit (although perhaps not the
reasons why culture and habit are important) seems spot on, and this allows us
to thread together all of the notions discussed thus far.

Look again at Darwin’s explanation for how the “inward monitor” is sup-
posed to work. It tells the animal that it would have been “better” to do X

16 The name “just so story” is taken from the title of Rudyard Kipling’s 1902 book, Just So
Stories. Because that book provides fantastic “causal” explanations of how various phenomena
originated (like how the camel got its hump), the term now refers to any evolutionary
explanation that lacks any empirical evidence.



22 Introduction

rather than Y . But better in what sense? There are two ways of reading this.
One way is that it would be “better” in that the moral sense would have made
the animal feel better about doing X rather than Y . Another way is that it
would have been “better” for the animal to do X rather than Y because doing
X serves to maximize the individual’s expected fitness. The animal need not –
and presumably doesn’t – know this, but that doesn’t change the fact that it
would have been better, in a very real, objective sense, for the animal to have
done X rather than Y .

I would like to suggest the following connection between the inward monitor
and heuristics. Ordinary people and ballplayers alike catch fly balls in more or
less the same way: they run to the ball, keeping the angle constant. Few people
are aware that their success in catching fly balls depends upon such a heuristic;
fewer could explain why such a heuristic works. Perhaps the inward monitor,
our conscience, morality, and social norms in general, function similarly. When
each individual in society follows their inward monitor and behaves morally,
each person does better from the point of view of maximizing satisfaction of
his or her personal preferences over the long run of their life.

Notice that I have explicitly shifted the focus from maximization of Dar-
winian expected fitness or maximization of expected utility to maximizing
satisfaction of our personal preferences. This was deliberate. I don’t wish to
make any specific claims about how following moral principles serves to maxi-
mize our fitness. I wish to avoid this because I suspect that relatively little of our
current behavior is explicitly done because it maximizes our expected fitness.
If the evolutionary psychologists are correct, some of our behavior was selected
for because it served to maximize our expected fitness at one time; however,
such behaviors needn’t maximize our expected fitness in any meaningful sense
now. I also wish to avoid talk of maximization of expected utility because,
keeping with the general view that humans are boundedly rational, we fail to
satisfy the conditions required for ascribing utility functions to individuals. (If
it is possible to define utility functions for individuals, I view this as a happy
accident; there’s nothing that precludes a boundedly rational individual from
forming preferences in such a way that permits defining a utility function –
just imagine a boundedly rational individual who is indifferent among every
possible outcome – but it is too much to assume that every bounded rational
individual has a set of preferences that permit the definition of a personal utility
function.) Speaking of maximizing the satisfaction of our personal preferences
avoids both sets of problems. However, because old habits die hard, I will on
occasion speak of maximizing expected utility in the remainder of the book.
This talk should always be understood as really referring to maximizing the
satisfaction of one’s personal preferences.
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The core idea which I will explore in this book is the following: morality
comprises a set of heuristics that govern behavior in interdependent decision
contexts that work to the benefit of each person in society when followed. That
is, acting in accordance with those heuristics serves to maximize satisfaction of
each person’s preferences, as much as is possible, given the constraints placed
upon satisfaction of our preferences by the fact that many people’s preferences
are in conflict. The reason why such heuristics (moral norms) work in this
way derives from the social structure of the interdependent decision problems
whose choices they regulate. The fact that most people (perhaps all people)
do not know why or how the heuristics work is of no real consequence: most
people cannot explain, or justify, the functioning of the heuristic they use to
catch fly balls.

The remainder of this book offers a preliminary argument for the claim that
many of the norms governing behavior, in particular, certain primitive moral
principles, can be understood as general heuristics whose adoption insures
that an individual will generally do better if they are followed than if they
are not followed. These social norms exist as a culturally evolved response to
repeated interdependent decision problems that occur in a socially structured
environment. The exact meaning of doing better referred to above depends upon
the particular interdependent decision problem, and hence is context-sensitive.

The claim that people will generally do better following moral norms than
not should not be confused with the similar-sounding claim that people have
deliberately chosen to adopt those norms on the grounds that acting in ac-
cordance with them serves to maximize their individual expected “utility.”17

However, it would be accurate to say that whenever individuals choose to act
in ways that accord with the various social norms examined here, acting in that
way serves to maximize their individual expected “utility” over the long run.

Another misinterpretation should be cautioned against. Often in speaking of
a social norm one means that violators of the norm suffer sanctions imposed by
the rest of society. In this environment, one could argue that complying with
the norm serves to maximize an individual’s expected “utility” because failure
to comply results in the imposition of sanctions. This is not the sense in which I
mean to say that individual expected “utility” is maximized. Individual expected
“utility” is maximized in the sense that the environment in which the norm is
generally followed tends to maximize an individual’s expected “utility” given
the set of possible payoffs for the interdependent decision problem at hand.

17 I use scare quotes here to indicate that such talk of “utility” needs to be understood very
loosely, since the boundedly rational nature of individuals does not guarantee that we can
define a utility function for them.
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The argument I offer is a preliminary one simply because it would be
impossible to demonstrate, for each social norm, that the appropriate relation
between acting in accordance with that norm and long-term maximization of
expected “utility” holds. I merely wish to demonstrate that this relationship
holds for a small but important subset of our moral norms: whether one ought
to cooperate in certain strategic situations, whether one ought to trust other
players in other situations, how one ought to distribute resources in still other
strategic situations, and, lastly, whether one ought to retaliate, or take punitive
action, in yet other strategic situations. While these four problems are obviously
important, they do not by any means exhaust the space of strategic situations
that are socially and morally revelant. However, they are problems of sufficient
importance and generality that, if we can establish my primary claim in these
cases, we have reason to hope that a similar kind of explanation can be advanced
in other cases. Much more work remains to be done at the end of the day,
regardless. In addition, it will almost always be assumed18 that none of these
strategic situations overlap: individuals who face problems of cooperation are
not simultaneously facing resource-allocation problems. This assumption is not
just implausible, it is false. But it serves to keep the scope of the discussion
manageable. If one cannot tell a plausible story of the kind I wish to tell in such
simple, artificial contexts, what hope is there for telling a plausible story in
more complicated contexts? But, if we can tell a plausible story in such simple,
artificial contexts, we have reason to broaden our search, and push onwards to
more complicated contexts.

18 The one exception will be cases involving norms of retaliation, retribution, and punishment.
Although it is possible to study the emergence of a norm of cooperation by considering
individual behavior in certain isolated interdependent decision problems (such as the
prisoner’s dilemma), this cannot be done for norms of retaliation, retribution, and punishment.
Such norms exist for the sole purpose of influencing individual behavior in some other context,
and hence the strategic problem framing punitive behavior has to be imposed on top of
something else.
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Types of evolutionary models

All evolutionary models contain at least two things: a representation of the
state of the population and a specification of the dynamical laws that tell how
the state of the population changes over time. Since one cannot specify the
dynamical laws without referring to some representation of the population, the
choice of representation constrains the set of possible dynamical laws. Even
so, given a particular representation, it is usually the case that many different
sets of dynamical laws are compatible with that representation.

The main choice that exists regarding the representation of the population
is whether to model it using continuous or discrete methods. Continuous, or
aggregative, models represent the population using global statistics concern-
ing the distribution of genotypes or phenotypes in the population. The most
commonly studied aggregative model is the replicator dynamics, which repre-
sents the state of the population by the frequency with which certain genotypes
or phenotypes occur. Notice that aggregative models necessarily assume that
questions such as which individual in the population has a particular pheno-
type or genotype are unimportant, since all differences between individuals
are lost when one uses frequency data to represent the population state. In
contrast, the discrete method known as agent-based modeling keeps track of
the identities of individuals of the population, where the identity of an individ-
ual includes information such as its genotype/phenotype, together with addi-
tional properties, such as its spatial position, location in a social network, and
so on.

The primary trade-off between the two approaches exchanges mathemat-
ical tractability for computational complexity. The replicator dynamics (see
section 2.1) expresses the evolutionary dynamics as a set of differential, or

25
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difference, equations.1 One virtue of using the replicator dynamics, as in Skyrms
(1996), is that the art of solving and analyzing systems of differential and dif-
ference equations has been pursued for years and, for many systems of interest,
exact solutions can be found and expressed in terms of familiar mathemati-
cal functions. When no such solutions exist, there are well-known methods
for generating numerical solutions to arbitrary precision. On the other hand,
no analytical techniques of comparable sophistication and generality exist for
agent-based models. Although some results can be established analytically, one
usually relies on computer simulation and Monte Carlo methods to demonstrate
the existence of tendency laws and long-term convergence behavior.

However, another more important trade-off exists. Aggregative models, by
their very nature, cannot represent the structure of society and social interac-
tions. Representing social structure requires one to specify the relations that
individuals stand in and, because aggregative models collapse differences be-
tween individuals through the use of statistics to represent the population state,
one cannot differentiate between two individuals who are identical with respect
to their genotype or phenotype. This can have important consequences, for it
has been known for a long time that structured interactions between individuals
can give rise to outcomes very different from those of unstructured interactions
(see Nowak and May, 1992).

These different outcomes come about, in part, because the replicator dy-
namics assumes that individuals engage in random interactions. That is, when
individuals meet to play a two-player game, the probability of any two indi-
viduals in the population meeting is equally likely. While this assumption is
plausible for certain biological systems – such as large populations of bacteria
in continously mixed environments – it is generally false for human interac-
tions. In human society, our interactions are constrained according to some
preexisting network of social relations, or the kinds of tasks we undertake dur-
ing the course of a given day. One tends to interact with one’s friends more often
than with total strangers and, more importantly, the significance accorded to
interactions with one’s friends and acquaintances is generally greater than that
accorded to interactions with total strangers. Interactions with friends typically
influence future behavior more readily than interactions with strangers.

Of course, merely identifying an assumption as false does not mean that the
model derived from that assumption is inaccurate or useless. There is a long

1 The difference between the two depends on whether one assumes that the state of the
population changes continuously from one time to another, or in discrete “jumps.” The two
formulations can disagree in their predictions regarding long-term convergence. See Weibull
(1995) for a detailed discussion of when the two approaches agree and disagree.
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tradition of instrumentalism in the social sciences, whose definitive statement
can be found in Friedman (1953), wherein the value of an assumption, or
theory, is to be measured solely in terms of its predictive power.2 Oversimplified
models derived from false assumptions often have great instrumental value, and
the replicator dynamics is no different. The relevant question, from our point
of view, is whether the absence of structure in aggregative models makes a real
difference in the predictions and analyses those models provide, and whether
including structure leads to the generation of models whose predictions and
analyses more closely agree with the observed behavior of individuals.

Including structure in evolutionary game-theoretic models makes a real dif-
ference in the long-term behavior of the model (see Durrett and Levin, 1994;
Alexander and Skyrms, 1999; Skyrms, 2003). Population states that are unsta-
ble in the replicator dynamics can be stable in structured agent-based models.
Moreover, as we will see in later chapters, incorporating structure into agent-
based models enables us to model situations whose long-term convergence
behavior more closely approximates the behavior found in real human popula-
tions. For example, evolutionary game-theoretic models incorporating structure
allow cooperation to persist in the prisoner’s dilemma, selection for universal
stag hunting in the Stag Hunt, fair division in the Nash bargaining game, and –
under certain circumstances – retribution in the ultimatum game. The fact that
a single family of evolutionary models accounts for such a wide variety of
human behavior, much of it in violation of the “predictions” of standard game
theory, is telling, especially considering that incorporating structure seems to
be a necessary requirement for this outcome, since many of these results are
not obtainable under the replicator dynamics. The structure of evolution plays
an important part in the evolution of social norms.

In what follows, I discuss several different classes of evolutionary game-
theoretic models that will be considered at length in subsequent chapters. Begin-
ning with the simplest aggregative model of interest, the replicator dynamics,
I then turn to agent-based models possessing an elementary social structure
defined by a social network. (Such models are also known as local-interaction
models in the evolutionary game-theoretic literature.) Since real social networks
feature a variety of topologies, we need to be sensitive to such concerns. Much

2 In Popperian spirit, Friedman claims that, “Viewed as a body of substantive hypotheses, theory
is to be judged by its predictive power for the class of phenomena which it is intended to
‘explain.’ Only factual evidence can show whether it is ‘right’ or ‘wrong’ or, better, tentatively
‘accepted’ as valid or ‘rejected.’. . . [T]he only relevant test of the validity of a hypothesis is
comparison of its predictions with experience. The hypothesis is rejected if its predictions are
contradicted (‘frequently’ or more often than predictions from an alternative hypothesis); it is
accepted if its predictions are not contradicted; great confidence is attached to it if it has
survived many opportunities for contradiction.”
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of the literature on local-interaction models – and, for that matter, many of the
agent-based models considered in the Artificial Life literature – suffer from the
shortcoming of assuming that the only relevant topology is that of a ring or a
two-dimensional lattice. These structures are important, especially for certain
applications of evolutionary game theory to biology, such as the competition
between types of bacteria on plates of agar, but their importance should not be
overstated. One also needs to consider other categories of social networks: such
as “small-world” networks,3 social networks in which the number of relations
each person has falls between a lower and upper bound, random hierarchical
structures, and, in general, random social structures. Lastly, another family of
evolutionary models employs a generalized social network in which the edges
represent the probability of two individuals interacting (see Skyrms and Peman-
tle, 2000). This family of models neatly bridges random-mixing models, like the
replicator dynamics, and agent-based models defined on social networks, show-
ing how an initially unstructured population may develop structure over time.

2.1 The replicator dynamics

Although the replicator dynamics cannot model social structure,4 it does have
the virtue of being completely neutral as to whether it models biological or
cultural evolution. The replicator dynamics was first introduced as a model of
biological evolution (Taylor and Jonker, 1978) and was later realized to admit
a cultural-evolutionary interpretation as well.

The simplest form of the replicator dynamics states that the frequency of a
strategy in a population increases or decreases according to how the expected
fitness of a person who uses that strategy compares with the average fitness
of the population. It is easier to express this idea mathematically, and we just
need a little notation to do so. Let si denote the frequency of strategy i in the
population, and denote the expected fitness of i in the population by F (i|
s).
(The “
s” symbol stands for the vector of strategy frequencies in the population.)
Then the replicator dynamics says that the instantaneous rate of change for si is

si

(
F (i|
s)− F (
s|
s)

)
, (2.1)

where F (
s|
s) denotes the average fitness of the population.

3 Networks in which the mean distance between any two nodes is surprisingly low, given how
few edges exist.

4 More precisely, the replicator dynamics cannot model social structure beyond the relatively
crude form of interactions between groups. Multipopulation, or multigroup, forms of the
replicator dynamics do exist and can capture social structure at one level.
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When the expected fitness of strategy i equals the average fitness of the
population, there will be no change in how many people use i. (The rate of
change of si equals zero, in this case.) However, when the expected fitness of i

is greater than the average fitness, more people will employ strategy i in the
future than are doing so now. (The rate of change of si is greater than zero, in
this case, which means that si is increasing, i.e., more people will use i in the
future than are doing so now.)

Let’s consider the biological derivation of the replicator dynamics. Suppose that
we have a large population of agents. Each agent has a certain phenotype, which we
denote by σ . For simplicity, assume that there are only finitely many phenotypes,
say σ1, . . ., σm. Without loss of generality, we can simply use the integer i to refer
to the phenotype σi .

Let ni denote the total number of agents in the population with the phenotype i,
with the total size of the population given by N =∑m

i=1 ni . If the only thing that
matters about each agent is their phenotype, all of the relevant information about the
population is contained in the state vector 
s = (s1, . . ., sn), where si = ni/N for all
i. Each si denotes the proportion of the population with phenotype i.

As time passes, the proportion of agents having certain phenotypes will change.
Let the growth rate of the ith phenotype be ri and assume that the rate of change in
the number of agents with phenotype i is proportional to the number of individuals
with phenotype i in the population, i.e.,

dni

dt
= rini . (2.2)

Given this expression for the rate of change of phenotype i, we calculate the rate of
change for the total population as follows:

dN

dt
= d

dt

(∑
ni

)
=

∑ dni

dt
=

∑
rini =

∑
risiN = r̄N, (2.3)

where the constant r̄ is defined to be
∑

risi .
Equation (2.3) provides an expression for the total change in the population over

time, but what we are really interested in is how the relative frequencies of each
phenotype change over time. Determining this means that we need to calculate the
rate of change of si :

dsi

dt
= d

dt

(ni

N

)
=

N
dni

dt
− ni

dN

dt

N 2
= ri(siN )N − r̄(siN )N

N 2
(2.4)

= si(ri − r̄).

Assuming that the current growth rate of ni is approximately equal to the expected
fitness of phenotype i, equation (2.4) may be rewritten as

dsi

dt
= si(F (i|
s)− F (
s|
s)), (2.5)

where F (
s|
s) denotes the average fitness of the population, i.e.,
∑m

i=1 siF (i|
s).
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Table 2.1. The payoff matrix for the
Hawk–Dove game

Hawk Dove

Hawk 1
2 (V − C) V

Dove 0 V /2

Equation (2.1) describes the continuous replicator dynamics, which assumes
that the increase or decrease of the phenotype frequencies occurs without well-
defined generational breaks; that is, it assumes that there is not a well-defined
notion of “the next generation” applying to the population. If the measure of
fitness is that of the expected number of offspring, we obtain the biological
interpretation of the replicator dynamics using Darwinian fitness.

How does one calculate the expected fitness for a given phenotype in a
population? One way conceives of the number of offspring as payoffs in a
game that each individual plays with the rest of the population (Maynard Smith,
1982). Each phenotype corresponds to a strategy in the game. The expected
fitness of an individual in a population, then, is simply the expected payoff of
that individual’s strategy in the corresponding game.

The classic example (see Maynard Smith and Price, 1973) is the Hawk–
Dove game.5 Two animals compete for a fixed amount of resources V , and
each animal follows one of two strategies: fight or yield. A “Hawk” always
fights and a “Dove” always yields. If a Hawk meets a Dove, the Dove yields
and so the Hawk gets to keep all of the resource. If two Doves meet, they share
the resource evenly. If two Hawks meet, they fight it out until one becomes
injured and retreats. If the cost incurred by an injured Hawk is C, and the
probability of each Hawk getting injured when they fight is equally likely, the
payoff matrix for the Hawk–Dove game is that listed in Table 2.1. If the number
of offspring that an animal has is directly proportional to the amount of the
resource it receives, the expected payoffs in the Hawk–Dove game correspond
to expected fitness.

The cultural evolutionary derivation of the replicator dynamics is a bit more com-
plicated. In this section, I discuss the derivation from Weibull (1995) and Björnerstedt
and Weibull (1999); there are other derivations of the replicator dynamics for cultural
evolutionary contexts as well.

5 Which was initially called the “Hawk–Mouse” game. Price’s religious commitments were such
that he objected to that symbolic use of the dove.
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Suppose that we have a population of boundedly rational agents who repeatedly
interact and play the game G, with strategies 1, . . ., m. In addition, let us suppose that
each agent wants to maximize their payoff from the game G, and so they will change
their strategy from time to time if they believe that they are not doing sufficiently
well.

More precisely, let’s suppose that each agent periodically reviews her strategy.
At the end of each review process, depending on the outcome, she may adopt a new
strategy. Although, in principle, each agent might review her strategy at her own
unique rate, let us assume that each agent following strategy i reviews her strategy
at the same rate ri .

When an individual reviews her strategy, what strategy will she adopt? There are
many heuristics a boundedly rational individual may use for selecting a new strategy.
Without worrying about the specific heuristic, at this time, let us simply denote the
probability that an individual following strategy i will switch to strategy j by p

j

i .
Can we say anything more specific about the way in which an individual reviews

her strategy? We can, if we make the following assumptions.

1. The number of times an agent reviews her strategy between time t and t +#t

does not affect the number of times that she reviews her strategy during another
interval, between t ′ and t ′ +#t ′. Let us call this the “no-burnout condition”
because it implies that the number of times an agent reviews her strategy in the
past has no effect on the number of times she will review her strategy in the future.

2. The average rate at which she reviews her strategy remains constant.

3. Each agent must finish reviewing her strategy before beginning to review it
another time.

The “no-burnout” condition is the most suspect of the above assumptions. However,
making them allows us to say something useful about the rate at which strategy
reviews and strategy switches occur in the population as a whole. These three
assumptions imply that the review time of each individual is a Poisson process.
Poisson processes have a number of useful properties, including that the aggregate
of a number of statistically independent Poisson processes is itself a Poisson process,
and the rate of the aggregate process is the sum of the individual rates.

If each individual strategy review and strategy switch is independent of every
other strategy review and strategy switch, and if the population is sufficiently large (a
euphemism for saying that we are really looking at the infinite limit), we can express
in a compact form the proportion of the population that reviews and switches its
strategy at any given time. In this limiting case, let us denote the proportion of the
population following strategy i that chooses to review it by siri . Similarly, let us
denote the proportion of the population following strategy i that switches to another
strategy j , after review, by sirip

j

i . Hence the total rate at which people start using
strategy i is ∑

j �=i

sj rj pi
j

and the total rate at which people stop using strategy i is∑
j �=i

sirip
j

i .
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The overall rate of change for the frequency of strategy i is just the difference of
these two:

dsi

dt
=


∑

j �=i

sj rj pi
j


−


∑

j �=i

sirip
j

i


.

A more useful form can be obtained by rearranging the expressions slightly.

dsi

dt
=





∑

j

sj rj pi
j


− sirip

i
i


−





∑

j

sirip
j

i


− sirip

i
i




=

∑

j

sj rj pi
j


− sirip

i
i −


∑

j

sirip
j

i


+ sirip

i
i

=

∑

j

sj rj pi
j


− siri

∑
j

p
j

i .

Since
∑

j p
j

i = 1, the rate of change of strategy i in the population is thus

dsi

dt
=

∑
j=1,...,m

sj rj pi
j − risi . (2.6)

Provided that the review rates ri and the probabilities p
j

i of individuals switching
strategies are Lipschitz continuous (see Weibull, 1995, pp. 153 and 232), equa-
tion (2.6) gives a well-defined set of dynamical laws for the cultural evolution of the
population. The evolution is “cultural” in the sense that the strategy an individual
follows is presumably determined by various beliefs she holds and, as those beliefs
change, so does her strategy. Hence change in the frequency of strategies in popula-
tion corresponds to change in the beliefs held by individuals – not to any substantive
biological change.

Equation (2.6) provides a set of dynamical laws, but it doesn’t yet have the form
of the replicator dynamics. This is because we have yet to specify exactly how people
review and switch strategies. This makes sense: obtaining the replicator dynamics as
a model of cultural evolution should require one to make certain assumptions about
how people review and switch their strategies. A population in which everyone
believed that the best way to change their strategy was to roll an m-sided die and
adopt whatever strategy corresponded to the outcome of the toss would not change
their beliefs in a way described by the replicator dynamics. The replicator dynamics
state that the future strategy frequencies are a nonrandom function of the present
strategy frequencies, and this is patently not true for a culture in which everyone
changes their beliefs by tossing a die.

One can derive the replicator dynamics from equation (2.6) by assuming that the
review rates and the change probabilities have a particular form. It is worth noting
that the form required is not at all unnatural: good reasons exist for thinking that
people do, at least some of the time, behave in the way required.

Gigerenzer et al. (1999) discuss a particular heuristic they call “take the last.”
According to this heuristic, a boundedly rational individual chooses the last option
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they’ve encountered. In our model, this means that an individual will adopt the
strategy held by the last person they’ve encountered from the population. If people
mix randomly, the probability that a person following strategy i will adopt strategy j

is just the frequency of strategy j in the population, i.e.,

p
j

i = sj . (2.7)

This provides a precise value for the probability that an individual will switch from
strategy i to strategy j , a quantity left unspecified until now.

Björnerstedt (1993) observed that, if the review rate decreases linearly with the
individual’s payoff (which means that individuals review their strategy less often as
their payoff increases), then equations (2.6) and (2.7) give the replicator dynamics.
The particular review rate Björnerstedt suggested had the following form:

ri = a − bG(i|
s),

where G(i|
s) denotes the expected payoff of strategy i in the population 
s, a, b ∈ R

with b > 0, and a/b ≥ G(i|
s).
From this, it follows that

dsi

dt
=

∑
j

sj rj pi
j − risi

=
∑

j

sj

[
a − bG(j |
s)

]
si −

[
a − bG(i|
s)

]
si

=
∑

j

(
sj sia − sj sibG(j |
s)

)
− si

[
a − bG(i|
s)

]
= sia

∑
j

sj − sib
∑

j

sj G(j |
s)− sia + sibG(i|
s)

= sia − sibG(
s |
s)− sia + sibG(i|
s)

= bsi(G(i|
s)−G(
s |
s)).

That is, a population of boundedly rational individuals who (a) choose to review their
strategies with a frequency according to their level of dissatisfaction, and (b) adopt
new strategies using the “take the last” heuristic, evolves – in the cultural evolutionary
sense – according to a rescaled version of the continuous replicator dynamics. Since
the constant b is a free parameter, setting b = 1 gives the continuous replicator
dynamics exactly.

2.2 Agent-based models on a social network

The replicator dynamics assumes that the population was infinite and that all
pairwise interactions were equally likely. The first assumption justified repre-
senting the population state by the vector of strategy frequencies 〈s1, . . ., sm〉
and allowed us to obtain a set of deterministic dynamical laws for the pop-
ulation as a whole from stochastic dynamics at the level of the individual.
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The second assumption, that the population mixes at random, allowed us to
identify the probability that an individual who follows strategy i will interact
with an individual following strategy j to be sj .6 Both play crucial roles in the
derivation of the replicator dynamics.

Taken together, there is a fundamental tension between these two assump-
tions, at least from the point of view of modeling human interactions. Real
human populations are very far away from being “essentially infinite.” More
significant, though, is the fact that the random-mixing hypothesis is false,
especially in the case of large populations. In London, simple geographic and
social constraints prevent all pairwise interactions from being equally likely.
The probability of East End boys and West End girls getting together is greater
in song than in reality.

Agent-based models differ from replicator dynamic models of cultural evo-
lution by dropping the assumption of essentially infinite populations. Agent-
based, social-network models further improve upon the replicator dynamics
by dropping the assumption of equiprobable pairwise interaction. The net ef-
fect increases the level of realism present in the model. Of course, not all
increases in a model’s level of realism necessarily count as an improvement:
replacing the continuous fluid dynamics underlying aerodynamic theory by a
discrete-particle model provides one example where an increased level of real-
ism imposes an undue cost. Any possible benefits of using a discrete-particle
model for aerodynamics are outweighed by the additional computational cost
imposed by the size of the system. Modelers should strive for additional realism
if and only if the sum total of accrued benefits outweighs the cost. Consider
some of the benefits of using agent-based, social-network models.

Small populations. The model population of rational actors may range in
size from very small to the size of any real, existent social group. Contrast this
with aggregate models like the replicator dynamics in which the population
must be exactly one size: infinite. It must be admitted that, because agent-
based models are typically studied computationally (due to a lack of good
general analytical techniques), in principle an upper limit on the size of the
model exists. In practice, this limit rarely presents a problem. Moreover, some

6 Note that here, too, is another case in which we need an infinite population. Suppose that agent
A follows strategy i. What is the probability that A will interact with another agent following
strategy i? Suppose that we have a finite population consisting of N agents in total, ni of which
follow strategy i. If all pairwise interactions are equally likely, the probability that A interacts
with another person following strategy i is (ni − 1)/N , since A cannot (presumably) interact
with herself. The frequency of strategy i in the population, si , is defined to be ni/N . Although
it is true that ni/N and (ni − 1)/N will agree in the infinite limit, the difference can be very
great for small populations.
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agent-based models have properties that are scale-invariant; in these cases one
can reliably infer the behavior of large models from smaller models. (See, for
example, the lattice models in chapters 3 through 6.)

Constrained interactions. Interactions between rational agents are said to
be constrained if the probability that any two agents selected at random from
the population will interact is not constant across the population. Agent-based,
social-network models provide a natural and general framework for handling
constrained interactions between rational agents.

Key agents. A key agent is one whose adoption of a different strategy sparks a
large-scale shift in the strategy frequencies found in the population. A key agent
occupies an Archimedean point, enabling her single action to alter radically
the future state of society. Such agents are the formal analogue of a Napoleon,
Caesar, or Ghandi – a single individual who, through particular circumstantial
effects applying uniquely (or almost uniquely) to himself or herself, exerts a
significant effect on the final long-term state of the population. Understanding
the effects that key agents may have on the long-term dynamics of a social
system, and what circumstances are conducive to the creation of key agents, is
crucial to our understanding of social systems in general, and social norms in
particular. (Consider, for example, how many existent moral norms stem from
the work of a single key agent such as Jesus, Mohammed, or Buddha.)

Despite the importance of key agents in social systems, the replicator dy-
namics cannot model them. Within the formalism of evolutionary models, a
key agent results from “mutation,” an unpredicted adoption of a particular strat-
egy, perhaps one that is utterly novel, by that agent. In an infinite population,
though, a single mutation does not change the strategy frequencies for that
population since a single mutation in an infinite population introduces only an
infinitesimal change. Since the replicator dynamics operates deterministically
on the strategy frequencies, the evolutionary path traced out by a population
after a single mutation is the same as it would have been had that mutation
never occurred.7 Yet modeling key agents requires that this at least exist as a
possibility.

7 Another way of putting the point is as follows: all mutation in the replicator dynamics occurs by
shifting the population from its current point to some other point in a sphere of radius ε

centered around its original position. Since the population is continous, the only possible
interpretation of the effect of the mutation is that a subgroup (consisting of many more than one
individual) switched strategies in unison, where the size of the sphere reflects the size of the
subgroup. A mutation by a single individual corresponds to an infinitesimal change but, from
the point of view of the replicator dynamics, x + dx is treated in the same way as x.
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Requiring that an evolutionary model be able to represent key agents sounds
akin to requiring that the model demonstrate sensitive dependence on initial
conditions, yet it is a strictly stronger criterion. Skyrms (1992, 1993) describes
cases of chaotic dynamics (and, hence, sensitive dependence on initial condi-
tions) for the replicator dynamics. Since we have just argued that the replicator
dynamics cannot model key agents, the two notions, though related, should not
be conflated. A key agent can be thought of as the limiting case of sensitive
dependence on initial conditions for finite models since, according to the infor-
mal definition of a key agent, a key agent corresponds to the smallest possible
change in the modeling conditions.

Viewed this way, we can see why continuous, deterministic dynamical sys-
tems cannot model key agents, even if they exhibit sensitive dependence upon
initial conditions. Sensitive dependence upon initial conditions means that the
evolutionary trajectory of two initial points x1 and x2 that are close (but not
identical) in state space diverge exponentially. However, continuity requires
that, as x1 approaches x2, the amount of time that it takes for the evolutionary
trajectories to diverge significantly increases. As x1 converges to x2, the evo-
lutionary trajectory beginning at x1 eventually converges to the evolutionary
trajectory beginning at x2. This is exactly the opposite of the behavior that
should occur in a model permitting key agents: part of the idea of a key agent is
that the smallest possible change permitted in the system should have sudden
and dramatic effects. Not only do continuous, deterministic dynamical systems
lack a well-defined concept of “smallest possible change,” but also they lack
the possibility of sudden and dramatic changes occurring independently of the
magnitude of the change.

Nondeterminism. As previously noted, the replicator dynamics provides a
deterministic dynamical model of cultural evolution. Although deterministic
dynamics provides reasonable approximations of certain biological phenomena
(such as the in vitro growth of bacteria or fungi), it is inappropriate for cul-
tural evolutionary models. The natural method of incorporating slight amounts
of nondeterminism into the replicator dynamics8 involves mutation: at each
generation some fraction ε of the population undergoes mutation. Given the
infinite-population assumption, this means that in each generation an infinite
number of agents undergo mutation, provided that ε > 0.

8 Recall the derivation of the replicator dynamics from the cultural evolutionary point of view.
The primary reason for considering the limit as the population grew without bound was to wash
out stochastic effects occurring on the individual level. There is something perverse, then, about
reintroducing stochastic effects into the system afterwards.
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Heterogeneity. Another shortcoming of the replicator dynamics that is sel-
dom discussed in the surrounding literature concerns its requirement that agents
be homogeneous, except for their strategy; see, for example, the derivation of
the replicator dynamics in a cultural context by Bögers and Sarin (1993), as
well as the derivation above. One way to remove the homogeneity assumption
introduces several disjoint populations of individuals who do not interbreed,
yet repeatedly interact and receive payoffs according to some common game
(see Gale et al., 1995). This solution seems ad hoc.

The requirement of homogeneity is also problematic if we seek an em-
pirically adequate model of cultural evolution. Since differences in learning
rules, interaction styles, and the like exist in real populations, we must take
this heterogeneity seriously. Whether heterogeneity results in any significant
dynamical effects depends, of course, on the model under consideration. How-
ever, given the complexity of social-network models, and the possibility that
heterogeneity may result in effects that we might not be able to predict ahead of
time (such as the emergence of feedback loops in which different types of agent
play off one another’s presence in unexpected ways, as in the autocatalytic sets
of Kauffman (1993)), it does not seem unreasonable to suggest that, if a model
indicates the emergence of certain effects from homogeneous populations, we
should view these results with caution until it can be shown that the occurrence
of such behavior does not depend on the assumption of homogeneity.

Whereas the above list primarily contains properties possessed by agent-
based models that are not shared by the replicator dynamics, there are two
important senses in which agent-based models and the replicator dynamics
are similar. Both model interaction between boundedly rational individuals
and both can be interpreted as models of cultural evolution. These similarities
allow us to view agent-based models as a natural refinement of the replicator
dynamics. Indeed, one can show that, under certain circumstances, agent-based
social-network models converge in the limit to the replicator dynamics (Skyrms,
2003).

Many of the above remarks argued that, in one way or another, agent-
based models, particularly ones situated on a social network, are preferable
to aggregate models. However, it should be noted that the models developed
below clearly fail to do justice to many of the complex features present in, and
driving, human social interaction. It would be a mistake to view these models
as offering anything more than a modest improvement over the replicator
dynamics. However, even with these limitations and inadequacies, the following
models are worthy of study in their own right for two reasons. First, the slight
improvement they offer improves our understanding of the process of cultural
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evolution. Second, the structural approach discussed below has the advantage of
providing a single formalism that is sufficient for modeling a number of different
cultural phenomena, one phenomenon for each possible interpretation of the
“connection” relation in the social network. Regarding the proper interpretation
of this relation, I shall remain silent.

2.2.1 Agent-based, social-network models

An agent-based model contains a finite population P = {a1, . . ., aN } of agents.
A social network is a relation, or set of relations, defined on the population
that serves to constrain the possible interactions between agents. We denote
the social network (sometimes also called a population structure or a local-
interaction structure) specifying the set of possible interactions by a connected,
undirected graph (P, E), where E denotes the set of edges of the graph.

We assume that the social network is connected simply because this rules
out the possibility of having two noninteracting groups inside a population,
although in some cases we will allow for the possibility of unconnected social
networks. Considerations of simplicity also underlie the assumption that the
network is undirected, i.e., that, if a can interact with b, then b can interact with
a. There is no a priori reason why this has to be true, but it provides a natural
starting point. Since considering evolutionary models defined on connected,
undirected social networks already introduces a host of complexities, I shan’t
pursue anything further at this time.

The neighborhood of an agent a, denoted νa , is the set of all agents b such
that an edge connects a to b. That is, {a, b} ∈ E. The members of νa are known
as the neighbors of a. One useful visualization of a social network represents
it in the following way: each agent corresponds to a vertex of the graph. The
entire population can thus be represented by a number of circles arranged in a
ring, each circle representing a vertex of the graph, and hence a single agent.
The edges of the graph, representing various social relations that determine
who interacts with whom, are indicated by lines connecting the vertices. Two
vertices are connected by a line if and only if the corresponding agents stand
in the relevant social relation to each other. Figure 2.1(a) illustrates a social
network consisting of thirty agents and figure 2.1(b) shows the neighborhood
of one particular agent.

The social network enters into the evolutionary dynamics in several ways.
To begin, as before, we assume that there is some particular game that the
agents play when they interact. The only restrictions placed on the nature of
the game are that it be noncooperative and have at most a finite number of
strategies, say m.
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(a) A thirty-agent social network (b) A node and its neighbors

Figure 2.1 Network and neighborhood. The large gray circles are the neighbor-
hood of a randomly selected agent, indicated by the large black circle.

In each round of play, each agent a interacts with every player in his neigh-
borhood νa , receiving a total score equal to the sum of payoffs from each
individual game. At the end of each round of play, every agent engages in a
review process, comparing his score with the score of each of his neighbors. If
an agent’s score is lower than that of at least one of his neighbors, that agent will
switch strategies by adopting one of his neighbors’ strategies. For all models
except that of section 2.2.5, an agent’s score is not cumulative; high scores
obtained at earlier stages in the game play no role in determining what agents
will do in the future.

If an agent judges his current strategy to be inferior, according to some
criteria, how does he select a new strategy to adopt? Just as real people can use
a number of different heuristics to solve problems, depending on the context,
there are various update, or learning, rules that an agent may use. We will
consider four different rules, three based on imitation and one based on a
version of best response tailored to boundedly rational individuals. Each rule
has a certain degree of intuitive plausibility, and each corresponds to a good
heuristic for certain classes of problems.

Imitate the best neighbor. This is a very natural and common learning rule in
the modeling literature; for a brief sampling, see Nowak and May (1992, 1993),
Lindgren and Nordahl (1994), Huberman and Glance (1993), and Epstein
(1998), among others. According to this rule, at the end of each generation,
every agent surveys the scores of her neighbors and adopts the strategy of the
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one who did the best, where “best” means “earned the highest score.” We also
assume, here and elsewhere, that an agent will not switch strategies unless she
has some incentive to do so; if the highest scoring neighbors of an agent still
managed to earn lower scores than her, the agent will not switch strategies.

There is one minor detail that needs to be mentioned. For some games and
some networks, it is possible that, when an agent goes to update her score,
several of her neighbors may have tied for first place. In this case, how does
the agent choose a strategy to adopt? We need to specify a tie-breaking rule
that selects a unique strategy in such circumstances. In general, whenever this
happens we assume, unless noted otherwise, that a strategy is chosen by rolling
a weighted die. The weights on the die reflecting the number of times the
strategy tied for first place.9 So, for example, if the best score in an agent’s
neighborhood was obtained by two people following strategy 1, three people
following strategy 4, and one person following strategy 5, that agent will adopt
strategy 1 with probability 1

3 , strategy 4 with probability 1
2 , and strategy 5 with

probability 1
6 .

Imitate with probability proportional to success. Here, as before, each
agent compares her score with those of her neighbors, modifying her strategy
only if at least one neighbor did strictly better. However, instead of ignoring
those players who did better than her but were not the best, this rule assigns to
every neighbor who did better a nonzero probability that she will adopt their
strategy.

Suppose that b did better than a. The particular probability assigned is
proportional to b’s relative success, where this is simply the difference between
their scores. The greater this value, the more likely it is that a will imitate
b. More precisely, suppose that d is the difference between b’s score and a’s
score. Let T be the sum of all of these differences for those members of a’s
update neighborhood who did better than a. Then the probability that a will
adopt b’s strategy is d/T .

Imitate best average payoff. This learning rule has players calculate the
average payoff of each strategy in their neighborhood and select the one with
the highest value. As with imitating the best neighbor, the possibility of ties

9 This seems reasonable since, if several neighbors of an agent A follow σ and receive the highest
score in νa , it would be unwise for A to ignore this information. The simplest way for A to take
this information into account is to let the probability of choosing strategy σ be a linear function
of the number of people in her neighborhood who follow that strategy. More complicated
functions could be used to model risk-averse players who require a certain number of neighbors
to follow a maximal strategy before they consider adopting it.
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exists, so some kind of tie-breaking rule needs to be given. We use a rule similar
to one given previously, the only difference being that instead of randomly
choosing a strategy from the set of highest-scoring strategies, we randomly
select a strategy from the set of strategies that tie for having the highest average
payoff. This learning rule models agents who base their judgment on the general
performance of a strategy over the entire group of people who use it. Note,
though, that in using this rule agents explicitly ignore the sample size. A high-
scoring strategy used by one neighbor will be favored over a very good but not
quite as high-scoring strategy used by several neighbors.

Best response. According to this rule, agents adopt the strategy that will
confer the highest payoff in the next generation, under the assumption that
none of their neighbors change strategies.10 If there is more than one such
strategy, players select a strategy to adopt at random. This rule deviates slightly
from the spirit of evolutionary game theory since the persistence of a strategy
is not determined by its success in the current generation, but rather by a
calculation of the expected payoff a player might reasonably expect to receive
in the next generation. However, it is still in the spirit of models of boundedly
rational action since agents do not engage in strategic calculations to figure out
what strategies their neighbors will use at future times; instead, they blithely
proceed on the assumption that the people around them will continue to do
what they have done in the past.

One of the benefits of modeling constrained interactions between agents via
social networks, as defined above, lies in the generality of the approach. Any
possible social relation relevant to determining interaction between individuals
can be modeled, so long as the relation is symmetric,11 reasonably constant
over time,12 and connects the entire population. Yet this generality comes at a
cost. The number of different social networks13 grows very rapidly with the size

10 In the language of Kavka (1986), the agents reason inductively rather than strategically.
11 A relation R is symmetric if aRb implies bRa. Equality is a symmetric relation, but the

greater-than relation is not.
12 Relations that are not constant over time require that we use a slightly different conception of a

social network. See section 2.2.5 for details.
13 Determining whether two social networks are “different” can either be very easy or very

difficult, depending on how one construes the problem. If the identity of the agents is not taken
into account, then determining whether two social networks are different amounts to
determining whether two graphs are isomorphic. This is a very difficult problem, although
exactly how difficult remains unknown. It has not yet been proven to be NP-complete – and,
indeed, complexity theorists suspect that it is not – but no one has yet been able to prove
exactly what the complexity class of the graph-isomorphism problem is. If the identity of the
agents is taken into account, then two social networks can be shown to be different (or
identical) by straightforward, and relatively rapid, calculation. See Skiena (1990).
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Figure 2.2 A semi-regular social network.

of the population14 and two randomly chosen social networks may have very
different structural properties. For this reason it will prove useful to investigate
cultural evolution on social networks by classifying social networks according
to their structural properties, checking to see how, if at all, variations in a
network’s structure affect the long-term evolutionary behavior. That is what we
now turn to.

2.2.2 Lattice models

In some cases, the circular-graph representation of a social network is not
the most illuminating. Consider the social network shown in figure 2.2. The
regularities present in that network suggest that there may be something special
about its structure, especially in contrast with a random network like that of
figure 2.1(a). Rearranging the nodes, as in figure 2.3, shows that the structure
of the network is that of a two-dimensional lattice, a fact hidden by the standard
graph representation. Other networks have this property. Figure 2.4 shows a
second network, which, upon rearranging the nodes, reveals another regular
lattice-like structure, albeit a slightly more complicated one.

What the networks of figures 2.2 and 2.4 have in common is that the regu-
larity in their structure is revealed when we position the nodes on a lattice. A
close look at the exact way in which the nodes are connected shows something
else: in both figures the nodes are connected according to their relative spatial
position. In figure 2.3, each node, except for those on the lattice boundary, is

14 If the population size is N , then the number of possible social networks (both connected and

unconnected) is 2(N
2 ) = 2

N (N−1)
2 .



Figure 2.3 Topological transformation of a social network.

Figure 2.4 Another topological transformation.
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(a) A one-dimensional lattice model

(b) A two-dimensional lattice model

(c) The radius of interaction in a one-dimensional
lattice model

Figure 2.5 Types of lattice models.

connected to neighboring nodes located at the four cardinal compass points:
north, south, east, and west. In figure 2.4, each node, except for those on the
lattice boundary, is connected to its eight “nearest neighbors.”

Lattice models are a special kind of social network in which the connections
between agents are defined spatially. Each agent is considered to be located at
some cell on an N -dimensional grid, and every cell in the grid is occupied by
exactly one agent. In the one-dimensional case, this means that the agents live
on a line, as shown in figure 2.5(a). In the two-dimensional case, the agents live
on a sheet of graph paper, as in figure 2.5(b). Three-dimensional lattice models
take place in a cube-shaped lattice, and so on.

In the one-dimensional case, the neighborhoods are defined by specifying an
interaction radius r . Every agent located within r cells of the agent a belongs to
νa . Figure 2.5(c) illustrates the neighborhood for the centermost agent, defined
by an interaction radius of 3. In the two-dimensional case, one has greater
flexibility in the design of a neighborhood. Some common neighbors for the
two-dimensional case are shown in figure 2.6. Looking at these neighborhoods
reveals that the network of figure 2.3 can thus be thought of as a two-dimensional
lattice model using the von Neumann neighborhood (where individuals on the
boundary have fewer neighbors than individuals in the interior of the lattice).
Similarily, the network of figure 2.4 can be thought of as a two-dimensional
lattice model using the Moore (8) neighborhood.
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(a) von Neumann (b) Moore (8) (c) Moore (24)

Figure 2.6 Three common neighborhoods for two-dimensional lattices.

2.2.3 Small-world networks

The primary virtue of lattice models is that they work well for modeling social
networks in which the social relations are correlated, in some fashion, with
the spatial positions of the agents. For social systems in which the relevant
relations are not correlated with spatial position, other network models need
to be developed. The question, then, is that of how to choose an appropriate
network model from the large set of possible networks. At this point it proves
useful to consider some results from social psychology.

Most people, at some point in their life, have experienced the following
phenomenon: at a social event you begin talking with a stranger and, in the
course of the conversation, it becomes clear that you both know the same
person. This experience, the small-world phenomenon, has entered popular
culture as the belief that any two people in the world are connected by a
short sequence of friends, family, and acquaintances – the so-called “six de-
grees of separation.” This popular story has its roots in experimental social
psychology.

In 1967, Stanley Milgram conducted an experiment in which he sent a
number of letters to people living in Omaha, Nebraska, with the request that
they forward the letter to a named “target” living in Boston. If the person who
originally received the letter did not know the named target, the recipient was
requested to mail the letter to someone they personally knew whom they judged
more likely to know the target. Milgram provided some information about the
target, such as his or her job and the general area in which they lived, so that the
recipient of the letter had some information on which to decide whom to mail
the letter to. The sequence of mailings thus initiated formed a chain connecting
the original recipient to the target. What Milgram found was that, of the sixty
letters successfully received by the target, the average number of people in the
chain was about six.
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No one yet knows whether we are all connected by “six degrees of separa-
tion,” although additional experiments are being conducted. Yet, even if it is not
true, strictly speaking, it is at least approximately true for many kinds of social
networks. For the sake of argument, suppose that it is true; that is, suppose that,
in the social network mapping the relation “is a friend or an acquaintance of”
for the entire world, the average distance of the shortest path connecting any
two nodes is about six.

Consider what this implies about the shape of the network. According to
the 2001 world-population data sheet compiled by the Population Reference
Bureau, there were a little more than 6.1 billion people on the planet mid-way
through 2001. The total number of possible edges in a social network containing
6.1 billion people is

2(6 100 000 000
2 ) = 2

6 100 000 000×6 099 999 999
2 ≈ 21.86×1019

.

Each person in the world knows only a very small fraction of the 6.1 billion
people, and so contributes a very small number of edges to the world’s social
network. People are generally quite bad at estimating their total number of
friends and acquaintances, so it is difficult to determine a person’s average
number of friends and acquaintances, but let’s err on the side of safety and
suppose that each person knows 10 000 other people – an overestimate, to be
sure. This means that the total number of edges in the network is about 3.05×
1013 (6.1× 1013/2, dividing by two was necessary to avoid counting each edge
twice), or about 0.000 05 percent of the total number of possible edges. The
close connectedness of the network is remarkable in light of its sparsity.

Sparse, clustered networks in which the typical path length between any two
nodes is nonetheless low were dubbed “small-world” networks by Watts and
Strogatz (1998) (see also Watts, 1999). Figure 2.7 illustrates what a small-world
network might look like. Each node in the network belongs to a relatively small,
clustered group. In the network displayed, each node connects to at least ten
others, five to the “left” and five to the “right”; call these edges cluster edges.
In addition, some nodes have additional edges, which link them to a randomly
chosen node elsewhere in the network; call these edges bridge edges.

If the only connections which existed were the cluster edges, the network
would not be a “small-world” network. The only path connecting two nodes
located on opposites sides of such a network would involve following a chain of
connections around the ring to arrive at the other side. The inclusion of bridge
edges serves to greatly shorten paths between nodes because they function as
“short cuts.”

For a concrete example of the importance of bridge edges in collapsing
social distance, consider the variant of the “six degrees of separation” story
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Figure 2.7 A small-world network (the box indicates the zoomed region).

that says everyone is only six handshakes away from anyone else in the world.
Now, I grew up in Alaska, I have a number of friends who still live there, and
a few acquaintances who have never left. According to the handshake story,
all of my friends are only six handshakes away from every head of state. How
is this possible? Not long ago, I shook hands with the son of a head of state.
Assuming that the son and his father shake hands, that gives me a “handshake
distance” of 2 between myself and the leader of that country, and my friends a
“handshake distance” of 3. Heads of state often shake hands when they meet
during official state functions as a sign of good will, and the social network
of current heads of state is fairly well connected. It is likely, then, that my
having shook hands with a son of a head of state places me within a handshake
distance of 5 of every head of state. If so, then all of my friends in Alaska are
within a handshake distance of 6 of every head of state – just as the variant of
the “six degrees” story requires. In this context, I function as a “bridge edge”
between my friends who have never left Alaska and the current heads of state,
connecting two otherwise isolated groups.

Watts (1999) provides three different algorithms for producing small-world
networks. We will adopt a variant of the algorithm known as the “β-model.” In
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our variant of the β-model, small-world networks are generated in the following
way.

1. Begin with a one-dimensional lattice (considered to wrap at the edge) with
a fixed interaction radius r .

2. For each edge e = { i, j } in the network, do the following.
(a) Generate a uniform random number s between 0 and 1.
(b) If s < β, add another edge to the network connecting one of the

vertices incident on e to another randomly chosen node in the network.

For certain values of β, typically between 0.001 and 0.1, the network produced
by this algorithm is a small-world network. It is important not to use too large
a value of β since then the resulting network will more closely resemble a
randomly generated network than a small-world network.

2.2.4 Networks of bounded degree

Another kind of social network, different in kind from lattice models and
small-world networks, consists of one in which the number of edges each
node is incident on (the degree of a node) is constrained between a certain
minimum value, denoted kmin, and maximum value, denoted kmax. Figure 2.8
shows nine such networks, for various values of kmin and kmax. These networks
fill an important area between lattice models, small-world networks, and com-
pletely random graphs. Both lattice models and small-world networks share the
property that each node has almost the same number of neighbors, where the
neighbors of each node occur in a more or less regular pattern.15 Networks of
bounded degree share the property that each node has almost the same number
of neighbors (provided that the difference between kmin and kmax is not too
great) but do not require that the wiring pattern of the network display any
regularities. Such networks are not “truly random” networks, because of the
enforced limits on the degree of each node, but they are as “random as one can
get” within those limits.

2.2.5 Dynamic networks

In all of the social networks considered thus far, the presence of an edge be-
tween any two agents means that those two agents will interact every generation.

15 The number of neighbors is only “almost” the same because, in lattice models, networks with
fixed boundary conditions give nodes on the edge of the lattice fewer neighbors than nodes in
the interior of the lattice. Small-world networks, as defined by Watts (1999), hold the degree of
each node fixed, rewiring a small subset of edges to turn them into shortcuts.
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(a) Three networks of twenty nodes with kmin = 1, kmax = 2

(b) Three networks of thirty nodes with kmin = 1, kmax = 3

(c) Three networks of thirty nodes with kmin = 2, kmax = 3

Figure 2.8 Examples of networks in which all degrees are bounded between
kmin and kmax.

Although this assumption is plausible for certain kinds of interdependent de-
cision problems, it might also be the case that some pairs of agents are simply
more likely to interact than others. This scenario cannot be represented in the
framework discussed so far. In our current setup, either two agents interact or
they don’t. We have not discussed mechanisms by which the social network can
change; neither have we allowed for the possibility of probabilistic interactions
between agents.

A more general conception of a social network addresses these concerns by
changing the semantics of the edges in two ways. First, we allow the network
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to be directed. That is, we treat the edge connecting a to b as different from the
one connecting b to a. Second, every possible edge is present (except for edges
connecting a node to itself), and is assigned a weight w. The weight is converted
into the interaction probability of the two individuals connected by the edge,
using the method described below. It can also be thought of as a measure of
the social distance between the two individuals. The entire social network is
thus a matrix of numbers listing the respective social distance between any two
people.

For a population of seven people, one such social distance matrix is the
following:



0 0.101 0.264 0.125 0.182 0.212 0.117
0.309 0 0.074 0.195 0.254 0.036 0.133
0.453 0.242 0 0.076 0.124 0.019 0.085
0.283 0.178 0.07 0 0.009 0.261 0.199
0.193 0.302 0.034 0.083 0 0.16 0.228
0.407 0.068 0.036 0.192 0.154 0 0.142
0.123 0.08 0.373 0.26 0.062 0.102 0




According to the above, the probability of agent 1 interacting with agent 5 is
0.182, and the probability of agent 5 interacting with agent 1 is 0.193. One
useful visualization of such networks is shown in figure 2.9 for several weighted
networks, including the seven-member one displayed above. In these diagrams,
the edge representing the probability of a interacting with b is a directed edge
pointing from a to b. The actual probability is represented by the darkness
of the arrow: a probability of 1 corresponds to a completely black arrow, a
probability of 0 corresponds to a completely white arrow, and probabilities in
between are mapped onto the appropriate level of gray.16

Dynamic networks allow us to model the process of social-network forma-
tion. The model described here is taken from the work of Skyrms and Pemantle
(2000) on dynamic models of social-network formation. The basic idea is as
follows: suppose that, at the beginning, all pairwise interactions are equally
likely (note the similarity to the replicator dynamics) and are set to some base
value b. For relatively small models, one can take b = 1/(N − 1), where N is
the population size.17

16 Intuitively, an interaction with a probability of 1 is “always present” and an interaction with a
probability of 0 is “never present.” Printed on white paper, a completely black arrow is “always
present,” and a completely white arrow is “never present.” Gray arrows are easier to see the
darker they are, i.e., the closer to a probability of 1.

17 This is not a plausible assumption for large models because the probability of two agents
interacting converges to zero. In large models, one could initialize the network in a number of
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Figure 2.9 Five randomly weighted networks, N = 3, 5, 7, 9, and 11.

In the original paper by Skyrms and Pemantle, each generation every agent
chooses one neighbor to interact with at random, according to the probabilities
specified in the social-distance matrix. Each agent plays the game with those
neighbors, and both individuals receive a payoff according to the payoff matrix
for the game. (Another variant of this model we shall consider allows each agent
to select several neighbors to interact with, according to the probabilities in the
social-distance matrix.) At some later time, each agent adjusts her interaction
probabilities on the basis of the payoffs she has received so far.

More precisely, suppose that each edge in the lattice has an initial weighting
of one. That is, wij = 1 for all i �= j and let wii = 0 for all i. Let the probability
of i interacting with j be

Pr(i interacts with j ) = wij∑
k �=i wik

. (2.8)

ways; one natural one would begin with a basic lattice model, but set the probability of two
agents’ interaction according to a decreasing function of their distance apart (defined to be the
length of the shortest path) in the lattice.
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By setting the initial weightings wij = 1 for i �= j , the beginning probability
of i interacting with j is thus 1/(N − 1) for all i. Suppose that, in the first
round of play, i interacts with agents 1, 4, and 12, receiving payoffs of p1, p4,
and p12, respectively. If i chooses to adjust her interaction probabilities after
this round of interaction, she will adjust the weightings assigned to interacting
with agents 1, 4, and 12 as follows:

w′i1 = wi1 + p1,

w′i4 = wi4 + p4,

w′i12 = wi12 + p12.

As long as the possible payoffs are nonnegative, the new weightings thus
obtained will still yield a probability when normalized according to the rule in
equation (2.8). Continuing this evolutionary procedure yields a model in which
the social network changes over time.

Once we allow for the possibility of the social network evolving over time,
we need to consider the question of the relation between the dynamics governing
the evolution of the social network and the dynamics governing the evolution
of individual strategies. Do people change their strategies faster or slower
than the social network changes? We can parameterize this by introducing a
few new global parameters. Let pe denote the probability that a given agent
will adjust her edge weights at the end of any generation, and let ps denote
the probability that a given agent will adjust her strategy at the end of any
generation, according to one of rules described in section 2.2.1. If ps < pe,
this means that the structural evolution of the social network occurs faster than
the evolution of individual beliefs. Since we will usually consider the case in
which the strategic dynamics is slower than the structural dynamics, we may
fix pe = 1 and allow ps to vary between 0 and 1.
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Cooperation1

Clyde Barrow and Bonnie Parker’s crime spree ended violently in the early
morning of May 23, 1934. After their having evaded the law for almost two
years, a posse composed of police officers from Texas and Louisiana intercepted
the couple on a highway near Sailes, Louisiana. Ordered to turn themselves over
to the law, Bonnie and Clyde instead attempted to flee. The officers opened fire,
killing the duo almost instantly. There is no indication that Bonnie and Clyde,
even at the very end, ever considered disbanding their criminal cooperative.

Such teamwork is the stuff of legends, but we might wonder what would have
happened if the story had ended differently. Suppose that Bonnie and Clyde had
met with a less fiery end, an end similar to that of Al Capone: being arrested
on charges of tax evasion. To make the story interesting, suppose that, after
being arrested, taken to prison, and placed in separate isolation cells, Bonnie
and Clyde both receive a visit from the district attorney. The district attorney,
speaking to each in private, lays his cards on the table: he knows that Bonnie
and Clyde are each guilty of far worse things than tax evasion, but confesses
that he can’t prove it. However, if one person turns state’s evidence against the
other, the district attorney promises that he will give the helpful soul a minimal
sentence while throwing the book at the other. “Of course,” the district attorney
admits before leaving the cell, “if you both talk, then I can convict you both,
and neither one of you will get off easy.”

The interdependent decision problem Bonnie and Clyde face in this possible
world is the well-known prisoner’s dilemma first introduced by Merrill Flood
and Melvin Dresher in 1950. It has the form shown in figure 3.1. The prisoner’s
dilemma encapsulates the strategic problem of cooperation when individual
and collective interests conflict: when choosing the collectively best outcome

1 Portions of this chapter were drawn from Alexander (2003).
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Stay silent Turn state’s evidence

Stay silent
− 7

−7
−2

−50

Turn state’s evidence
−50

−2
−30

−30

Figure 3.1 The prisoner’s dilemma. Payoffs are listed for (row, column). Values
indicate number of years in jail and are negative to reflect the fact that it is time
taken away from one’s life. It is assumed that less time in jail is better, so both
prisoner’s favor the option that confers the least amount of time in jail, i.e., the
negative number closest to zero.

produces a suboptimal result from the point of view of the individual. The
apparent paradox of the prisoner’s dilemma is that, if each individual selects
what appears to be the best option available, in that it maximizes one’s personal
payoff no matter what the other person chooses, this leads to a state of affairs
less desirable than an alternative that could have been obtained had they acted
otherwise.

In the story above, Clyde might very well reason as follows: “If I stay silent,
I might serve a sentence of only seven years for tax evasion. However, Bonnie
could capitalize on this by turning state’s evidence, forcing me to go to prison
for fifty years. Although I don’t like the thought of going to prison for seven
years, I prefer it to knowing that Bonnie got off by doing minimal time while
I rot in jail. And besides, if I turn state’s evidence, I could always be lucky
and get off with a minimal sentence if Bonnie should be foolish enough to stay
silent. Thus I will tell the district attorney whatever he wants to know.” Bonnie,
pursuing reasoning similar to Clyde’s, would arrive at the same decision. The
net result lands each person in jail for thirty years. The irony of the situation is
that each person, by choosing the option insuring the best possible outcome no
matter what the other person does, arrives at a suboptimal state.

It is a long way from Louisiana to the state of nature, but the same problem
arises there, too.2 Hobbes’s conception of the natural condition of mankind
conceives of life in the state of nature as presenting individuals with essentially
a prisoner’s dilemma; we need only modify the labels on the strategies. Imagine
a situation in which people are essentially equal in strength, no effective civil
authority exists to provide protection, resources are in short supply, and all
of one’s possessions are coveted by others. In such circumstances, people can
either choose to “lie low” or “anticipate,” where choosing to “lie low” means

2 At least under some interpretations (see Kavka, 1986). However, in his introduction to
Leviathan, Curley (1994) argues that Hobbes’s state of nature is better represented using the
Assurance game, or the Stag Hunt. We’ll consider the Stag Hunt in chapter 4.
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that one does not engage in any initial offensive attacks (to take someone else’s
goods) and choosing to “anticipate” means that one does initiate offensive
attacks.3 Figure 3.2 represents, in a more general form, the problem of strategic
choice in the state of nature. Since we do not know the actual payoffs individuals
receive from their various actions, variables replace the numerical values inside
the matrix.4 The prisoner’s dilemma results whenever an individual’s payoffs
for the two actions are such that T > R > P > S and (T + S)/2 < R.5 This
ranking agrees with the pairing of strategies in the state of nature: the worst
outcome arises from choosing to lie low, letting someone else make the first
attack; the next worst outcome comes from mutual aggression (both people
anticipating); the most peaceful outcome has both parties not initiating attacks;
however, as initiating offensive attacks tends to increase one’s power (by forcing
others to turn their power to one’s own end) and thus increases one’s ability to
satisfy his desires, this is the most individually advantageous outcome.6

3 This terminology is due to Kavka (1986).
4 In all likelihood, individual payoffs for the various actions vary from person to person.

Although Hobbes does not allow for absolute pacifists in the state of nature (people who would
choose not to anticipate no matter what), working within a Hobbesian framework we can still
allow for variability in individual inclinations towards anticipation. Extreme dominators,
presumably, would highly value anticipation over lying low, whereas the meek’s preference for
lying low would be reflected in a greatly reduced preference for anticipation. All we need to
insure that pairwise competition among individuals in the state of nature can be formulated as a
prisoner’s dilemma is that, whatever individual payoffs may be, they all fit the pattern that
T > R > P > S. However, it should be noted that, because many of the following results
depend greatly on the particular values of the payoff matrix, it is not obvious that allowing for
individual variation in the payoff matrices will not affect the outcomes of the dynamics.
Determining the influence of individual variation in the payoff matrices on the dynamics
remains an open question.

5 The variable names were chosen to assist in remembering this ordering, standing for,
respectively, “temptation,” “reward,” “punishment,” and “sucker.” We require that
(T + S)/2 < R so that repeated alternation of defection and cooperation is less desirable than
repeated cooperation. In this chapter, I will at times refer to games in which T > R > P > S

but (T + S)/2 ≤ R as a prisoner’s dilemma as well.
6 One objection to representing the problem of strategic choice in the state of nature in this way is

that it clearly ignores additional complexity introduced by the possibility of repeated
interaction. Might not players opt for “friendly” behavior (here, lying low) in early stages in
order to arrive at a pattern of mutually beneficial cooperation? Although Hobbes does not
explicitly consider repeated interaction among individuals in the state of nature, it turns out that
doing so would not make any difference. One can argue that defecting behavior dominates in
the repeated prisoner’s dilemmas just as it does in the one-shot prisoner’s dilemma (see Luce
and Raiffa, 1957). Suppose that A and B play a prisoner’s dilemma repeated N times. When A

and B arrive at the final stage of the game, A will recognize that his behavior at this stage
cannot possibly influence B’s future behavior (since there are no more stages after this one).
Thus, the N th stage of an N -stage prisoner’s dilemma poses exactly the same strategic problem
as a one-shot prisoner’s dilemma. As argued for above, both A and B will choose to defect
(here, anticipate). However, since A’s and B’s behavior in the final stage of the game is known
ahead of time, the N -stage prisoner’s dilemma reduces to a repeated prisoner’s dilemma having
N − 1 stages. Continuing this backward induction gives the conclusion that the unique
dominating strategy in the N -stage repeated prisoner’s dilemma has both individuals defecting
(anticipating) at each stage. This corresponds nicely to Hobbes’s conclusion.
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Lie low
(cooperate)

Anticipate
(defect)

Lie low (cooperate)
R′

R

T ′

S

Anticipate (defect)
S ′

T

P ′

P

Figure 3.2 Individual choice in the state of nature.

Hobbes argued that, in the absence of a strong, centralized, coercive, effec-
tive authority capable of imposing sanctions, the state of nature decays into a
war of all against all. In such a situation, life is “evil, nasty, brutish, and short.”
In the absence of any reasonable guarantee that one will enjoy the fruit of one’s
labor, society cannot flourish because productivity will cease.

Yet one might wonder whether the state of nature would really be as bad as
Hobbes envisions. People do often cooperate in situations having the formal
structure of a repeated prisoner’s dilemma. In the absence of any kind of
enforcement mechanism to insure that good behavior will be reciprocated
in turn, why should one cooperate? Do self-interested rational actors need
society’s sword hanging over their heads to make them cooperate?

3.1 The replicator dynamics

Consider the problem of modeling the interactions of boundedly rational agents
in the state of nature. Let L denote the strategy of “lying low” and let A

denote the strategy of “anticipating” (i.e., of initiating offensive attacks). In a
population where a fraction p of the people follow the strategy of lying low
and 1− p of the people anticipate, the expected utilities of anticipating and
lying low are

F (A|
s) = p · F (A|L)+ (1− p) · F (A|A)

= p · T + (1− p) · P

and

F (L|
s) = p · F (L|L)+ (1− p) · F (L|A)

= p · R + (1− p) · S.

Since T > R and P > S, the expected utility of anticipating is greater than the
expected reward of lying low. From this, it follows that F (A|
s) > F (
s|
s) >
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Anticipate Lie low

Figure 3.3 The replicator-dynamics model of the state of nature.

F (L|
s), where F (
s|
s) is the average fitness of the population. On calculating
the rate of change of the frequency of each strategy in the population, we find
that

dsA

dt
= (1− p)

(
F (A|
s)− F (
s|
s)

)
> 0,

dsL

dt
= p

(
F (L|
s)− F (
s|
s)

)
< 0.

Over time, the proportion of the population choosing the non-aggressive strat-
egy of lying low will eventually be driven to extinction. (Provided that there
are at least some aggressors initially present.)

Figure 3.3 illustrates the evolution for the replicator-dynamics model of the
state of nature. The endpoints of the line segment represent states of the pop-
ulation where everyone anticipates or lies low, respectively. Points on the line
segment represent states where some proportion of the population anticipates
and the rest lie low – the proportion of the population anticipating/lying low
being indicated by how far away the point is from the ends. The point in the
middle represents the state where half of the population anticipates and half
lies low. The arrows on the line segment point in the direction that evolution
moves the population, according to the replicator dynamics. As long as the
population contains the smallest fraction of anticipators at the beginning, the
evolutionary dynamics carries the population to the state where everyone an-
ticipates – Hobbes’s war of all against all. Since the replicator dynamics, in
the form we are using, cannot introduce new strategies into the population, if
the population begins in the state where absolutely no one anticipates, it will
remain at that state under the evolutionary dynamics. However, the state where
absolutely no one anticipates is a very unstable state; the slightest perturbation
initiates a sequence of events eventually leading to the war of all against all.

In the Hobbesian state of nature, one may wonder whether the presence
of rugged, individualistic cooperators – people willing to anticipate some of
the time yet lie low some of the time – might prevent the inevitable slide into
the war of all against all. Such tough-minded individuals delay the slide into
universal conflict, but we still arrive there all the same – it just takes a little
longer. Figure 3.4 illustrates the evolutionary trajectories for a population that
includes the strategy “Mix” as well as anticipate and lie low. The strategy “Mix”
chooses randomly between anticipating and lying low, adopting either strategy
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Mix

Anticipate

Lie low

Figure 3.4 A simplex diagram for the three-strategy prisoner’s dilemma.

equally often. In a population consisting of three strategies – anticipate, lie
low, and randomize between anticipate and lie low with equal probability – the
replicator dynamics still carries the population to a final state in which everyone
anticipates.

Each point in the interior of the triangle of figure 3.4 uniquely represents a
state of the population. Figure 3.5 illustrates how a vector 〈a, b, c〉, specifying
an initial population configuration, can be mapped onto a unique point in the
triangle.7 Imagine an equilateral triangle having an altitude of length k. One can
prove that, given a point p somewhere inside or on the edges of the triangle, the
sum of the perpendiculars from p to each side of the triangle is equal to k.8 If
we take the triangle to have an altitude of length one, then the lengths a, b, and
c in figure 3.5 sum to one. Consequently, we can use p to represent the state
vector 〈a, b, c〉. According to this method of representing population states,
each vertex of the triangle corresponds to the state where only one strategy is
present in the population, and each side of the triangle represents polymorphic
states where only two of the three strategies are present.

Curved paths in figure 3.4 represent evolutionary trajectories followed by
the population under the replicator dynamics. Each line has an orientation, or
direction, specifying how the path is traversed. The trajectories in figure 3.4

7 The vector contains strategy frequencies, so a, b, and c are all real numbers between 0 and 1
with the property that a + b + c = 1.

8 This is known as Viviani’s Theorem.
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Figure 3.5 Interpreting simplex diagrams.

show the time-evolution of a population from some initial condition or state –
the point at the beginning of the trajectory – to some final state.9 Since all
trajectories in the interior of the triangle eventually arrive at the corner labeled
“anticipate,” this means that any state of the population in which all three
strategies are followed by some percentage of people, no matter how small,
eventually evolves to the state where everyone anticipates.

The difficulty of evolving cooperative behavior via the replicator dynam-
ics stands in marked contrast with the well-known result of Robert Axelrod.
In 1982, Axelrod conducted a computer tournament in which sixty strategies,
solicited from a wide range of members of the academic community, were pit-
ted against each other in a “round-robin” competition (Axelrod and Hamilton,
1981; Axelrod, 1982). Each strategy played five “runs” of the repeated pris-
oner’s dilemma against every other strategy. Each “run” consisted of the pris-
oner’s dilemma being repeated a certain number of times, where the number of
repeats was fixed in advance, and common among all strategy pairings.

What Axelrod found, both in the original computer tournament and in a
second, larger, tournament held later, was that a very simple strategy, one
favoring cooperative behavior, won both tournaments. The strategy, known as
TIT-FOR-TAT, begins by cooperating and then, in every subsequent round, mimics

9 Strictly speaking, strategies in the replicator dynamics never truly disappear; they just
asymptotically approach zero. In figure 3.4, though it may appear as if a certain trajectory
reaches a vertex (or side) of the simplex, in actuality no trajectory that begins in the interior of
the triangle will reach the boundary in finite time. The path will become arbitrarily close to the
equilibrium point, but will not reach it, simply because under the replicator dynamics strategies
cannot become extinct.
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the play of its opponent in the previous round. If its opponent always cooperates,
then TIT-FOR-TAT will always cooperate. If its opponent defects in the nth stage
of the game, TIT-FOR-TAT will reciprocate by defecting in the (n+ 1)st stage of
the game; if its opponent should then “apologize” for its nth-stage defection
with a cooperative move in the (n+ 1)st stage, TIT-FOR-TAT will accept the
apology by cooperating in the (n+ 2)nd stage. The simple feedback mechanism
employed by TIT-FOR-TAT is, Axelrod found, remarkably successful at rewarding
cooperative behavior and punishing defections in certain environments.

The phrase “in certain environments” is crucial to remember. TIT-FOR-TAT’s
success in Axelrod’s tournaments has unfortunately entered popular culture as
the belief that TIT-FOR-TAT is, in some sense, the “solution” to, or the optimal
strategy to adopt in, the repeated prisoner’s dilemma. TIT-FOR-TAT is not the
optimal strategy – indeed, it can be proven that in the indefinitely repeated
prisoner’s dilemma no optimal strategy exists.10 Moreover, Axelrod himself
notes that TIT-FOR-TAT would not have won the two computer tournaments if
two other “natural” strateges had been submitted. One strategy that would have
beaten TIT-FOR-TAT is WIN–STAY, LOSE–SHIFT (also known as “Pavlov”). WIN–
STAY, LOSE–SHIFT, like TIT-FOR-TAT, begins by cooperating on the first move,
cooperating on future moves if and only if both players adopted the same
strategy on the previous move.11

TIT-FOR-TAT did very well in Axelrod’s computer tournament when paired
against strategies selected by game theorists, computer scientists, and many
others.12 Yet how well would TIT-FOR-TAT, or for that matter WIN–STAY, LOSE–
SHIFT, perform in an evolutionary environment against a wide range of strate-
gies, some much more sophisticated?13 We can answer this by constructing a

10 See Axelrod (1984) for a proof of this.
11 Suppose that player one follows the strategy WIN–STAY, LOSE–SHIFT. If both players cooperate,

player one will cooperate on the next move (mutual cooperation is considered to be a “win,”
and the strategy recommends staying with a win). If both players defect, player one will switch
to cooperating on the next move (mutual defection is considered to be a “loss,” so player one
shifts to the other alternative for the next move, which is in this case cooperation). If player
one defects and player two cooperates, player one will continue to defect on the next move
(defection against a cooperator is considered to be a “win”). If player one cooperates and
player two defects, player one will switch to defection on the next move (cooperating against a
defector is a “loss,” so player one switches to the other alternative for the next move, which is
in this case defection).

12 Axelrod also included a purely random strategy in the tournament, so that strategy designers
could not assume that their opponent was following a rational, or even deterministic, strategy.

13 Many of the strategies pitted against TIT-FOR-TAT in Axelrod’s tournament were certainly
worthy of the title “sophisticated.” In using the term “sophisticated” here, I am referring only
to how many past moves a strategy takes into consideration when determining how to act.
TIT-FOR-TAT and WIN–STAY, LOSE–SHIFT both take into account only the prior move of each
player. More sophisticated strategies, in my sense of the term, may take into account the two
previous moves of each player, or the three previous moves, etc.
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replicator-dynamics-like model in which individuals play the repeated pris-
oner’s dilemma using strategies that take into account the past moves of one’s
opponent.

How might one represent a strategy in the prisoner’s dilemma that takes
into account an opponent’s past moves? Suppose that a strategy has a memory
of length M . That strategy must then specify a particular play of the game
conditional upon every possible way of playing the M previous games. One
way this may be done is as follows.14 In the opening move of the game, there
are no previous moves to take into consideration, so the only thing a strategy
needs to specify is whether to cooperate or defect. In the second move, though,
there are four ways that the opening move might have been played. These are

Opponent’s move My move
Cooperate Cooperate
Cooperate Defect

Defect Cooperate
Defect Defect

Let us represent “Cooperate” by0 and “Defect” by1. If we adopt the convention
of writing my opponent’s move before my move, as above, these four outcomes
can be expressed as 00, 01, 10, and 11; reading these as numerals written in
binary, we have just given a mapping from the four possible ways of playing
the opening move of the game to the numerals 0, 1, 2, and 3.

Consider a sequence of binary digits of length four, such as 0011. Reading
this sequence of digits from left to right, we can interpret this as providing a
conditional strategy, with a memory of length 1, for the repeated prisoner’s
dilemma. How? We’ve just seen how the outcome of a particular play of the
two-person prisoner’s dilemma can be mapped onto an integer i between 0
and 3. If we start at the leftmost digit of 0011 and move i places to the right,
the digit at that place then tells us what to play (0 = Cooperate, 1 = Defect)
given that particular prior history of play. So 0011 tells me to cooperate if, in
the last move, both I and my opponent cooperated; it tells me to cooperate if
my opponent cooperated but I defected; it tells me to defect if my opponent
defected and I cooperated; and, lastly, it tells me to defect if my opponent
defected and I defected. That is, 0011 represents the conditional response of
TIT-FOR-TAT.

The above scheme does more than provide a mapping for just the opening
move of the game. We now have a way to represent an entire history of M moves

14 This is neither the only way, nor necessarily the most efficient. For an alternative approach, see
Lindgren and Nordahl (1994).
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as a nonnegative integer. Suppose that you have played the prisoner’s dilemma
with your opponent three times, and the outcome of those three previous plays
has been Defect–Defect (on the first move), Defect–Cooperate (on the second
move), and Cooperate–Defect (on the third move). This game history is mapped
to the number 27 under the above scheme. When written in binary, 27 becomes
011011; the first two numerals (“01”) represent the Cooperate–Defect outcome
of the third move, the second pair of numerals (“10”) represents the Defect–
Cooperate outcome of the second move, and the last pair of numerals represents
the Defect–Defect outcome of the first move.

A strategy with memory M needs to specify what move to play for every
possible way of playing the M previous games. We can think of a strategy as
broken into M + 1 “chunks,” the first chunk specifying an opening move, the
second chunk specifying a move conditional on the outcome of the first game,
the third chunk specifying a move conditional on the outcome of the first and
second games, and so on. A strategy of memory 2, then, can be written as
follows:

first chunk︷︸︸︷
0 0011︸ ︷︷ ︸
second chunk

third chunk︷ ︸︸ ︷
0011001100110011

The first chunk indicates that the player will cooperate on the opening move.
The second chunk indicates that the player will follow the “tit-for-tat” approach
of playing whatever his opponent played in the first game. The third chunk
indicates that the player will follow the “anti-tit-for-tat” approach of playing
the opposite of whatever his opponent played in the second game, except in
the cases in which his opponent cooperated both in the first and in the second
game (in which case the player cooperates) or defected both in the first and in
the second game (in which case the player defects).

Figure 3.6 lists the outcome from one run of the discrete-population repli-
cator dynamics on a model allowing strategies to have a memory of up to
five moves.15 Strategies are represented graphically, using white to indicate

15 This particular model used the discrete replicator dynamics with a fixed population size of
1000 and payoff matrix of figure 3.7. At the beginning of each generation agents were paired
at random. After pairing, each agent played five games of the replicator dynamics with his
partner, keeping track of the outcome of each game if his memory permitted. (If an agent had a
memory length less than five, the oldest outcome was forgotten and the remaining outcomes
were shifted down by one, making space for the most recent outcome.) After every agent had
played the repeated prisoner’s dilemma, there occurred a “reproductive” step in which each
agent produced several clones, the number of clones equal to his score. The population size
was then normalized by removing agents at random until the fixed size of 1000 was reached.
One hundred generations were run for each model.
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Strategy 1:

Density: 63, Memory: 5, Play versus self: D, C, C, C, D, C.

Strategy 2:

Density: 244, Memory: 5, Play versus self: D, D, C, D, D, D.

Strategy 3:

Density: 424, Memory: 5, Play versus self: D, C, C, C, D, D.

Strategy 4:

Density: 9, Memory: 5, Play versus self: D, C, C, D, C, C.

Strategy 5:

Density: 260, Memory: 5, Play versus self: D, C, C, C, C, C.

Figure 3.6 Five remaining strategies from a repeated prisoner’s dilemma allowing
memories of up to five moves.

“cooperate” and black to indicate “defect.” The strategy should be read as a
single continuous line beginning on the upper left, continuing across and down.
Since the length of a strategy does not fit neatly into a rectangle, the end of
the strategy is padded with meaningless squares so that it fits into a rectangle.
These meaningless squares are colored gray.

The important thing to note about figure 3.6 is that none of the surving
strategies are TIT-FOR-TAT. Moreover, none of the surviving strategies are even
“tit-for-tattish,” beginning with cooperation and imitating what their opponent
did in the first game. All of the strategies listed begin with defection, and
switch to cooperation later, at least when played against themselves. Moreover,
these five “winning” strategies appeared in a model with the deck originally
stacked in favor of cooperative strategies: out of 1000 individuals, 250 were
originally assigned TIT-FOR-TAT and 250 were originally assigned WIN–STAY,
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C D

C 2.0 0.0
D 3.0 1.0

Figure 3.7 A payoff matrix for the prisoner’s dilemma.

Figure 3.8 The prisoner’s dilemma played on a one-dimensional lattice using the
payoff matrix of figure 3.7, the learning rule Imitate-the-Best and interaction and
update radii of 1.

LOSE–SHIFT. The remaining 500 were assigned random strategies with random
memory length. Even with the initial bias favoring TIT-FOR-TAT and WIN–STAY,
LOSE–SHIFT, these strategies – which did so well in Axelrod’s tournament – were
driven to extinction. Nevertheless, universal defection did not win out, for all
of the strategies cooperate with themselves, sometimes to a significant extent.
Allowing strategies in the replicator dynamics to have memory mitigates the
inevitable slide into the war of all against all.

3.2 Lattice models

Frequent cooperative behavior can arise in models based on the replicator
dynamics. How does introducing structure into the interactions affect the emer-
gence of cooperation? Figure 3.8 illustrates one evolutionary trajectory for
the prisoner’s dilemma played on a one-dimensional lattice with an interac-
tion and update radius of 1, no memory, and the particular payoff matrix of
figure 3.7. Cooperators are colored white, defectors black.16 The initial state
of the population is indicated on the top line, with successive generations ap-
pearing below. Although a single region of cooperators manages to persist for
several generations, by generation 8 the entire population has defected.

Two things stand out from the evolutionary history shown in figure 3.8: the
sizeable cooperative region slowly disappears and the collapse of the coopera-
tive region is asymmetric – the left- and right-hand sides do not shrink at the

16 The mnemonic for remembering this is that in the old Westerns the “bad guys” always wore
black.
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D D D D C C C C D D D D

2.0 2.0 2.0 4.0 2.0 4.0 4.0 2.0 4.0 2.0 2.0 2.0

Figure 3.9 Calculation of scores for the cooperative region of figure 3.8.

same rate. This asymmetry, as well as the collapse of the cooperative region,
occurs as a result of our choice of the tie-breaking rule. Figure 3.9 illustrates the
payoffs received by a region of cooperators surrounded by defectors. Bound-
ary cooperators – those cooperators who have one neighbor defecting and one
neighbor cooperating – receive a payoff of 2.0, a score lower than that of each
of their neighbors. However, due to the particular choice of payoff matrix, a
defector who interacts with one cooperator and one defector receives a score of
3.0+ 1.0 = 4.0, which equals the payoff received by a cooperator who inter-
acts with two other cooperators, 2.0+ 2.0 = 4.0. According to our tie-breaking
rule, in these circumstances the boundary cooperators select a strategy to adopt
at random. If they adopt the strategy used by their cooperating neighbor, the
cooperative region will not shrink, even though both boundary cooperators
receive an inferior score! However, if either one of the two boundary cooper-
ators adopts the strategy of their neighboring defector, the cooperative region
will shrink on that side. Since the best a region of cooperators can do in these
circumstances is hold their own, and there is only a 25 percent chance that they
will do that in any given generation, eventually the evolutionary pressure drives
the cooperative region to extinction. Figure 3.10 illustrates the occurrence of
this phenomena in ten randomly initialized worlds.17

The cooperative region in these examples would be able to resist the defectors
if an alternative tie-breaking rule were used. Suppose that the agents employed
a more conservative rule: an agent adopts a new strategy if and only if none
of the highest-scoring agents in his neighborhood employ his current strategy.
The idea behind this tie-breaking rule is that agents are somewhat reluctant to
change strategies (perhaps due to certain costs imposed by the extra cognition)
and will do so only when there is clear evidence that the strategy they have been
following is inferior – i.e., when none of the highest-scoring agents in their
neighborhood are using it. Under this conservative rule, cooperative regions

17 Universal defection always occurs. In series of 10 000 trials on a one-dimensional lattice of
size 200 with r = 1, initialized randomly but with both strategies equally likely, 9581
converged to a state in which everyone defects. The remaining trials would have converged to
universal defection if the model had run a few generations longer.
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Figure 3.10 Ten runs of the one-dimensional prisoner’s dilemma, r = 1.

are stable in one-dimensional lattice models. These cooperative regions are
not regions of conditional cooperation as found in the replicator models with
memory discussed previously – these are regions of unconditional cooperation.
Hobbes’s war of all against all need not spread without bound; pockets of peace
can persist in the center of conflict.

Yet, even if it is true that certain social networks and learning rules facilitate
the persistence of cooperative regions in the repeated prisoner’s dilemma, the
question of how these cooperative regions may form in the first place remains
to be answered. The original cooperative region of figure 3.8 was not itself the
outcome of an evolutionary process; it appeared in the random initialization of
the model. Can cooperative regions evolve in the one-dimensional prisoner’s
dilemma?

Answering this question requires analyzing the basins of attraction for co-
operative regions in the one-dimensional prisoner’s dilemma. Analyzing basins
of attraction for social-network models in general is a difficult and unresolved
problem, but the one-dimensional lattice presents one of the few tractable cases.
This good fortune derives entirely from the fact that one-dimensional lattice
models are, in many cases, equivalent to one-dimensional cellular automata, and
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there exist efficient algorithms and analytical techniques for studying cellular
automata.

A one-dimensional cellular automaton can be thought of as a sequence of
“cells” arranged on a line. Each cell i is assigned a state si ∈ S (the set of
possible states is common to all cells) and there is a single transition rule that
tells us how the state of every cell changes as a function of its current state
and the state of r neighbors on the left and right. The only difference between
one-dimensional lattice models, as defined in chapter 2, and one-dimensional
cellular automata is that one-dimensional cellular automata have deterministic
transition rules specifying how the state of each cell changes over time.

One-dimensional lattice models in which agents employ a randomized tie-
breaking rule are therefore not cellular automata. However, if agents use a
conservative tie-breaking rule, like the one described above, and there are only
two possible strategies, then the rule specifying how agents adopt new strategies
becomes deterministic.18 In this case, the one-dimensional lattice model is a
cellular automaton.

The basic problem with analyzing the basins of attraction for social-network
models in general, and cellular automata in particular, is that the dynamical law
specifying the evolution of the system is many to one. A single state can have
more than one predecessor, and may have many. For example, the state of
universal defection has many predecessor states, as figure 3.10 aptly illustrates.
Moreover, given any single evolutionary trajectory arriving at universal de-
fection, every single one of the intermediary states may itself have multiple
predecessors.19 The map of the basin of attraction for the state of universal
defection will be a richly branching tree.

In 1992, Wuensche and Lesser developed an algorithm for running cellular
automata backwards, thus enabling us to map the basin of attraction for any
state of any cellular automaton we are interested in.20 In general, we are not
interested in the basin of attraction for an arbitrary state of the population, what

18 Consider what happens when there are only two possible strategies. Either the agent’s own
strategy belongs to the set of highest-scoring strategies in his neighborhood or it does not. If it
does, the agent will not switch strategies. If it does not, then the set of highest-scoring
strategies consists of exactly one unique strategy – the one not followed by the agent – so the
agent will definitely switch to adopt that strategy. The learning rule is thus deterministic. When
more than two strategies are possible, then it is possible – even with a conservative learning
rule—for there to be more than one strategy in the set of highest-scoring strategies.

19 This is another important difference between social-network models and the replicator
dynamics. Under the replicator dynamics, any state of the population (excepting limit points)
may have exactly one predecessor, provided that mutations are not allowed.

20 Provided that its state space is sufficiently small. In a two-value cellular automaton, the state
space grows exponentially with the number of nodes. The state space of a cellular automaton
with 300 cells has a size of 2300, which is approximately 2.037× 1090. This number is larger
than Arthur Eddington’s 1924 estimate of the number of protons in the universe
(1.574× 1079).
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we want to know is the basin of attraction for the evolutionarily stable states.
In the prisoner’s dilemma defined on a one-dimensional lattice with a radius
of 1 and the “imitate best neighbor, conservatively” update rule, all convergent
states are fixed points: states mapped onto themselves by the evolutionary
dynamics.

Figures 3.11, 3.12, 3.13, and 3.14, respectively, catalog the basins of attrac-
tion for the prisoner’s dilemma played on five-, six-, seven-, and eight-person
one-dimensional lattices with r = 1.21 These figures provide maps of the evo-
lutionary trajectories through state space. In these diagrams, the centermost
state is the attractor of the basin. States further out from the center are pre-
decessor states. Individual evolutionary trajectories begin at the states furthest
from the center and proceed inward. For each individual state, dark squares
represent individuals who follow the strategy Defect, and bright squares repre-
sent individuals who follow the strategy Cooperate. States that do not have any
predecessor states under the evolution dynamics, such as those on the outermost
ring, are known as Garden-of-Eden states.

For the basin of attraction of “all defect,” I have included all states, including
ones rotationally equivalent to states already listed.22 For the other basins of
attraction, rotationally equivalent states have been suppressed. As a result the
number of states illustrated in each figure does not equal the total number of
possible states for the social network.

Although it is true that, in a one-dimensional lattice model with equal inter-
action and update neighbors of size 1, states containing significant numbers of
cooperators can develop and persist, figures 3.11–3.14 reveal that the evolution-
ary dynamics vastly favors the state of All Defect. Most states with significant
numbers of cooperators are Garden-of-Eden states, and stable states under
the evolutionary dynamics that contain cooperators are either Garden-of-Eden
states or the successor state of a Garden-of-Eden state containing more coop-
erators than the stable state. In other words, pockets of cooperation may persist
over time in a one-dimensional lattice with r = 1, unlike in the replicator dy-
namics, but they cannot form. The only way a cluster of cooperators having
sufficient size to avoid being eliminated can occur is if the population happens
to be initialized in that state.

21 These diagrams of the basins of attraction were produced with Andy Wuensche’s Discrete
Dynamics Lab, which implements the algorithm described in Wuensche and Lesser (1992),
using the representation scheme for social networks from Alexander (2003).

22 A state S is rotationally equivalent to another state S′ if S′ has the same pattern of cells as S

except shifted to the left or right. Since one-dimensional lattices “wrap” at the endpoints,
rotationally equivalent states do not qualitatively differ in evolutionary trajectory. Thus, in
principle, one can suppress all information about rotationally equivalent states when
cataloging basins of attraction because that information is redundant.
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Figure 3.11 Basins of attraction for the five-person prisoner’s dilemma played on
a one-dimensional lattice, r = 1.

Figure 3.12 Basins of attraction for the six-person prisoner’s dilemma played on
a one-dimensional lattice, r = 1.
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Figure 3.13 Basins of attraction for the seven-person prisoner’s dilemma played
on a one-dimensional lattice, r = 1.

Figure 3.14 Basins of attraction for the eight-person prisoner’s dilemma played
on a one-dimensional lattice, r = 1.
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rr

k + 1

Figure 3.15 Frontier competition in the one-dimensional prisoner’s dilemma.

In fact, one can prove that no one-dimensional lattice with interaction and
update radii of 1 can have cooperative clusters form. Suppose that we have a
cooperator C located on the lattice. If C is isolated, with defectors on both sides,
C will be replaced by a defector in the next generation. If C has a cooperator
C∗ on one side, and a defector D on the other, C will receive a score of R + S

and D will receive a score of T plus either T or P (depending on the strategy
followed by D’s other neighbor). However, since T + T > T + P > R + S, it
does not really matter what strategy D’s other neighbor follows; in either case,
D will earn a score greater than C and will therefore not adopt C’s strategy.23

Because C earns a score lower than D, will C switch to adopt D’s strategy? It
entirely depends on what score C’s neighbor C∗ earns. Regardless, the “best”
C can do from the point of view of encouraging cooperation is to continue
to follow the same strategy in the next generation. Cooperation cannot spread
from C to his neighboring defector.

If we fix the payoff matrix for the prisoner’s dilemma to be that of figure 3.7,
the above argument can be generalized for an arbitrary radius. Consider the case
in which we have “frontier competition” between a region of cooperators and a
region of defectors, as portrayed in figure 3.15. The boundary cooperator cannot
persuade the boundary defector to switch strategies because the boundary
cooperator has a score of r(R + S), the boundary defector a score of r(T +
P ), and r(T + P ) > r(R + S) because T + P > R + S. However, might it
be possible for a cooperator in the interior of the cooperative region to cause
the boundary defector to switch strategies? This possibility doesn’t exist when
r = 1 since no cooperators in the interior of the region can influence the future
strategy of the boundary defector. However, when r > 1, this possibility exists.

In order for a cooperator in the interior of the cooperative region to cause
the boundary defector to switch strategies, a necessary and sufficient condition

23 By similar reasoning applied to D’s other neighbor, D will not adopt the strategy Cooperate no
matter what.
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is that the interior cooperator earn a higher score than the boundary defector.24

Interior cooperators earn a score of (r + k)R + (r − k)S for some 0 < k < r ,
which must exceed the boundary defectors’ score of r(T + P ). For the payoff
matrix of figure 3.7, this requires that

(r + k)R + (r − k)S > r(T + P )

(r + k)2 > 4r

k > r,

which cannot happen, given the bounds on k. Thus it is impossible for a
cooperative region to expand into a region of pure defection.

This pessimistic conclusion depends upon our choice of the payoff matrix.
The crucial condition which must be satisfied in order for cooperators to expand
into regions of defection is that

k > r

(
T + P − R − S

R − S

)
.

Recalling that 0 < k < r , cooperator expansion can occur only when

0 <
(T − R)+ (P − S)

R − S
< 1,

that is, when (T + P )/2 < R. We can see that the inequality must be strict,
for the payoff matrix of figure 3.7 has (T + P )/2 = R and, as we see from the
runs in figure 3.10, cooperative regions cannot expand.

Introducing structure into evolutionary games thus transforms the problem
of cooperating in the prisoner’s dilemma from an impossibility (viz., the repli-
cator dynamics) to a near-certainty, under certain conditions. If the payoff
matrix satisfies the condition that (T + P )/2 < R, the radius of interaction is
sufficiently large, and an initial cluster of cooperators exists, cooperation can
spread. Figures 3.16(a) and (c) show two models in which cooperators expand
to dominate almost the entire world.

If we allow the radius used for the interaction and update neighbor-
hoods to vary, then cooperation can expand to dominate the entire world,
as shown in figures 3.16(b) and (d). In local-interaction models, Hobbes’s pes-
simistic conclusion regarding the state of nature need not hold. The war of all
against all may be stopped without instituting an all-powerful sovereign. The

24 This condition is also sufficient because the boundary defector, having more cooperating
neighbors than any interior defectors, earns a higher score than that of any interior defector.
This precludes the possibility of the boundary defector being “supported” by higher-scoring
interior defectors, as can happen in the case of boundary cooperators.
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(a) Interaction radius of 2 (b) Interaction radius of 2, update radius of 3

(c) Interaction radius of 3 (d) Interaction radius of 3, update radius of 4

Figure 3.16 Growth of cooperative regions in the one-dimensional prisoner’s
dilemma: T = 1.0, R = 0.9, P = 0.19, and S = 0.0.

self-interested actions of individuals, constrained by the structure of their own
interactions, may induce all to cooperate rather than defect.

Moreover, we can give a precise estimate of just how likely it is that coop-
eration will dominate for a particular payoff matrix. Suppose that the payoff
matrix is as follows:

C D

C 0.9 0.0
D 1.0 0.1

If r = 2, how likely is it that cooperation will dominate? If r = 2, cooperation
will spread if a cluster of four adjacent cooperators exists, for that gives the
interior cooperators scores of 2.7, which exceeds the score of 2.2 earned by
boundary defectors. If the two strategies are equally likely, the probability
that a group of four adjacent cooperators will appear in the initial state of
the population is

(
1
2

)4 = 1
16 . By the law of large numbers, as the size of the

population increases, the probability that at least one such group will appear
converges to unity. This result holds even if the two strategies are not equally
likely, so long as being a cooperator has positive probability. As the radius of
interaction increases, though, it becomes increasingly unlikely that an initial
cooperative group of sufficient size will appear – although the limit result still
holds.

In the case of two-dimensional lattices, a similar story holds; see Nowak
and May (1992, 1993) for details. Cooperative behavior can emerge, although
it depends on the original number of cooperators present, as well as on the
payoff matrix and neighborhood. Figures 3.17–3.19 illustrate three differ-
ent evolutionary trajectories depending on the payoff matrix. In figure 3.17,
the payoff values are T = 1.1, R = 1, P = 0, and S = −0.1. In this case,
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Figure 3.17 A non-war state of nature.

Figure 3.18 The war of all against all.

cooperators and defectors can peacefully coexist. Figure 3.18, using payoff val-
ues of T = 2.7, R = 1, P = 0, and S = −0.1, shows how “defectors” come to
dominate within a relatively short period of time, in agreement with Hobbes’s
pessimistic assessment of the natural condition of mankind.25

Of particular interest is figure 3.19, which uses payoff values of T = 1.6,
R = 1, P = 0, and S = −0.1. Here, we see a world continually in flux. Co-
operative regions can be invaded by regions of defectors, and vice versa. This
results in “chaotic” evolutionary behavior, which does not settle down into a

25 Note, though, that these particular payoff values are not a prisoner’s dilemma: they violate the
requirement that (T + S)/2 < R.
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Figure 3.19 Sixteen generations of the spatial prisoner’s dilemma.

stable state dominated primarily by cooperators or defectors.26 Such behavior
cannot appear in the one-dimensional case: according to our frontier analysis,
if a region of cooperators faces a region of defectors, one of the two regions
expands at the expense of the other.

Agent-based lattice models can thus diverge quite far from their replicator-
dynamics counterparts. Although the replicator-dynamics model of the

26 This behavior is not chaotic in the traditional sense referred to in nonlinear dynamics. Since
there is only a finite number of population states, if the model is run long enough (and no
possibility of ties exists), eventually the model must return to a previously encountered state.
These models are “chaotic” only in the sense that the period of such a cycle is extremely long
(it is not yet known) and there is no apparent pattern to the evolutionary behavior.
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prisoner’s dilemma suggests that cooperative behavior is unlikely to emerge
in the state of nature, the prisoner’s dilemma on a lattice reveals that an alter-
nate construal of the dynamics of strategic interaction supports a very different
conclusion. The moral of the story is simple. In cases of constrained interac-
tion, if individual payoffs and the topology of the local interactions have the
right form, cooperation can flourish in the absence of a central, all-powerful,
effective sovereign.

3.3 Small-world networks

What of life off the lattice? Figure 3.20 illustrates four generations of the
prisoner’s dilemma played on a minimal small-world network using Imitate
the Best and interaction and update radii of 1. The network is minimal in the
sense that only a single bridge edge exists, but that edge, connecting two nodes
on opposite sides of the graph, reduces the mean characteristic path length as
much as possible with only a single edge. Notice that the introduction of a single
bridge edge has – in this case – very little influence. Cooperative regions cannot
hold their own when competing against defectors, and within a relatively short
period of time defectors dominate, just as in a one-dimensional lattice with an
interaction radius of 1.

This makes sense. Regions of the graph far removed from the two vertices
incident on the bridge edge have a local topology identical to that of a one-
dimensional lattice. The evolutionary trajectories followed by such regions, at
least for a short period of time after the model has been initialized, must be
identical to that of a one-dimensional lattice. Any anomalous effects introduced
by the the existence of bridge edges will take several iterations to propogate
through the network before affecting regions far removed from the bridge. Let
us call regions whose local interactions are far removed from the influence of
bridge edges provincial regions.

Although provincial regions evolve according to the same pattern as that
followed by a one-dimensional lattice, this shouldn’t be taken to mean that
small-world networks introduce no new qualitative behavior. Figure 3.21 shows
how a single bridge edge allows the survival of two small regions of cooperators
that would otherwise be eliminated.27 Notice, though, that the effect created by
the introduction of the bridge edge has relatively little impact beyond that on

27 Removing the bridge edge converts the local topology of the nodes incident on the bridge edge
to that of a one-dimensional lattice. The result previously established for one-dimensional
lattices with r = 1 then applies, and hence the two cooperative regions will be eliminated.
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Figure 3.20 The prisoner’s dilemma on a minimal small-world network. The next
generation is All Defect. The model parameters are N = 200, β = 0.003, k = 1,
T = 3.0, R = 2.0, P = 1.1, and S = 0.0.

the nodes it is incident on: the remainder of the network has rapidly converged
to All Defect, just like in the case of the one-dimensional lattice.

This suggests one way to analyze small-world networks. Let us call an agent
lying on a bridge edge a well-connected agent.28 Call the immediate region sur-
rounding a well-connected agent a hub. If well-connected agents are relatively
far apart from each other, the introduction of bridge edges cuts the network
into a series of provincial regions – i.e., one-dimensional lattices – connected
by hubs. We already know what the evolutionary behavior of the provincial

28 Interpreting the edges in a social network as representative of some social relation, an agent
lying on a bridge edge has an extra social relation not shared by his neighbors. Since this social
relation spans what would otherwise be a great social distance, the name “well-connected”
seems apropos.
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Figure 3.21 A small-world network facilitating the survival of two clusters of
cooperators: N = 200, r = 1, T = 3.0, R = 2.0, P = 1.1, and S = 0.0.

regions will be, given the previous results for the prisoner’s dilemma on a one-
dimensional lattice. Once we understand the evolutionary dynamics around
hubs, we can then piece these two together to obtain a complete understanding
of the evolutionary dynamics on small-world networks.

In general, the immediate effect of a hub on the evolutionary dynamics will
be relatively localized, provided that hubs do not overlap. A well-connected
agent will have his score affected due to the extra interaction not shared by
his neighbors. As a consequence, a well-connected agent will likely have
greater influence over what strategies his neighbors will adopt in future gen-
erations. Agents imitate the strategy of their neighbor with the best score, the
extra edge increases the probability that a well-connected agent will have the
best score, and hence neighboring agents will, in general, imitate the well-
connected agent more often than they imitate their other neighbors. In the case
illustrated in figure 3.21, the local influence of the well-connected agent is
profound: the two well-connected agents basically prevent their neighboring
cooperators from turning to defection because they earn such a high score.
However, once we move away from the hubs into the provincial region of the
small-world network, we see the outcome we would expect for that particu-
lar payoff matrix and radius in a one-dimensional lattice, namely, defection
dominates.
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From the point of view of the neighbors of the neighbors of the well-
connected agents, the neighbors of the well-connected agents are nothing spe-
cial; they earn the same score as ordinary agents on a one-dimensional lattice.
Consequently the neighbors of the neighbors of well-connected agents evolve
according to the rules identified for one-dimensional lattices. This means that
the immediate effect of a hub on the evolutionary dynamics when the inter-
action radius equals 1 ends exactly two spots away from the well-connected
agent. With an interaction radius of r > 1, the immediate effect of a hub ends
as soon as the well-connected agent no longer falls within the neighborhood of
an agent, which happens once we move r + 1 spots away.

To say that the immediate effect of a hub on the evolutionary dynamics
is localized does not mean that hubs cannot globally influence the overall
outcome of the evolutionary process, though. They can, but they do not always
do so. Moreover, the global effect of hubs on the evolutionary dynamics occurs
solely through their ability to block the expansion of certain regions. To see
this, recall that the neighbors of a well-connected agent earn a score equivalent
to that of an agent with similar neighbors on a one-dimensional lattice. If,
given the particular payoff matrix and radius of interaction, defectors win a
frontier competition between cooperators and defectors, a hub cannot reverse
this trend. What a hub can do, though, is block the expansion of the region
of cooperators or defectors. By virtue of having an extra interaction, a well-
connected agent may earn a high enough score to prevent his neighbors from
switching strategies, which they would normally do if the well-connected agent
had not been present. If the neighbors of the well-connected agent do not
switch strategies, then the expansion of the region encroaching upon the hub is
blocked. Since every bridge edge lies on two hubs, this means that an expanding
region may be trapped between two hubs, and thus prevented from expanding
to fill the entire population, as would happen in the case of a one-dimensional
lattice. Figure 3.22 illustrates how an expanding region of cooperators can be
trapped between two hubs of defectors.

If the payoff matrix and radius of interaction are not of the right form, well-
connected agents and hubs may be ineffective at preventing the expansion of
certain regions. When agents and hubs are ineffective at preventing expansion,
the final convergent state of the network can be very similiar to that of a
one-dimensional lattice. Figure 3.23 shows one world in which cooperator
expansion continues across hubs without difficulty.

However, even when a well-connected agent is himself ineffective at pre-
venting the expansion of competing regions, the remaining agents belonging
to the hub may effectively block expansion. This peculiar effect occurs when
the expanding region uses the bridge edge to establish a foothold at another
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Figure 3.22 Two expanding regions of cooperators trapped between hubs of de-
fectors: N = 150, r = 2, T = 1.0, R = 0.9, P = 0.3, and S = 0.0.

position in the network, and the surrounding members of the hub can exploit
the newly introduced strategy. Figure 3.24 shows how expanding coopera-
tive regions, in three instances, successfully take over hubs originally held
by defectors. However, in two instances along the northern side of the net-
work, even though cooperators moved in to occupy the key position of the
well-connected agent, the remaining defectors in the hub were able to ex-
ploit this new cooperator (together with other neighboring cooperators) to
protect a small provincial region of defectors that would otherwise have been
eliminated.

At this point, we can now characterize the possible convergent states for
the prisoner’s dilemma played on small-world networks. Each small-world
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Figure 3.23 Cooperator expansion in a small-world network that is not stopped
by well-connected agents or hubs: N = 101, r = 3, T = 1.0, R = 0.9, P = 0.3,
and S = 0.0.

network can be decomposed into a set of provincial regions linked by hubs.
Each provincial region behaves just like a one-dimensional lattice, and hence
will converge under the evolutionary dynamics to one of the possible final
states for a one-dimensional lattice. The set of possible final states may include
any of All Defect, All Cooperate, and All Cooperate except for few regions of
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Figure 3.24 Cooperator expansion in a small-world network that is not stopped by
well-connected agents, yet is blocked by hubs: N = 100, r = 2, T = 1.0, R = 0.9,
P = 0.3, and S = 0.0.

locally stable defectors.29 However, the actual set of final states is determined
by the payoff matrix and radius of interaction.

29 Recall that one-dimensional lattices states in which almost all agents cooperated still may have
had stable pairs of defectors or groups of defectors that would undergo a brief period of
expansion followed by collapse.
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Given a particular payoff matrix and radius of interaction, the set of possible
final states is thus fixed. Whether a particular provincial region evolves to a
particular final state depends upon two things: whether hubs are effective at
blocking the expansion of regions30 and what the initial distribution of strategies
was in the provincial region. If hubs are effective at blocking the expansion of
regions,31 then the final state followed by a provincial region is determined by
its initial distribution of strategies. If hubs are not effective at blocking expan-
sions, the final state of a provincial region depends on its initial distribution of
strategies and the initial distribution of strategies of its neighboring provincial
regions. If an expanding region (of cooperators or defectors) forms in one of
the neighboring provincial regions, and hubs are ineffective at blocking, then
that expanding group of cooperators or defectors will spread to neighboring
provincial regions.

Figure 3.25 displays the final convergent states for four small-world net-
works. Inspection shows that all four convergent states conform to the pattern
identified. In the first and second models, one may note the existence of groups
of defectors in the midst of a region of cooperators, away from any hub. These
groups of defectors are stable and form a “blinker” of the type we’ve seen be-
fore. Similar stable groups of defectors can be found in regions of cooperation
in one-dimensional lattices.

3.4 Bounded-degree networks

In terms of their effect on the emergence of cooperation, small-world networks
provide more of a hindrance than a help. Although small groups of cooperators
can survive under conditions that would eliminate them in a one-dimensional
lattice (recall figure 3.21), small-world networks can also prevent the spread of
cooperation via the blocking effect of hubs. Networks with a complicated and
irregular structure appear hostile to the emergence of cooperation.

Turning towards networks of bounded degree, this conjecture gains support,
as figure 3.26 illustrates. Here, over two thirds of the population originally co-
operate, yet within two generations all have switched to defection. The situation
portrayed in figure 3.27 is even worse: a single defector manages to overturn a
population of cooperators within four generations. Even so, cooperative groups
can persist: figure 3.28 shows one population in which eight cooperators remain
among twenty-two defectors.

30 Again, this depends on the payoff matrix and radius of interaction.
31 Either through the scores earned by well-connected agents or by efforts of the rest of the hub,

as in figure 3.24.
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Figure 3.25 Final convergent states of four small-world networks: N = 1000,
r = 2, β = 0.004, T = 1.0, R = 0.9, P = 0.3, and S = 0.0.

(a) Generation 0 (b) Generation 1 (c) Generation 2

Figure 3.26 Three generations in a bounded-degree network: N = 30, kmin = 1,
kmax = 3, and T = 3, R = 2, P = 1, and S = 0.
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(a) Gen. 0 (b) Gen. 1 (c) Gen. 2

(d) Gen. 3 (e) Gen. 4

Figure 3.27 Four generations in a bounded-degree network: N = 30, kmin = 2,
kmax = 4, and T = 3, R = 2, P = 1, and S = 0.

Figure 3.28 A persistent cooperative group in a network of bounded degree,
kmin = 2, kmax = 4, T = 1.0, R = 0.666, P = 0.333, and S = 0.0.
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The persistence of cooperation in the network of figure 3.28 can be explained
in terms of the network’s structure and how cooperators exploit that structure
to their benefit. Notice that the maximum number of neighbors for agents in
this network is four, and that a single cooperator (located at approximately
3 o’clock) is connected to four other cooperators and no defectors. As a result
of these fortuitous connections, this cooperator earns a high enough score to
prevent his cooperative neighbors from switching to defection. This provides
a base of five cooperators in the population, upon which the persistence of the
remaining three cooperators depends.

The cooperative group of figure 3.28 persists, but is dynamically unstable:
if the key cooperator located at 3 o’clock is replaced by a defector, the entire
cooperative group unravels. Replacing the key cooperator with a defector cre-
ates a defector with four cooperating neighbors. In a network where four is
the maximum number of neighbors, a defector with four cooperating neigh-
bors earns the highest possible score – one not achievable by any cooperator.
Hence, in the next generation, the four neighboring cooperators will switch to
defection. One can check that within the next two generations the remaining
three cooperators will have switched to defection.

Can cooperative groups form in the prisoner’s dilemma played on a net-
work of bounded degree? Strictly speaking, we have already considered this
question in previous sections: lattice models and small-world networks are
both instances of networks of bounded degree. In the case of lattice models,
kmin = kmax = the number of neighbors. In the case of small-world networks
with an interaction radius r , kmin = 2r and kmax = 2r + 1 (assuming that no
individual can be on more than one shortcut). Since expansive cooperative
groups can form both in lattice models and in small-world networks, they can
form in networks of bounded degree.

Nonetheless, both lattice models and small-world networks exhibit a regu-
larity in their wiring patterns that is absent from general networks of bounded
degree. The formation and expansion of cooperative groups in the previous
two cases depended crucially on their structural regularities. Thus, even if it
is possible for cooperative groups to form in bounded-degree networks, that
doesn’t mean that they are likely to form.

Table 3.1 shows the results from over one million models, grouped by
population size.32 As the average degree increases, the frequency with which
the population goes to a state of All Defect increases as well. The relatively low

32 For each model, an initial probability p was selected and individuals were assigned the strategy
Cooperate with probability p (and Defect with probability 1− p). The allocation of neighbors
was done as follows. For the indicated values of kmin and kmax, each agent was assigned a
degree d with kmin ≤ d ≤ kmax (all values in that range being equally likely). Once each agent
had been assigned a degree, the network was randomly wired to satisfy those constraints.
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Table 3.1. Numbers of runs out of 10 000 that converge to All Defect for the
indicated kmin and kmax (T = 1.0, R = 0.666, P = 0.333, and S = 0.0)

kmax

kmin 2 3 4 5 6 7 8 9 10

1 5185 7111 8062 8433 8686 8752 8720 8760 8692
2 – 8410 8688 8812 8884 8871 8893 8884 8853
3 – – 9244 9192 9112 9093 9007 8963 8954
4 – – – 9370 9354 9215 9199 9169 9114

N = 15 5 – – – – 9363 9371 9312 9279 9197
6 – – – – – 9369 9350 9329 9339
7 – – – – – – 9346 9396 9345
8 – – – – – – – 9365 9409
9 – – – – – – – – 9420

1 4091 6003 7438 8455 8937 9199 9227 9262 9287
2 – 7781 8557 8907 9253 9324 9361 9333 9368
3 – – 9442 9423 9496 9484 9475 9412 9448
4 – – – 9627 9660 9581 9545 9502 9492

N = 30 5 – – – – 9683 9667 9637 9601 9558
6 – – – – – 9693 9686 9688 9642
7 – – – – – – 9673 9668 9671
8 – – – – – – – 9660 9689
9 – – – – – – – – 9689

1 3076 4858 6441 7798 8790 9228 9482 9520 9621
2 – 6850 8113 8689 9270 9446 9587 9598 9664
3 – – 9412 9319 9547 9617 9646 9702 9708
4 – – – 9760 9788 9777 9781 9751 9745

N = 60 5 – – – – 9828 9826 9796 9793 9779
6 – – – – – 9851 9836 9831 9835
7 – – – – – – 9806 9827 9831
8 – – – – – – – 9842 9817
9 – – – – – – – – 9858

rate of occurrence of All Defect in networks with kmin = 1 and kmax = 2 or 3
occurs because networks in this range are often unconnected and this obviously
reduces the extent to which defection can spread. A network consisting of
several unconnected components rarely converges to All Defect because, as
long as one component initially consists only of cooperators, that component
will remain cooperative even if the rest of the network switches to defection.
Figure 3.29 displays the initial and final states for one such network, together
with their connected components.
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(a) Initial configuration

(b) The eight connected components

(c) Final configuration

(d) The eight connected components

Figure 3.29 Cooperative groups in a bounded-degree network with kmin = 1 and
kmax = 2.

As kmin and kmax increase, the probability that a randomly chosen network
satisfying those constraints is connected increases as well.33 Moreover, the
evolutionary outcome of the network rapidly converges to that of the prisoner’s
dilemma played on a completely connected network, namely, All Defect. To see
this, suppose that we have a completely connected network consisting of C co-
operators and D defectors. Each cooperator is connected to C − 1 cooperators
and D defectors, and each defector is connected to D − 1 defectors and C coop-
erators. Each cooperator receives a score of (C − 1) · R +D · S and each defec-
tor receives a score of C · T + (D − 1) · P . Since (C − 1) · R +D · S < C ·
T + (D − 1) · P , each cooperator will switch to defection for the next round.

33 The transition occurs relatively quickly. With kmin = 1 and kmax = 3, only about 27.5 percent
of the networks are connected. Yet nearly 80 percent of the networks are connected when
kmin = 1 and kmax = 4, and once kmax = 5 over 93 percent of the networks are connected.
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Figure 3.30 Four fixed states in which a single defector exists: N = 30, kmin = 2,
kmax = 4, T = 1.0, R = 0.66, P = 0.33, and S = 0.0.

Recall that, both for lattice models and for small-world networks, variations
in the payoff matrix made a difference in terms of the likelihood of cooperation
emerging. Table 3.2 shows that a similar phenomenon occurs for networks
of bounded degree, albeit to a more limited extent. Whereas variations in the
payoff matrix for lattice models and small-world networks increased the chance
that cooperation would dominate, the irregular, random structure of bounded-
degree networks mitigates the evolutionary advantage conferred on cooperators
by changes in the payoff matrix. Variations in the payoff matrix do affect the
frequency with which universal cooperation evolves, but not nearly to the extent
found in previous cases.

Universal cooperation does not easily evolve in bounded-degree networks
because it is easy for a single defector to be positioned such that he will not be
eliminated while, at the same time, not spreading his strategy to his neighbors.
Figure 3.30 illustrates four fixed states in which this happens. It is easy to specify
conditions under which isolated defectors will not spread. To see this, suppose
that D is a defector having the minimum number of neighbors – i.e., two. D

then receives a score of 2T . D’s cooperating neighbors earn the maximum
possible score when they have the maximum number of neighbors, which is
in this case four. When this happens, each cooperating neighbor receives a
score of 3 · R + 1 · S = 3R (since S = 0). As long as T > 3

2 R, D will not
switch strategies because he will have earned a higher score than those of his
neighbors. The payoff matrix used in figure 3.32 satisfies this condition, so the
isolated defector will not be replaced.

Although isolated defectors will not be replaced under these conditions,
two neighboring defectors who satisfy these conditions will be. If both defec-
tors have only two neighbors, and each defector has the other as a neighbor,
both defectors can be replaced. When two defectors neighbor each other, each
receives a score of T + P . If each defector has as neighbor a cooperator with
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Table 3.2. Numbers of models out of 10 000 that converge to all cooperate

kmax

kmin 2 3 4 5 6 7 8 9 10

1 312 381 410 441 557 511 582 620 635
2 – 336 313 436 449 477 496 560 572
3 – – 305 304 374 396 432 514 482
4 – – – 353 318 328 374 456 464

T = 1.0
R = 0.666
P = 0.333
S = 0.0

5 – – – – 317 325 307 378 401
6 – – – – – 306 314 309 321
7 – – – – – – 327 331 329
8 – – – – – – – 340 311
9 – – – – – – – – 311

1 338 360 526 695 863 1043 1138 1269 1263
2 – 330 419 599 731 932 959 1088 1239
3 – – 320 459 574 740 852 1034 1069
4 – – – 337 496 648 738 866 997

T = 1.0
R = 0.9
P = 0.3
S = 0.0

5 – – – – 334 534 686 749 887
6 – – – – – 320 464 631 744
7 – – – – – – 297 462 643
8 – – – – – – – 313 446
9 – – – – – – – – 306

1 318 395 492 787 1053 1246 1295 1459 1453
2 – 302 424 618 830 1106 1158 1246 1338
3 – – 343 494 724 826 998 1090 1170
4 – – – 304 556 711 869 934 1047

T = 1.0
R = 0.9
P = 0.225
S = 0.0

5 – – – – 378 563 719 821 930
6 – – – – – 355 583 706 755
7 – – – – – – 321 495 650
8 – – – – – – – 292 492
9 – – – – – – – – 348

1 335 404 517 861 1226 1402 1588 1506 1667
2 – 328 453 651 945 1149 1333 1400 1484
3 – – 316 487 756 991 1174 1210 1272
4 – – – 354 606 811 982 1096 1157

T = 1.0
R = 0.9
P = 0.18
S = 0.0

5 – – – – 383 627 798 900 998
6 – – – – – 364 592 810 829
7 – – – – – – 345 577 676
8 – – – – – – – 338 528
9 – – – – – – – – 331
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four neighbors (three of whom cooperate), then each defector will have one
neighbor who earns a score of 3R + S = 3R. Since it is impossible to have a
prisoner’s dilemma with positive payoffs such that T + P ≥ 3R, each defector
will thus switch to cooperation in the next generation.

The difficulty of eliminating defectors from the population suggests that
measuring the tendency for cooperation to emerge by looking at the number
of models that converge to All Cooperate misleads by imposing too stringent
a requirement. If so, then we need to find an alternative measure. One worth
considering looks at the proportion of models in which the total number of
cooperators increases on going from the initial state to the final state. If we
adopt this measure, we find that variations in the payoff matrix can have a
notable effect on the emergence of cooperation, as shown in table 3.3.

At the end of the day, though, it does seem that what one should concentrate
on is the total number of cooperators present when the model arrives at a fixed
state. If we view the prisoner’s dilemma as a model of the decision problem
encountered by people in the natural condition of mankind, we, like Hobbes,
are not interested in knowing whether the number of people who lie low
has a slight tendency to increase. Rather, the important question concerns the
overall disposition of the population. Are people, in the absence of an absolute,
centralized, effective, coercive authority more likely to anticipate than to lie
low? This question concerns the total number of people in the population who
follow a particular strategy.

Table 3.4 shows the frequencies with which a randomly initialized popu-
lation evolves to a state in which at least half of the population cooperates.
Although the exact frequency varies as a function of kmin, kmax, and the par-
ticular payoff matrix, note that for certain values of these parameters over
40 percent of the time we arrive at a state in which over half of the population
cooperates. It is also not uncommon to arrive at a state in which over half
cooperate more than 30 percent of the time. Cooperation can emerge, albeit
with difficulty, in bounded-degree networks.

Thus we see that the state of nature, even in a randomly structured envi-
ronment, need not collapse into a war of all against all. This result is interest-
ing when contrasted with the analysis of the state of nature provided by the
replicator dynamics. In a random-mixing environment in which all pairwise
interactions are equally likely, universal defection dominates. In a structured
environment in which all pairwise interactions are not equally likely – but oth-
erwise determined at random – cooperation can emerge and sometimes dom-
inates. The structure of rational interaction, even when randomly structured,
can make a difference.
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Table 3.3. Numbers of models out of 10 000 in which the total number of
cooperators increases between the initial and final states

kmax

kmin 2 3 4 5 6 7 8 9 10

1 0 110 140 191 240 240 282 326 345
2 – 0 3 111 159 169 239 266 254
3 – – 0 2 79 81 151 205 198
4 – – – 0 0 3 63 117 134

T = 1.0
R = 0.666
P = 0.333
S = 0.0

5 – – – – 0 0 1 59 74
6 – – – – – 0 0 0 1
7 – – – – – – 0 0 0
8 – – – – – – – 0 0
9 – – – – – – – – 0

1 0 230 717 1077 1292 1402 1374 1323 1288
2 – 84 532 850 1035 1207 1164 1189 1241
3 – – 274 561 726 944 986 1074 1051
4 – – – 204 488 730 833 849 907

T = 1.0
R = 0.9
P = 0.3
S = 0.0

5 – – – – 111 479 600 698 790
6 – – – – – 120 302 483 607
7 – – – – – – 53 272 468
8 – – – – – – – 35 221
9 – – – – – – – – 34

1 0 246 951 1781 1954 1887 1727 1668 1603
2 – 90 853 1680 1663 1676 1556 1520 1455
3 – – 728 1401 1396 1271 1308 1302 1302
4 – – – 1156 1022 1011 1081 1102 1169

T = 1.0
R = 0.9
P = 0.225
S = 0.0

5 – – – – 585 683 842 897 990
6 – – – – – 247 557 654 784
7 – – – – – – 125 379 538
8 – – – – – – – 97 336
9 – – – – – – – – 79

1 0 239 939 2168 2431 2267 1986 1811 1820
2 – 91 888 2055 2188 1955 1865 1731 1640
3 – – 727 1931 1979 1848 1669 1515 1461
4 – – – 1616 1684 1561 1430 1373 1367

T = 1.0
R = 0.9
P = 0.18
S = 0.0

5 – – – – 1368 1140 1139 1110 1155
6 – – – – – 709 746 926 885
7 – – – – – – 269 522 615
8 – – – – – – – 215 373
9 – – – – – – – – 122
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Table 3.4. Numbers of models out of 10 000 that converge to a final state in
which at least half of the population cooperates

kmax

kmin 2 3 4 5 6 7 8 9 10

1 1891 1113 958 758 737 643 699 710 699
2 – 640 637 661 573 588 598 639 625
3 – – 351 399 428 461 505 574 543
4 – – – 353 319 398 446 496 505

T = 1.0
R = 0.666
P = 0.333
S = 0.0

5 – – – – 317 327 360 398 440
6 – – – – – 306 314 310 358
7 – – – – – – 327 331 329
8 – – – – – – – 340 311
9 – – – – – – – – 311

1 2384 2522 2752 2887 2741 2493 2314 2172 1948
2 – 2461 2704 2752 2588 2406 2111 1987 1925
3 – – 2717 2586 2350 2232 2035 1951 1800
4 – – – 2337 2127 2030 1911 1770 1689

T = 1.0
R = 0.9
P = 0.3
S = 0.0

5 – – – – 1750 1746 1632 1658 1579
6 – – – – – 1393 1337 1424 1415
7 – – – – – – 999 1117 1210
8 – – – – – – – 849 900
9 – – – – – – – – 694

1 2292 2535 3056 3396 3332 3038 2633 2461 2255
2 – 2528 3196 3446 3218 2926 2628 2389 2240
3 – – 3372 3476 3030 2587 2410 2210 2072
4 – – – 3378 2856 2497 2207 2079 1979

T = 1.0
R = 0.9
P = 0.225
S = 0.0

5 – – – – 2657 2237 1905 1916 1852
6 – – – – – 1853 1629 1717 1644
7 – – – – – – 1114 1410 1446
8 – – – – – – – 1068 1239
9 – – – – – – – – 929

1 2344 2515 3024 3754 3633 3365 2973 2588 2545
2 – 2568 3236 3945 3640 3313 3021 2627 2432
3 – – 3420 4060 3597 3261 2824 2437 2343
4 – – – 4029 3435 3037 2648 2364 2185

T = 1.0
R = 0.9
P = 0.18
S = 0.0

5 – – – – 3354 2811 2403 2110 1999
6 – – – – – 2526 2131 1957 1750
7 – – – – – – 1764 1575 1566
8 – – – – – – – 1176 1333
9 – – – – – – – – 1016
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3.5 Dynamic networks

Social networks clearly influence the state that a population of boundedly
rational agents playing the prisoner’s dilemma may evolve to. As we have
seen, if groups of cooperators can form, it is even possible for cooperative
behavior to dominate in the population. Yet is it plausible to think that groups
of cooperators may form in an initially unstructured population?

Recall Skyrms and Pemantle’s model of social-network formation.
Figure 3.31 shows the first five generations of a dynamic social network consist-
ing of seven individuals. In this model, each person chooses another individual
to visit according to the interaction probabilities specified in the matrix; at the
beginning, all interactions are equally likely (except for self-interactions, which
have probability zero).34 When i visits j , they play one round of the prisoner’s
dilemma, using the indicated payoff matrix. Unlike in the previous models in
which each person received a payoff from participating in the game, here only
the person who initiated the visit receives a payoff.35

After the first few generations, a pattern appears. Cooperators begin to pre-
fer to visit cooperators and to avoid visiting defectors. Given the payoff matrix
and the dynamics of network formation, this preferential association is to be
expected: when cooperators visit defectors, that interaction is not reinforced
because the sucker’s payoff S equals zero. When a cooperator visits a cooper-
ator, he receives the reward R for cooperating, which increases the probability
that he will visit that cooperator in the future. In the limit, cooperators will
solely associate with cooperators and avoid defectors.

In addition, notice that defectors, on the other hand, begin to prefer to
visit cooperators and to avoid visiting defectors. This outcome is somewhat
surprising because when a defector visits a defector he receives a nonzero
payoff, unlike the case when a cooperator visits a defector. Nevertheless, de-
fectors still learn to prefer visiting cooperators because the payoff they receive
is higher than that received from visiting defectors. These patterns of pref-
erential association are formed relatively quickly: after five generations the
preference of cooperators for cooperators and of defectors for cooperators is
clearly visible. Figure 3.32 illustrates the pattern of preferences that has formed
after 1000 generations. At this point, the preference patterns are relatively
fixed.

34 The probability in row i, column j is the probability of i visiting j on any given day. Each row
and column is considered to be numbered from 0 to N − 1, where N is the size of the
population.

35 This model implements the network-formation dynamics of Skyrms and Pemantle (2000).
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Figure 3.31 Six generations of a dynamic network. Successive generations are
listed from top to bottom, with the graphical representation of the interaction
probabilities displayed on alternating sides to conserve space: T = 3, R = 2,
P = 1, and S = 0.
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1

2

3

4

5

6

7

1 2 3 4 5 6 7
1 0.0 0.0 0.878 0.0 0.0 0.115 0.0040
2 0.0010 0.0 0.0030 0.0 0.0090 0.079 0.906
3 0.615 0.0 0.0 0.0 0.0 0.033 0.349
4 0.156 0.0040 0.0090 0.0 0.0 0.0010 0.828
5 0.0 0.0 0.409 0.0010 0.0 0.061 0.526
6 0.086 0.0 0.509 0.0 0.0 0.0 0.402
7 0.699 0.0 0.27 0.0 0.0 0.028 0.0

Figure 3.32 Interaction probabilities for the dynamic social network of figure 3.31
after 1000 interactions (with no strategic dynamics): T = 3, R = 2, P = 1, and
S = 0.

After 1000 generations, the probability that a cooperator will interact with
a defector has nearly vanished.36 Is this convergence merely an artifact of the
payoff matrix? The preference pattern formed by defectors suggests not, but

36 The interaction probabilities listed in figure 3.32 have been rounded to five significant figures.
A nonzero probability of each node interacting with every other node (except itself) still
remains. Although the interaction probabilities may converge to zero in the limit, it is not
possible, given the dynamics of the model, for the interaction probabilities to reach zero in
finite time.
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1

2

3

4

5

6

7

1 2 3 4 5 6 7
1 0.0 0.0 0.0020 0.0090 0.497 0.49 0.0
2 0.011 0.0 0.0 0.0040 0.032 0.942 0.0090
3 0.646 0.013 0.0 0.0040 0.125 0.202 0.0070
4 0.472 0.0070 0.0 0.0 0.0090 0.507 0.0020
5 0.0010 0.131 0.0060 0.0020 0.0 0.857 0.0010
6 0.791 0.026 0.0030 0.0090 0.168 0.0 0.0
7 0.0070 0.834 0.0010 0.0040 0.0 0.152 0.0

Figure 3.33 Interaction probabilities for a dynamic social network after 1000
interactions (with no strategic dynamics): T = 4, R = 3, P = 2, and S = 1.

we can check this by choosing a payoff matrix that assigns a nonzero value
to the sucker’s payoff. Figure 3.33 shows that raising the sucker’s payoff to a
nonzero amount by shifting all payoffs up one unit makes very little difference.
Even with the elevated payoff matrix, the greatest probability of a cooperator
visiting a defector is only 0.9 percent after 1000 generations.

Table 3.5 lists the typical conditional interaction probabilities resulting after
50 000 generations for the prisoner’s dilemma with payoff matrix T = 1.0,
R = 0.66, P = 0.33, and S = 0.0. Let Pr(∼C|C) denote the probability of
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Table 3.5. Mean conditional interaction probabilities after 50 000 generations
with just one interaction per agent, per round, allowed

Pr(∼C|C) Pr(∼D|C) Pr(∼C|D) Pr(∼D|D)

N = 3 0.501 5 0.388 0.768 11 0.111 01
N = 4 0.672 3 0.251 75 0.864 82 0.075 93
N = 5 0.804 08 0.166 0.937 52 0.029 88
N = 6 0.885 89 0.095 0.965 95 0.019 06
N = 7 0.935 64 0.058 76 0.984 75 0.004 91
N = 8 0.965 46 0.028 83 0.988 99 0.004 37
N = 9 0.987 18 0.011 0.995 68 0.000 36
N = 10 0.986 96 0.010 99 0.994 48 0.000 25
N = 11 0.992 71 0.004 0.995 23 0.001 18
N = 12 0.993 43 0.003 96 0.995 81 0.000 3
N = 13 0.996 21 0.001 0.995 7 0.000 14

a cooperator interacting with a cooperator37 and let Pr(∼D|C) denote the
probability of a cooperator interacting with a defector. The remaining two
columns denote similar values for defectors. Each conditional probability listed
was obtained by averaging the results of 1000 models. Although we know that
cooperators will always, in the limit, associate only with cooperators, a similar
result appears to hold for defectors.

The structural dynamics considered thus far assumes that people do not
change strategy over time. Allowing individuals to change strategies creates a
separate layer of strategic dynamics running alongside of the structural dynam-
ics. When strategic dynamics are included, each agent has a certain probability
p of updating his strategy after a round of visits. If an agent chooses to up-
date his strategy, he selects one (or more) individuals at random according to
his interaction probabilities, and then uses those people as his neighbors for
imitate-the-best dynamics.

The fact that both defectors and cooperators always develop preferences for
associating solely with cooperators, as well as tending to form clusters, becomes
important when strategic dynamics are included. Assuming that cooperators and
defectors tend to aggregate into clusters, the interaction probabilities converge
to zero and unity as suggested in table 3.5, more than one interaction is allowed,
and one other modest condition (stated below), it seems that cooperation will

37 This notation is slightly unusual, admittedly; “Pr(∼C|C)” should be read as “the probability of
interacting with a cooperator, given that I cooperate.” The notation “∼C” is meant to denote
interacting with a cooperator.
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always dominate in the limit as the probability of an agent updating his strategy
shrinks to zero. If more than one interaction is not allowed, the theorem does
not hold.

The modest condition concerns the size of the clusters which form. If the
payoff matrix for the prisoner’s dilemma is T , R, P , and S, cooperation always
dominates when the cluster size exceeds T /R. If the cluster size does not exceed
this value, than cooperation cannot dominate.

The argument is short and intuitive. As the frequency of strategic updating
shrinks to zero, so does the chance that the first strategic update occurs before
the structural dynamics lock individuals into clusters of cooperator–cooperator
and defector–cooperator pairings. Once these clusters have formed, cooperators
are essentially prevented from switching to defection. In order for a cooperator
to become a defector, the cooperator would need to include a defector in the
set of people from among whom he selects which one to imitate. Since the
probability of a cooperator interacting with a defector is virtually zero, it is
extremely unlikely that this will happen.

Similarily, the clusters effectively encourage defectors to become cooper-
ators. When a defector decides to update his strategy, he examines several
randomly selected individuals to see whether they did better than he himself
did and, if so, he adopts a new strategy according to the imitate-the-best rule.
However, each defector’s interaction probabilities make it highly likely that
only cooperators are included in the set of people he examines. Thus, if a
defector switches strategies at all, he will switch to become a cooperator.

Given that clusters form, there is a nonzero probability that each defector
will switch to Cooperate when multiple interactions are allowed. If one of
the cooperators the defector observes interacts with every cooperator in his
cluster, that cooperator earns a score of C · R where C denotes the size of the
cluster. If the defector interacts only with one cooperator, he earns a score of
T . Since C · R > T , that defector’s score is strictly less than that of one of
the cooperators he observes, so the defector will become a cooperator. In the
long run, the chance of this situation occurring for each defector occurs with
probability unity.

Lastly, note that, when only one interaction is allowed, cooperation will
not dominate in the limit. Once the structural dynamics has essentially driven
the cooperator–cooperator and defector–cooperator interaction probabilities to
fixation, the chance that a defector will earn a score lower than that of any
cooperator is virtually zero. Defectors interact only with cooperators, receiving
that maximal payoff T , and cooperators interact only with cooperators, receiv-
ing the second-highest payoff R. Even when a defector chooses to update his
strategy, he will find that he earned the higher score and will not switch.
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Figure 3.34 Numbers of models out of 1000 that converge to All Cooperate under
the coevolution of structure and strategy when multiple interactions are allowed.

Figure 3.34 charts the convergence behavior for the prisoner’s dilemma
played on a dynamic network with both structural and strategic dynamics.
The probability p that an individual will update his strategy at the end of the
current generation was assigned one of four possible values: 0.1, 0.05, 0.025,
and 0.0125. One can see how, as p approaches zero, the probability of the world
arriving at a state of universal cooperation sharply increases. For p = 0.0125,
universal cooperation occured over 95 percent of the time.

Hobbes’s pessimistic conclusion regarding the natural condition of mankind
need not hold – even if the strategic problem faced by people in the state of
nature has the form of the prisoner’s dilemma. Self-interested agents who act
solely to maximize their individual expected utility may cooperate with each
other in the absence of a strong, effective, centralized, coercive authority. The
structure of society may prevent the war of all against all as effectively as the
sword.
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Trust1

It is difficult to imagine life without the Internet. It has made available afford-
able, real-time video conferencing; a plethora of information (some of which
is even true); an unbelievable variety of downloadable entertainment (some
of which is even legal); the chance to find your true love among a large pool
of candidates (some of whom are even of the gender they claim to be); and, of
course, the ability to hunt online.

In January 2005, John Lockwood and Howard Giles became the first peo-
ple to hunt collaboratively even though they were separated by a distance of
45 miles. From the comfort of his home, using a rifle connected to a mechanism
that allowed it to be aimed and fired via the Internet, Giles shot and severely
wounded a wild hog eating from a feed box on Lockwood’s ranch in Texas. Un-
fortunately, since the hog was only wounded by Giles’s bullet, Lockwood had
to deliver the final two shots in person.2 This nonstandard method of hunting
generated a substantial amount of debate, with bills banning Internet hunting
being introduced in a number of states shortly thereafter.

Although times have changed since Rousseau analyzed the problem of
collaborative hunting in A Discourse on Inequality (1775), the basic problem
remains the same. As Lockwood and Giles found out, two people need to
collaborate in order to ensure that the hunt is successful. If one person chooses
to hunt and the other does not, the hunt may be unsuccessful, and the person
who chooses to hunt winds up achieving nothing more than a waste of effort.
The person who chooses not to hunt doesn’t waste his effort, though, and so
isn’t as badly off as the person who wound up hunting solo.

1 Portions of this chapter are drawn from Vanderschraaf and Alexander (2005).
2 http://www.hsus.org/wildlife/wildlife_news/pay_per_view_
slaughter.html.
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Table 4.1. The Stag Hunt (or the Assurance
game), where x > y ≥ z > 0

Hunt Stag Hunt Hare

Hunt Stag (x, x) (0, y)
Hunt Hare (y, 0) (z, z)

Because talk of the Hog Hunt sounds a bit silly, and also because Rousseau
considered the problem in terms of hunting stag, let’s switch to the language
of Rousseau. The game known as the Stag Hunt has two strategies: Hunt Stag
and Hunt Hare. The attraction of hunting stag is that, if the hunt is successful,
the payoff to each stag hunter is large. The attraction of hunting hare is that it’s
much easier, and virtually guaranteed to succeed, although it confers a lower
payoff. The optimal outcome, both individually and collectively, occurs when
both individuals choose Hunt Stag. The worst outcome from any hunter’s point
of view occurs when he chooses to hunt stag and his partner defaults on the
collaborative hunt, going off to pursue a hare. It makes little difference to the
hare hunter what choice his companion makes.

Table 4.1 summarizes the symmetric, two-player Stag Hunt.3 The Stag Hunt
plays an important role in moral and political philosophy. Philosophers use the
Stag Hunt to represent collective-action problems ranging from cooperation in
the Hobbesian state of nature to pollution control and political revolutions. The
Stag Hunt also illustrates some of the challenges of accounting for equilibrium
selection in games. In this game, All Hunt Stag as well as All Hunt Hare are
coordination equilibria (Lewis, 1969) with the property that neither player’s
payoff is improved if one of them deviates from hunting stag or hunting hare.
The All Hunt Stag equilibrium is collectively optimal and yields to each player
his highest possible payoff.4 However, each player is certain to obtain a positive
payoff only if he chooses Hunt Hare. Should rational players contribute to an
optimal outcome or play it safe?

The Stag Hunt provides a model of the formation of trust, since the answer
as to what a rational player should do depends upon her degree of belief as to

3 The Stag Hunt may also be called the Assurance game. If one chooses to differentiate between
Stag Hunts and Assurance games, the dividing line concerns whether y = z or y > z. Stag
Hunts, in the narrow sense, have the form y = z, whereas Assurance games have the form
y > z. I will adopt the broader sense of the Stag Hunt used by Skyrms (2003, pp. 3–4),
throughout this chapter (see also Sen, 1967).

4 Which is an important difference between the Stag Hunt and the prisoner’s dilemma.



Trust 103

what the other player (or players) will do. It depends, in a word, on how much
you trust your fellow companion to Hunt Stag.

The classical game theory of von Neumann and Morgenstern (1944) and
Nash (1950a, 1951a, 1951b) provides no determinate answer to this question.
Harsanyi and Selten (1988) tried to answer it by introducing a refinement of the
Nash equilibrium concept called risk dominance. A strategy s is a player’s best
response to a strategy profile of the other players (or a probability distribution
over these profiles) when s maximizes the player’s payoff given this profile (or
distribution). If the players in a symmetric 2× 2 game each assign a uniform
probability distribution over the other’s pure strategies and s∗ is the unique best
response to both, then (s∗, s∗) is the risk-dominant equilibrium. In the Stag
Hunt, Hunt Stag is risk-dominant if x > y + z, but Hunt Hare is risk-dominant
if y + z > x.5

Harsanyi and Selten argue that a player should follow her part of a risk-
dominant equilibrium since this strategy is the best response over the larger
share of possible probabilities with which the other player follows his pure
strategies (Harsanyi and Selten, 1988, pp. 82–83). Risk dominance is an im-
portant concept in game theory, but it raises obvious questions: why shouldn’t
a player’s probabilities over her opponent’s strategies lie outside the range
that makes her end of the risk-dominant equilibrium her best response? Why
shouldn’t a player optimistically assign a high probability to her counterpart
choosing Hunt Stag, even if All Hunt Hare is risk-dominant? Or, similarly, why
shouldn’t a player pessimistically assign a high probability to her counterpart
choosing Hunt Hare, even if All Hunt Stag is risk-dominant? In the end, there
really is no determinate solution to the Stag Hunt. Given appropriate proba-
bilities reflecting a player’s beliefs about what the other player will do, either
pure strategy can be a best response. Rational players might fail to follow an
equilibrium at all, even if they have common knowledge of their rationality.6

5 The way to think of risk dominance is as follows. Suppose that you know nothing at all about
what strategy your opponent will play. Because of this, you assume that they will select a
strategy at random by flipping a fair coin (or n-sided die if there are more than two strategies).
The strategy which maximizes your payoff under these circumstances is risk dominant. For the
Stag Hunt, your expected payoff if you hunt stag and your opponent follows a mixed strategy
assigning equal probability to both strategies is 1

2 x + 1
2 · 0; your expected payoff if you hunt

hare in the same situation is 1
2 y + 1

2 z. Thus, the strategy Hunt Stag is risk dominant if and only
if 1

2 x + 1
2 · 0 > 1

2 y + 1
2 z.

6 Lewis (1969, pp. 56–57) presented the first analysis of common knowledge. A proposition A is
Lewis-common knowledge among a group of agents if each agent knows that all know A and
knows that all can infer the consequences of this mutual knowledge. Lewis-common knowledge
implies the following better-known analysis of common knowledge: A is common knowledge
for a group of agents if each agent knows A, each agent knows that each agent knows A, and so
on, throughout all finite levels.



104 Trust

Trust and cooperation are not separable concepts, and interesting connec-
tions exist between the Stag Hunt and the prisoner’s dilemma as well. Let us
return, briefly, to Axelrod’s analysis of the prisoner’s dilemma found in The
Evolution of Cooperation. Recall that Axelrod was interested in the relatively
remarkable success displayed by the strategy TIT-FOR-TAT, which begins with
cooperation on the first round of play, and then mimicks the strategy played by
its opponent during the previous round.

TIT-FOR-TAT, as a strategy governing behavior, is used by a variety of or-
ganisms, ranging from stickleback fish (Milinski, 1987) to soldiers involved in
trench warfare during World War I (Axelrod, 1984). Axelrod claims that the
essential property of TIT-FOR-TAT which makes it such an advantageous strategy
to use is that it is “collectively stable.” By this he meant that, if everyone in
the population follows it, no alternative strategy can invade (Axelrod, 1984,
p. 56).7 Axelrod states that TIT-FOR-TAT is collectively stable in the following
proposition:

Proposition 2. TIT-FOR-TAT is collectively stable if and only if w is large
enough. This critical value of w is a function of the four payoff parameters
T , R, P , and S.

The argument given in support of this claim (see Axelrod, 1984, pp. 207–
208) proceeds by showing that, in the infinitely iterated prisoner’s dilemma,
TIT-FOR-TAT cannot be invaded by ALL DEFECT or the strategy alternating De-
fection and Cooperation. Instead of conceiving of this as a question concerning
the evolutionary stability of TIT-FOR-TAT, let’s think of it as a problem of strat-
egy adoption in indefinitely iterated games. Suppose that you are told that you
will play the indefinitely iterated prisoner’s dilemma, and may adopt either the
strategy of TIT-FOR-TAT or ALL DEFECT. Which should you choose?

Consider what happens in the case in which TIT-FOR-TAT plays against
ALL DEFECT with a shadow of the future of w.8 When TIT-FOR-TAT plays against
TIT-FOR-TAT, it always cooperates, so the payoffs received for the indefinitely
iterated game in this case are simply

F (TIT-FOR-TAT|TIT-FOR-TAT) = R + Rw + Rw2 + Rw3 + · · ·

=
∞∑

t=0

Rwt = R

1− w
.

7 It must be noted that whether an alternative strategy can invade depends critically on the set of
strategies available. When strategies with memory greater than one prior move are permitted,
TIT-FOR-TAT can be invaded and replaced by other strategies. See Lindgren and Nordahl (1994).

8 The phrase “shadow of the future” refers to the rate at which expected future payoffs are
discounted. Discount rates are drawn from the interval [0, 1), which insures that the infinite
series below converge.
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C D
C (2, 2) (0, 3)
D (3, 0) (1, 1)

w= 3
4−−→

TIT-FOR-TAT ALL DEFECT

TIT-FOR-TAT (8, 8) (3, 6)
ALL DEFECT (6, 3) (4, 4)

Figure 4.1 Payoffs for the infinitely iterated prisoner’s dilemma between
TIT-FOR-TAT and ALL DEFECT with a shadow of the future of 3

4 .

Payoffs for the other cases are easily calculated as well:

F (TIT-FOR-TAT|ALL DEFECT) = S + P w + P w2 + P w3 + · · ·

= S +
∞∑

t=1

P wt = S + P w

1− w
,

F (ALL DEFECT|ALL DEFECT) = P + P w + P w2 + P w3 + · · ·

=
∞∑

t=0

P wt = P

1− w
,

and

F (ALL DEFECT|TIT-FOR-TAT) = T + P w + P w2 + P w3 + · · ·

= T +
∞∑

t=1

P wt = T + P w

1− w
.

If the payoffs for the one-shot prisoner’s dilemma are T = 3, R = 2, P = 1,
and S = 0, with a shadow of the future of 3

4 , we obtain the matrix in figure 4.1.
Notice that the resulting strategic problem of choosing between TIT-FOR-TAT

and ALL DEFECT has the form of a Stag Hunt – and one in which TIT-FOR-TAT

(the label corresponding to “Hunt Stag”) is risk-dominant.
What about the second part of the argument – where the choice of strategies

for the infinitely iterated game is between TIT-FOR-TAT and simply alternat-
ing between Defect and Cooperate? The remaining three payoffs are easily
calculated as well:

F (TIT-FOR-TAT|DCDC) = S + T w + Sw2 + T w3 + · · ·

=
∞∑

t=0

(Sw2t + T w2t+1) = S + T w

1− w2
,

F (DCDC|TIT-FOR-TAT) = T + Sw + T w2 + Sw3 + · · ·

=
∞∑

t=0

(T w2t + Sw2t+1) = T + Sw

1− w2
,
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C D
C (2, 2) (0, 3)
D (3, 0) (1, 1)

w= 3
4−−→

TIT-FOR-TAT DCDC
TIT-FOR-TAT (8, 8) (5.14, 6.86)
DCDC (6.86, 5.14) (5.71, 5.71)

Figure 4.2 Payoffs for the infinitely iterated prisoner’s dilemma between
TIT-FOR-TAT and the strategy which alternates between Defect and Cooperate,
with a shadow of the future of 3

4 .

and

F (DCDC|DCDC) = P + Rw + P w2 + Rw3 + · · ·

=
∞∑

t=0

(P w2t + Rw2t+1) = P + Rw

1− w2
.

As figure 4.2 shows, with payoffs of T = 3, R = 2, P = 1, and S = 0, with
w = 3

4 , the strategic problem of choosing between TIT-FOR-TAT and Defect–
Cooperate in the infinitely iterated prisoner’s dilemma also has the strategic
form of a Stag Hunt! This means that the collective stability of TIT-FOR-TAT has
less to do with particularly nice properties of TIT-FOR-TAT9 and much more to
do with the fact that the real underlying game being analysed by Axelrod was
a Stag Hunt, and one in which the strategy of Hunt Stag was risk-dominant.
In such a case, straightforward maximization of expected utility recommends
choosing Hunt Stag – or, as we’ve been calling it, TIT-FOR-TAT. As for why
TIT-FOR-TAT is capable of driving out “invaders,” we will see later that, under
a wide range of evolution dynamics, small perturbations away from All Hunt
Stag are inexorably hauled back to the All Hunt Stag equilibrium.

One connection between cooperation and trust, then, is that indefinitely
iterated problems of cooperation are, effectively, problems of trust. What about
the other direction? What are indefinitely iterated problems of trust? Consider,
as a special case, the indefinitely iterated Stag Hunt, in which players have a
choice of using either TIT-FOR-TAT or ALL DEFECT.10 It turns out, in this case,
that the payoffs for the indefinitely iterated game remain a Stag Hunt, regardless
of the size of the shadow of the future! So iterated problems of cooperation
become problems of trust, but iterated problems of trust remain problems of
trust.

To see this, consider the convergent payoffs of the indefinitely iterated
game, as shown in figure 4.3. Let X = x/(1− w), Y = y + zw/(1− w),

9 Namely, the fact it is “not envious,” nor the “first to defect,” that it “[reciprocates] both
co-operation and defection,” and is “not too clever” (Axelrod, 1984, p. 110).

10 In this case, the strategy ALL DEFECT refers to always hunting hare.
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Stag Hare
Stag (x, x) (0, y)
Hare (y, 0) (z, z)

↓
TIT-FOR-TAT ALL DEFECT

TIT-FOR-TAT

(
x

1− w
,

x

1− w

) (
zw

1− w
, y + zw

1− w

)
ALL DEFECT

(
y + zw

1− w
,

zw

1− w

) (
z

1− w
,

z

1− w

)

Figure 4.3 The indefinitely iterated Stag Hunt with a choice between TIT-FOR-TAT

and ALL DEFECT, with a shadow of the future of w.

Z = z/(1− w), and Q = zw/(1− w). What we need to show is that X >

Y ≥ Z > Q. Let’s work through this from left to right.

X > Y . Notice that we may write x/(1− w) as x + xw/(1− w). In the
original Stag Hunt, x > y ≥ z, so xw/(1− w) > zw/(1− w) and
hence X > Y .

Y ≥ Z. Using the same trick as before, expand z/(1− w) to
z+ zw/(1− w). The fact that Y ≥ Z then follows from the fact that,
in the original Stag Hunt, y ≥ z.

Z > Q. Since w is between 0 and 1, and all the payoffs in the original Stag
Hunt are positive, it follows that z/(1− w) > zw/(1− w).

This shows that the payoffs in figure 4.3 stand in the right relation to each other
to be a Stag Hunt.

One may wonder what happens if individuals approach the indefinitely it-
erated Stag Hunt as slightly more sophisticated strategic thinkers. It is well
known that, although TIT-FOR-TAT does reasonably well in a variety of different
environments, other strategies of roughly equal complexity can outperform it.
For example, Axelrod (1984, p. 39) notes how TIT-FOR-TAT would have lost in
his first computer tournament had an alternative strategy, TIT-FOR-TWO-TATS,
been submitted. Similarily, Nowak and Sigmund (1993) show how
WIN–STAY, LOSE–SHIFT also outperforms TIT-FOR-TAT in certain situations.

A player employing TIT-FOR-TWO-TATS begins by cooperating (or hunting
stag) for the first two generations, and then chooses to cooperate (hunt stag)
anytime his partner has cooperated (hunted stag) at least once in the past two
plays. WIN–STAY, LOSE–SHIFT begins by defecting (hunting rabbit) in the first
generation and then flips between cooperating and defecting (hunting stag
and hunting rabbit) whenever he earns a payoff below some critical threshold.
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WIN–STAY, LOSE–SHIFT thus corresponds to a strategy that a boundedly rational
agent would use, namely, one who seeks to “satisfice” rather than maximize.
What threshold do individuals following WIN–STAY, LOSE–SHIFT use? For
simplicity, and since the games we are considering have four payoff values,
let’s take the threshold to lie between the top two and bottom two values. A
player following WIN–STAY, LOSE–SHIFT in the repeated prisoner’s dilemma
will flip behavior whenever he receives a payoff of P or S, whereas a player
following WIN–STAY, LOSE–SHIFT in the Stag Hunt will flip behavior whenever
he receives a payoff of z or 0. (Although the definition of the Stag Hunt which
I’m using allows for the possibility of y = z, assume that y > z for the rest of
this argument.)

Calculating the payoffs for the four combinations of TIT-FOR-TWO-TATS ver-
sus WIN–STAY, LOSE–SHIFT in indefinitely iterated games is straightforward,
although slightly more complicated that what we’ve seen so far. Let’s now
consider the four possibilities in detail. In the following, I use the symbol “S”
to indicate a play of Hunt Stag, and “H” to indicate a play of Hunt Hare.

TFTT versus TFTT. The game play proceeds as follows:
round

0 1 2 3 4 · · ·
TFTT S S S S S · · ·
TFTT S S S S S · · ·

The expected payoff is then

F (TFTT|TFTT) =
∞∑

t=0

xwt = x

1− w
.

TFTT versus WSLS. The game play proceeds as follows:

round
0 1 2 3 4 5 6 7 · · ·

TFTT S(0) S(0) H(z) H(y) S(0) S(0) H(z) H(y) · · ·
WSLS H(y) H(y) H(z) S(0) H(y) H(y) H(z) S(0) · · ·

In the table above, the strategy played in round i is followed in parentheses
by the payoff earned. Note that the pattern repeats every four generations. The
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payoffs are then

F (TFTT|WSLS) =
∞∑

t=0

(0w4t + 0w4t+1 + zw4t+2 + yw4t+3)

=
∞∑

t=0

(zw4t+2 + yw4t+3) = w2(wy + z)

1− w4
.

WSLS versus TFTT. Using the above sequence of play, we calculate

F (WSLS|TFTT) =
∞∑

t=0

(yw4t + yw4t+1 + zw4t+2 + 0w4t+3)

= y + wy + w2z

1− w4
.

WSLS versus WSLS. The game play looks like the following:
generation

0 1 2 · · ·
WSLS H(z) S(x) S(x) · · ·
WSLS H(z) S(x) S(x) · · ·

After generation 1, both players will continue to hunt stag. The payoffs are then

F (WSLS|WSLS) = z+
∞∑

t=1

xwt = z+ xw

1− w
.

Given these calculations, the payoff matrix for the infinitely iterated Stag
Hunt between TIT-FOR-TWO-TATS and WIN–STAY, LOSE–SHIFT with a common
discount rate w is

TFTT WSLS

TFTT

(
x

1− w
,

x

1− w

) (
w2(wy + z)

1− w4
,

y + wy + w2z

1− w4

)

WSLS

(
y + wy + w2z

1− w4
,

w2(wy + z)

1− w4

) (
z+ xw

1− w
, z+ xw

1− w

)

Because TIT-FOR-TWO-TATS and WIN–STAY, LOSE–SHIFT embody such different
spirits in terms of how one can approach an indefinitely iterated game (one is
forgiving, the other crafty and opportunistic), it makes sense to allow the shadow
of the future to vary across these two different strategies. If TIT-FOR-TWO-TATS

has a discount rate of w1 and WIN–STAY, LOSE–SHIFT a discount rate of w2, the
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payoff matrix for the indefinitely iterated game is

TFTT WSLS

TFTT

(
x

1− w1
,

x

1− w1

) (
w2

1(w1y + z)

1− w4
1

,
y + w2y + w2

2z

1− w4
2

)

WSLS

(
y + w2y + w2

2z

1− w4
2

,
w2

1(w1y + z)

1− w4
1

) (
z+ xw2

1− w2
, z+ xw2

1− w2

)

The indefinitely iterated Stag Hunt with choice between TIT-FOR-TWO-TATS

and WIN–STAY, LOSE–SHIFT has a more complicated structure than the indefi-
nitely iterated Stag Hunt with choice between TIT-FOR-TAT and ALL DEFECT. It
also has the following curious property: let x = 9

8 , y = 17
16 , z = 1, w1 = 3

16 , and
w2 = 1

4 . These values satisfy all of the requirements for a Stag Hunt, yet, when
we plug them into the payoff matrix for the indefinitely iterated Stag Hunt, we
obtain

TFTT WSLS
TFTT (1.384, 1.384) (0.042, 1.396)
WSLS (1.396, 0.042) (1.375, 1.375)

which may look more familiar if we replace the numbers by variables:

TFTT WSLS
TFTT (R, R) (S, T )
WSLS (T , S) (P, P )

When we allow for slightly more complex strategies, and differing discount
rates, the indefinitely iterated Stag Hunt becomes a prisoner’s dilemma! Iterated
problems of cooperation can become problems of trust, and iterated problems
of trust can become problems of cooperation.

There are several morals to the story. First, the prisoner’s dilemma and the
Stag Hunt are intimately related; depending on the approach one takes to the
indefinitely iterated game, each can be transformed into the other. This makes
sense. Although cooperation and trust are different concepts, the two notions
are related.

The second moral is philosophical in nature. The Stag Hunt and the prisoner’s
dilemma have both been used by political philosophers to model the state of
nature. The fact that the indefinitely iterated Stag Hunt can become a prisoner’s
dilemma, and vice versa, means that, at the end of the day, there really isn’t a
right answer to the question of which better represents the state of nature. We
have no choice but to examine both games if we want to understand the state
of nature.

There is, however, yet another moral to the story, which returns us to a
theme introduced at the end of chapter 1. If one wants to leave the state of
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nature, it helps if one is not too smart. By “too smart,” I mean too much given
to strategic thinking. The Stag Hunt does not converge to a prisoner’s dilemma
until we consider the more structurally complex strategies of TIT-FOR-TWO-TATS

and WIN–STAY, LOSE–SHIFT. As long as persons adopt simpler approaches to the
iterated game, the Stag Hunt remains the Stag Hunt, and the strategy of Hunt
Stag becomes risk-dominant. Under these conditions, the entire population
could spontaneously, without communicating, and without being threatened by
the Hobbesian sovereign, choose to hunt stag and move to the socially optimal
equilibrium.

We may speculate all we like about how this may happen. What we really
need to do, now, is inspect a number of evolutionary models to see whether
boundedly rational individuals really will converge upon the socially optimal
equilibrium of Hunt Stag.

4.1 The replicator dynamics

Let S denote the strategy Hunt Stag, and H the strategy Hunt Hare. If p stands
for the proportion of the population which follows the strategy Hunt Stag, then
the average fitness of an individual choosing to hunt stag is

F (S|
s) = p · F (S|S)+ (1− p) · F (S|H )

= xp + (1− p) · 0 = xp.

Similarily, the average fitness of an individual choosing to hunt hare is

F (H |
s) = p · F (H |S)+ (1− p) · F (H |H )

= yp + (1− p) · z.

The average fitness of the population, F (
s|
s), equals the weighted sum of these
two terms:

F (
s|
s) = p · F (S|
s)+ (1− p) · F (H |
s)

= xp2 + (1− p) · (yp + (1− p)z
)
.

Under the replicator dynamics, the rate of change of the strategy Hunt Stag
is simply

dsS

dt
= p

(
F (S|
s)− F (
s|
s)

) = p
(
xp − F (
s|
s)

)
and the rate of change of the strategy Hunt Hare is

dsH

dt
= (1− p)

(
F (H |
s)− F (
s|
s)

) = (1− p)
(
yp + (1− p)z− F (
s|
s)

)
.
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Stag Hare
Stag (3, 3) (0, 2.1)
Hare (0, 2.1) (2, 2)

p = 2

3− 2.1+ 2
= 0.689655

StagHare p

Figure 4.4 The Stag Hunt modeled using the replicator dynamics.

The number of stag hunters in the population increases exactly when xp −
F (
s|
s) > 0. This relation can be nicely expressed in terms of the payoffs as
follows:

xp > xp2 + (1− p)
(
yp + (1− p)z

)
,

0 > −xp(1− p)+ (1− p)
(
yp + (1− p)z

)
,

0 > −xp + yp + (1− p)z,

p >
z

x − y + z
.

Figure 4.4 illustrates what happens when we model the Stag Hunt using
the replicator dynamics. The points on the left and right of the diagram cor-
respond to the states All Hunt Hare and All Hunt Stag, respectively. Points
in the middle of the diagram represent mixed states of the population.11 An
unstable equilibrium exists at the point where the proportion of stag hunters
equals z/(x − y + z). However, once the proportion of stag hunters exceeds
this, evolution under the replicator dynamics carries the population inexorably
towards the state in which everyone hunts stag. Likewise, once the population
of stag hunters has dropped below this critical value, the population converges
to All Hunt Hare.

Consider our earlier question regarding equilibrium selection in the Stag
Hunt. Under the replicator dynamics, this question is entirely determined by
the initial state of the population. Whether a social contract will form depends
only on whether the number of people inclined to form a social contract exceeds
the critical threshold of z/(x − y + z).

However, there is another, more disturbing, implication for social-contract
formation; according to the replicator dynamics, it is impossible for individuals
in the state of nature to leave the state of nature by gradual means. Consider this:
in the state of nature, no one trusts anyone else, so everyone hunts hare. Suppose,

11 The point directly in the middle of the line corresponds to the state in which half of the
population follows Hunt Stag and half follows Hunt Hare. From this midpoint, the proportion
of hare hunters increases linearly as one moves to the left (until you eventually arrive at the
state of All Hunt Hare) and the proportion of stag hunters increases linearly as one moves to
the right (until you eventually arrive at the state of All Hunt Stag).
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(a) Initial configuration (b) Fixed point after 1 iteration

Figure 4.5 The Stag Hunt played on a ring.

though, that one clever person realizes that everyone would be much better off
if they trusted each other (only a little bit!) and acted collaboratively. If this
person manages to persuade a few other individuals to work with him, what has
effectively happened is that a few Stag Hunters have appeared in the population.
In terms of the diagram of figure 4.5, the new state of the population – the one
containing a few Stag Hunters – has moved off the leftmost point of the diagram
to a point slightly to the right, in the interior.

Yet, this new point still lies within the basin of attraction for All Hunt Hare. If
people act as boundedly rational agents, as modeled by the replicator dynamics,
the brilliant insight of the clever person will be lost. The few Stag Hunters will
either be driven to extinction, or decide – after a few rounds of poor payoffs –
to switch back to their original untrusting behavior.12 The only way a social
contract can form is through a sudden, and radical, shift in the population. But
we know that collaborative efforts towards a jointly optimal outcome can arise
gradually, and can slowly spread throughout a population. It is time to consider
alternative models of cultural evolution.

4.2 Lattice models

Consider the Stag Hunt played on a ring of 100 individuals, with each player
interacting with his immediate neighbors on the right and left. Assume also that
everyone uses Imitate-the-Best as the learning rule, choosing a new strategy

12 Whether the Stag Hunters are driven to extinction or decide to switch strategies depends on
whether you interpret the replicator dynamics as a model of biological or cultural evolution.
See the discussion in chapter 2.



114 Trust

from their immediate neighbors on the left and right. When we consider such
a model, with payoffs of x = 3 and y = z = 2, we find that it always rapidly
converges to a fixed state consisting of some mix of stag hunters and hare
hunters after one generation. Figure 4.5 illustrates one such model in its initial
and final configurations. Light gray represents the strategy Hunt Stag, and black
represents Hunt Hare.

This is easily explained. An isolated stag hunter surrounded by two hare
hunters receives a payoff of 0, and hence will switch to hunting hare (since
his neighboring hare hunters always receive a payoff of 4). Each member of
a cluster of two stag hunters, side-by-side, earns a payoff of 3 – better than
before! – but will still switch to hunting hare, because each stag hunter sees
a hare hunter who did better than themselves. However, clusters of three or
more stag hunters are stable; each stag hunter on the boundary receives an
inferior payoff of 3, but does not switch to Hunt Hare because their update
neighborhood includes a stag hunter who receives the optimal payoff of 6.

Notice also that, in this case, a given hare hunter h will never switch to hunt-
ing stag. Regardless of whether h has one or two stag hunters as his neighbors,
h always receives a payoff of 4. His neighboring stag hunters (suppose that
there are two, s1 and s2) cannot receive a payoff of more than 3, because every
agent in this model has exactly two neighbors, and we already know that s1

and s2 have one hare hunter as a neighbor – namely, h! So h continues to hunt
hare, and s1 and s2 will switch to hunting hare unless they belong to a cluster
of three or more stag hunters.

This proves, for the payoff matrix x = 3 and y = z = 2, that, regardless of
the initial distribution of strategies, the Stag Hunt played on a ring with Imitate-
the-Best reaches a fixed point in the dynamics after exactly one generation; and
that fixed point cannot contain more stag hunters than were initially present in
the population. Under these conditions, the social contract cannot form. The
social contract is a Garden-of-Eden state, accessible only if the random coin
flips that assign strategies to persons happen to make everyone stag hunters at
the outset.

What if we allow for experimentation? Under these conditions, it does not
make much of a difference. Figure 4.6 displays the Stag Hunt run on a cycle of
length 400 with a mutation rate of 20 percent. Each time a mutant appears, he
adopts the strategy Hunt Stag or Hunt Hare with equal frequency. Mutant stag
hunters who pop up amid a cluster of hare hunters will disappear in the next
generation (as argued above).13 If a group of three or more stag hunters appears

13 The reason why single stag hunters appear at all in the figure has to do with when the image
was taken in the order of events. The order of events is as follows: take a snapshot, interact,
update, then mutate. Each row displays the state of the population at the beginning of that
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Figure 4.6 A Stag Hunt on a cycle of length 400, with a mutation rate of 20
percent; 200 generations are displayed.

Figure 4.7 Displacing the social contract. The stag hunt (x = 3, y = z = 2) with
a mutation rate of µ = 0.025.

at once, it will persist until eroded away by mutant hare hunters. As figure 4.6
shows, even when mutations are present, the population contains more hare
hunters than stag hunters, and spends its time closer to the state All Hunt Hare
than to All Hunt Stag.

Although mutations are incapable of moving the population into a social
contract, will a social contract at least be stable if ever reached? Unfortunately
not. Figure 4.7 shows how easily even a small amount of mutation can cause a

generation, and hence contains the mutants who were introduced at the end of the previous
generation. A sharp eye will notice that, on occasion, an isolated stag hunter appears to persist
for more than one generation. Why does this happen? With a mutation rate of 20 percent, there
is a 10 percent chance that an individual who had mutated into a stag hunter at the end of the
previous generation will again mutate into a stag hunter at the end of the current generation.
This gives the appearance of isolated stag hunters persisting for more than one generation.
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· · · H S H · · ·

0 ≥ y + z≥ y + z

(a) Isolated stag hunter

· · · H S1 S2 H1 H2 · · ·
x x y + z

(b) Stag hunters with one neighboring stag
hunter (case 1)

· · · H S1 S2 H ′ S · · ·
x x 2y

(c) Stag hunters with one neighboring stag
hunter (case 2)

Figure 4.8 The key arrangements of stag and hare hunters for a local-interaction
model with an interaction and update radius of 1.

population beginning in the state All Hunt Stag to be replaced, in a relatively
short period of time, by the state in which most individuals hunt hare.

The differences between this simple local-interaction model and the repli-
cator dynamics are striking. Under the replicator dynamics, the state All Hunt
Stag is evolutionarily stable; mutant hare hunters are driven to extinction. In
this local-interaction model, the state All Hunt Stag is no longer evolutionarily
stable because mutant hare hunters gradually accumulate in the population until
they finally push the stag hunters out. This happens even though Hunt Stag is
an evolutionarily stable strategy in the sense of Maynard Smith and Price.14

The above analysis fixed a specific payoff matrix, but the argument easily
generalizes. Let the payoffs x > y ≥ z > 0 be given. Figure 4.8 displays the
key arrangements of stag and hare hunters that we need to consider. A stag
hunter with no neighboring stag hunters still receives a payoff of zero, and will
switch to hunting hare in the next generation. The case in which a stag hunter
has exactly one neighbor who hunts stag is more interesting. If Hunt Hare is
risk-dominant, both stag hunters will switch to hunting hare: each stag hunter
receives a payoff of x, and each of their hare-hunting neighbors receives a
payoff of at least y + z.15

However, if Hunt Stag is risk-dominant, we need to consider just how much
it is risk-dominant. If Hunt Stag is risk-dominant, we know that x > y + z, but
no constaints are placed on where 2y fits into that ordering. It may be the case

14 Recall the definition: a strategy σ is said to be evolutionarily stable if and only if, for any
mutant µ, either (a) σ does better playing against σ than µ does against σ , or (b) µ does just as
well playing against σ as σ , but σ does better playing against µ. Let σ denote the strategy
Hunt Stag, and µ the strategy Hunt Hare. Then #F (σ, σ ) > #F (µ, σ ) because 3 > 2, so
Hunt Stag is evolutionarily stable.

15 The payoff could be greater, as case 2 illustrates.
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(a) Hunt Stag risk-dominant, 2y > x (b) Hunt Stag risk-dominant, x > 2y

Figure 4.9 The spread of risk-dominant Hunt Stag under two different conditions.

that x > 2y > y + z or that 2y > x > y + z. If x > 2y > y + z, then, both
in case 1 and in case 2, the hare hunter adjacent to S2 will switch to hunting
stag in the next generation. This initiates a contagion effect, so that the entire
population will end up hunting stag if at least two adjacent hare hunters are
present in the initial population.

However, if 2y > x, the strategy of Hunt Hare will be adopted by stag
hunters even if they have one other stag hunter as a neighbor (i.e., in case 2 of
figure 4.8). Figure 4.9 illustrates this effect of the weak and strong senses of
risk dominance.16 In figure 4.9(a), single hare hunters will not be eliminated
from the population. Moreover, in the upper right-hand corner of figure 4.9(a),
we see how an initial distribution of strategies that conforms to the pattern
. . . SSHSSHHHSSHSS . . . will fall into a cycle of length 2. In the world of
figure 4.9(b), though, Hunt Stag is contagious and eventually drives the hare
hunters out.

When Hunt Stag is only weakly risk-dominant, mutations have a much
greater effect, as shown in figure 4.10. There, both models were initialized
using random initial conditions (both strategies equally likely) and a common
mutation rate of 10 percent. In figure 4.10(a), mutations introduce hare hunters
into the population, who persist either until they mutate back into stag hunters,
or until Hunt Stag manages to drive them out.17 In figure 4.10(b), isolated hare
hunters are immediately driven out of the population. This minor difference in

16 A strategy S is weakly risk-dominant if S is risk-dominant, in the normal sense defined earlier,
but yet S fails to prevent competing strategies from replacing it, or initiating contagion effects.
A strategy S is strongly risk-dominant if it is risk-dominant and also prevents competing
strategies from replacing it, or initiating contagion effects. Since the existence of contagion
effects depends upon the underlying structure of society, it is entirely possibly for a strategy to
be weakly risk-dominant for some social structures but not others. I leave this
context-dependence implicit, since it will be clear from the discussion which social structures I
have in mind.

17 Although an isolated hare hunter will persist indefinitely, because 2y > x, two adjacent hare
hunters may switch to hunting stag, because x > y + z, as inspection of figure 4.9(a) shows.



118 Trust

(a) Hunt Stag risk-dominant, 2y > x (b) Hunt Stag risk-dominant, x > 2y

Figure 4.10 Two types of risk dominance, with mutation.

(a) Interaction radius of 1, update radius of 2

(b) Interaction radius of 2, update radius of 3

Figure 4.11 Trust is contagious in the Stag Hunt (x = 3, y = z = 2).

the dynamics has a relatively large effect on the typical distribution of strategies:
in figure 4.10(a), individuals hunt hare approximately 20 percent of the time,
whereas they hunt hare only 6 percent of the time in figure 4.10(b). Although the
social contract is not easily displaced when Hunt Stag is weakly risk-dominant,
its hold upon society is more tenuous.

In the previous chapter, we saw that allowing for the interaction and up-
date neighborhoods to differ in size enabled cooperative behavior in the pris-
oner’s dilemma to spread. Does the same effect occur in the Stag Hunt? As
figure 4.11 shows, when the update neighborhood is larger than the interaction
neighborhood, trust is contagious, even when Hunt Hare is the risk-dominant
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Figure 4.12 The emergence of a social contract, with payoffs of x = 3 and y =
z = 2, an interaction radius of 1 and an update radius of 2.

strategy. A social contract can form locally and then spread to the entire popu-
lation.

We can say a bit more about the conditions under which this happens.
Suppose that the interaction neighborhood has a radius of n, and that the
update neighborhood has a radius of k. Let us also consider the special case
in which y = z. Each hare hunter receives a constant payoff of 2ny, no matter
whom he interacts with. A contagion effect occurs whenever a stag hunter, say
s∗, who falls within the update neighborhood of the outermost hare hunter,
receives a payoff greater than 2ny. This occurs whenever the number of stag
hunters within s∗’s interaction neighborhood equals or exceeds c > 2n(y/x).

For the typical payoff matrix we’ve been considering, with x = 3 and
y = z = 2, if the interaction neighborhood has radius 1, every person in the
interaction neighborhood of a stag hunter has to hunt stag in order to start a
contagion.18 Larger interaction radii, though, only require a sizable subset of a
stag hunter’s interaction neighborhood to hunt stag in order to start a contagion.

One important consequence of unequal neighborhoods is that it makes it
possible for a social contract to emerge gradually from the state of nature.
Figure 4.11 showed how, from an initial state containing both stag hunters
and hare hunters, the population can evolve to a state in which all hunt stag.
Figure 4.12 goes further and shows the emergence of a social contract from a

18 In this case, the critical number of stag hunters must exceed 4
3 , so there must be at least two

stag hunters present.
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Figure 4.13 The Stag Hunt (x = 3, y = z = 2) played on a ring, with an inter-
action radius of 1 and an update radius of 2, with stag hunters mutating into hare
hunters 10 percent of the time.

world containing only hare hunters. With a mutation rate of 5 percent, eventually
a group of stag hunters exceeding the critical size appears. This group of
stag hunters spreads throughout the population, eventually transforming the
population to the state in which all hunt stag (save for the occasional mutant).

Not only do unequal neighborhoods make it possible for social contracts
to form, but also they make social contracts very resilient. Compare the result
of figure 4.13 with that of figure 4.7. Even if the only mutations which occur
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Figure 4.14 The stag hunt on a two-dimensional lattice, for equal interaction and
update neighborhoods (Moore (8)), with x = 3 and y = z = 2.

transform stag hunters into hare hunters – a form of mutation that is biased
against the social contract, and maximally effective at overturning the social
order – we see that stag hunters successfully drive out hare-hunter rebellions.
Even when hare hunters manage to take over a nontrivial amount of the pop-
ulation, stag hunters manage to reestablish the social contract within a short
period of time.

So much for Imitate-the-Best play on a ring. What happens when individuals
use the Best Response learning rule? Ellison (1993) examined this case at length.
He found19 that the long-run behavior of local interactions with Best Response
is generally determined by which strategy is risk-dominant. That is, with a
small amount of mutation, the population spends the majority of its time in the
state in which everyone follows the risk-dominant strategy.

Imitation, then, succeeds in establishing the social contract under conditions
where elementary strategic reasoning fails. Both imitation and best-response
behavior lead the population to All Hunt Stag under conditions where stag

19 See also the discussion in Skyrms (2003).
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Figure 4.15 A square region of stag hunters, with payoffs indicated for all.

hunting is risk-dominant, but only imitation succeeds in leading the population
to the socially optimal outcome All Hunt Stag when hare hunting is risk-
dominant.

What happens when we move from one to two dimensions? Skyrms (2003)
provides an analysis of this case for Imitate-the-Best with equal interaction and
update neighborhoods (using the eight nearest neighbors). Figure 4.14 illus-
trates a typical outcome for such a model. From an initial random assignment
of strategies (both Hunt Stag and Hunt Hare equally likely), initial clusters of
stag hunters form, and then spread throughout the population.

How does the spread of stag hunting occur? There are a couple of different
mechanisms at work.20 To begin, assume that we have a simple Stag Hunt,
rather than an Assurance game (so that y = z) and consider what happens
when we have a square region of stag hunters surrounded by hare hunters, as
shown in figure 4.15.

If Hunt Stag is risk-dominant, 1
2 x > y, so 4x > 8y. The twelve hare hunters

on the edges of the box, each of whom receives a payoff of 8y, will switch to
hunting stag in the next round of play because they have a stag hunter earning
5y in their update neighborhood. The new stag-hunting region forms a cross
and, from here on, continually advances by one until the entire population has
been converted to hunting stag, as shown below.

20 In order to keep the analysis short, I won’t go into details about what happens in two
dimensions when one allows the interaction and update neighborhoods to differ in size.
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Figure 4.16 A square region of hare hunters, with payoffs indicated for all.

If Hunt Hare is risk-dominant, this means that 1
2 x < y. Notice, though, that

this does not suffice to determine whether 8y < 5x or 5x < 8y. If the former
holds, Hunt Hare is only weakly risk-dominant, and hunt stag will still succeed
in spreading throughout the population, although the pattern is slightly different
from that in the previous case, as shown below.

However, if Hunt Hare is strongly risk-dominant, then the square region of
stag hunters of figure 4.15 (and, indeed, any rectangular region of stag hunters
with x and y dimensions exceeding 3) is static. The surrounding hare hunters
earn payoffs greater than that of any adjacent stag hunters, and so will not
switch to hunting stag in the next round. However, the eight stag hunters on
the edges of the square are prevented from adopting Hunt Hare in the next
generation by the lone stag hunter receiving a payoff of 8x in the interior of the
square. We have an evolutionary stalemate.

How is it, then, that Hunt Stag manages to drive all competing hare hunters
to extinction in figure 4.14? With a payoff matrix of x = 3 and y = z = 2, Hunt
Hare is strongly risk-dominant, and hence prevents the expansion of rectangular
regions of stag hunters. What’s going on?

As Skyrms (2003) notes, the key to explaining this requires consideration
of what happens when a region of hare hunters is surrounded by stag hunters.
Figure 4.16 shows the necessary positioning of strategies, with payoffs. When
x = 3 and y = 2, the corners of the hunt-hare region succumb to attack by
stag hunters, since 6x > 8y. Whenever a region of hare hunters has a corner
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Figure 4.17 A stag hunt (x = 3, y = z = 2) in a dynamically stable configuration,
using the Moore (8) interaction and update neighborhoods.

surrounded by stag hunters, that corner will be replaced by stag hunters. It
is possible to have stable polymorphic populations of stag and hare hunters,
though, as figure 4.17 shows.

How often does All Hunt Stag emerge on a two-dimensional lattice? Skyrms
(2003, p. 37) notes that

Simulations show that if we start out with 50 percent or more stag hunters, we
almost always end up with a population of all stag hunters. If we start with 10
percent hare hunters, we almost always end up with a population of all hare
hunters. Both these states are stable. A mutant hare hunter immediately converts to
stag hunting in a population of stag hunters, just as a mutant stag hunter converts to
hare hunting in a population of hare hunters.

It is important to realize that this claim holds only for certain cases of the
Stag Hunt, such as the one in which x = 3 and y = z = 2. Variant forms of
the Stag Hunt, even when Hunt Hare is risk-dominant, have very different
tendencies.

To see why, recall the key feature which enabled stag hunters to be able to
invade regions of hare hunters: the corners were susceptible. The version of
the Stag Hunt studied by Skyrms had Hunt Hare as the risk-dominant strategy,
but it also had the property that 6x > 8y. Notice that, if we take x = 9 and
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y = z = 8, we obtain a Stag Hunt with Hunt Hare risk-dominant, yet it is also
the case that 8y > 7x. The corners are no longer susceptible! Moreover, an
isolated Hare Hunter receives a payoff of 64, and her surrounding stag-hunting
neighbors receive payoffs of only 63. In this case, a single mutant hare hunter
in a population of stag hunters will not convert to hunting stag. Skewing the
payoffs this way has served to alter radically the basins of attraction for the All
Hunt Stag equilibrium.21

Thus, whether Hunt Stag or Hunt Hare dominates in two-dimensional lattice
models thus depends on a variety of factors. It depends on the payoff matrix,
and it depends on the relationship between the payoff matrix and the shape of
the interaction and update neighborhoods. However, little has been said above
about learning rules other than Imitate-the-Best. What happens if we consider
individuals to be slightly more strategically sophisticated, updating using the
Best Response learning rule?

Over the past decade or so, several authors (Young, 1993, 1998; Kandori
et al., 1993; Ellison, 1993, 2000; Morris, 2000) have proved a set of results
that establish important connections between risk-dominant equilibria in a wide
class of games and the stochastically stable equilibria (Foster and Young, 1990)
of a variety of adaptive dynamics. Informally, an equilibrium is stochastically
stable if it is robust against a low but steady bombardment of stochastically
independent random mutations in the dynamics. If a game has a stochastically
stable equilibrium, then, over an infinite sequence of plays, individuals who
update according to the underlying adaptive dynamics perturbed with indepen-
dent random mutations will gravitate to this equilibrium a nonnegligible part
of the time. If the game has a unique stochastically stable equilibrium, then,
over infinitely many plays, the players gravitate to this equilibrium for all but
a negligible amount of time.

According to the Best Response dynamic, a player follows a strategy that
yields the highest payoff against the strategies her neighbors have just fol-
lowed.22 This dynamic explicitly assumes that players react myopically to their
situation.23 It has been shown (Ellison, 1993; Young, 1998) that, if the players
in a local-interaction model play a game with a risk-dominant equilibrium,
the strategy of this equilibrium characterizes the unique stochastically stable

21 Although, if interaction and update neighborhoods can differ in size, then this result no longer
holds. The reason, of course, is that having the larger update neighborhood allows mutant hare
hunters to peek inside regions of stag hunting, seeing stag hunters who receive the maximum
possible payoff in the game.

22 It is thus a kind of “naı̈ve” best response, that involves minimal strategic deliberation.
23 That is, they do not look “too far” into the future.
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equilibrium of the system under the best-response learning rule with indepen-
dent random mutation.

The relationship between risk dominance, a static concept from rational-
choice game theory, and stochastic stability, a dynamic concept, is of funda-
mental theoretical importance. Nevertheless, it is not clear how far stochastic-
stability results go towards explaining how players in the real world might
interact more successfully. Consider the following: suppose that we have a
population of individuals positioned on a lattice, and that each agent plays
the Stag Hunt with his Moore (8) neighbors. Let us choose the payoff matrix
x = 6, y = 3, and z = 2, so that the risk-dominant strategy is Hunt Stag. If
players in this system update according to the Best Response learning rule,
with independent random mutations, then the stochastically stable equilibrium
of this system is All Hunt Stag. Moreover, All Hunt Stag is the unique stable
attractor of the Best Response learning rule for any positive rate of mutation,
no matter how small (Young, 1998). In particular, if the system starts in the
suboptimal All Hunt Hare equilibrium, use of Best Response with random mu-
tations should eventually move the entire population to the optimal All Hunt
Stag equilibrium.

Yet how long does it take for this movement to occur? We can test this by
initializing a model in the All Hunt Hare state, introducing a small number
of mutants at the end of each generation, and then running the model to see
what happens. Figure 4.18 displays the state of the model after 100 000 000
generations, with a 5 percent mutation rate. Whenever a mutant appeared,
he chose the strategy Hunt Stag or Hunt Hare with equal probability.24 The
relatively high mutation rate was selected deliberately so as to bias the dynamics
against the initial All Hunt Hare equilibrium.

Although All Hunt Hare is not stochastically stable, it proves surprisingly
robust in the face of independent random mutations. After a hundred million
generations, the population is still effectively in All Hunt Hare, with a sprinkling
of mutational noise on top. The inability of the population to move away from
this state means that the Hunt Stag mutants were consistently overwhelmed
and were unable to establish a permanent foothold and, hence, incapable of
overthrowing the incumbent Hunt Hare equilibrium. Indeed, one might say
that, in this simulation, the suboptimal All Hunt Hare equilibrium gave the
appearance of being stochastically stable!

It might be objected that the test of the attracting power of All Hunt Stag
in this example is too severe. Perhaps rational agents would seldom, if ever,

24 If we halve the mutation rate, this corresponds to a process of mutation whereby a mutant, with
certainty, adopts the strategy opposite to the one he held previously.
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Figure 4.18 The state of the model after 100 000 000 iterations. Black players
follow Hunt Hare; light players follow Hunt Stag.

all begin by following Hunt Hare. It turns out that relaxing this a little doesn’t
make much of a difference. Even if the population begins with as many as
20 percent of the players following Hunt Stag, the Best Response learning rule
can converge to, and never leave, All Hunt Hare.

Starting the population at All Hunt Hare is not so farfetched. Social dilemmas
occur when individuals are reluctant to contribute towards a common good, even
when they realize that all are better off if all contribute. A local-interaction Stag
Hunt models a social dilemma whereby a player contributes to the common
good by following Hunt Stag and withholds his contribution by following
Hunt Hare. Suppose initially that the benefits of the common good are small
compared with the security of not contributing, so that all tend to follow Hunt
Hare so as to avoid the costs of contribution. Then conditions change, making
the relative benefit of the common good significantly greater. The model of
figure 4.18 corresponds to such a situation, since All Hunt Stag, in this case,
is both optimal and risk-dominant. However, it is also the case that at least
half of a player’s interaction neighbors must change from Hunt Hare to Hunt
Stag before Hunt Stag becomes the player’s best response. What we see is
that players who respond best to their neighbor’s previous strategies can have
great difficulty making the transition from consistently following Hunt Hare to
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consistently following Hunt Stag, even in the presence of continual mutations
to help them over the initial hurdle, and even when it is clear that All Hunt Stag
is the individually and collectively optimal outcome. The initial All Hunt Hare
state models a social system ripe for reform, but the dynamics reveal that the
road to social reform can be a long one.

Theory tells us that random mutations will lead players to converge to
stochastically stable equilibria almost surely in the long run. Yet we have just
seen that independent random mutations can fail to reach the stochastically
stable equilibrium in anything approaching a reasonable time span. This fact
casts doubts upon the explanatory power of stochastic-stability theorems ap-
plied to local interactions between humans. Most, if not all, social networks
change and even dissolve long before the people in the network approach a
100 millionth consecutive round of interactions, yet a network of players who
mutate independently can fail to approach its long-run limit over 100 million
rounds. If stochastic-stability theorems require extraordinarily long waiting
times – as we have seen they do – how can such theorems be relevant for
explaining why actual people behave the way they do? No person changes his
belief 100 million times in the course of his life, much less within a single
repeated game. While it is, no doubt, true that 100 million rounds of interac-
tion constitutes a short period of time from the point of view of the ergodic
theory underlying stochastic-stability theorems, one must appreciate a crucial
difference between physical and social systems. Ergodic theory provides useful
analyses of physical phenomena simply because, according to the time scale
of many physical events, each elementary component (i.e., atom, molecule,
etc.) can be involved in an extraordinarily large number of interactions during
a relatively short period of time. The same is not true for social systems. Social
and physical systems fail to be analogous precisely where it would be required
if ergodic theory were to be explanatorily relevant.

What, though, if mutations in the dynamics can be correlated? Peter Van-
derschraaf proposed a model25 of correlated mutations in the Stag Hunt along
the following lines: suppose, as before, that we have players arranged on a
100× 100 lattice (which wraps at the edges) who play the Stag Hunt with
their eight nearest neighbors. Also, as before, suppose that each player updates
his strategy using the Best Response learning rule. However, whereas before
mutations appeared independently, now suppose that mutations are correlated
according to the following process. If a given player i spontaneously mutates
at the end of generation t , then every one of i’s Moore (24) neighbors imitates

25 See Vanderschraaf and Alexander (2005).
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i’s strategy at the end of generation t with probability λi(t).26 Members of
a certain subset of these 24 players thus have their strategies at the end of
generation t correlated with i’s mutant strategy. The particular value of λi(t) is
simply chosen, in generation t , at random from the uniform distribution over
[0, 1].27 When this happens, player i is said to be a “Leader.” Vanderschraaf
considered the occurrence of leaders to be relatively unlikely, and proposed
that the probability of Leaders appearing was only 0.0001, so that on average
one Leader appeared in the model each generation. A Leader mutates to Hunt
Stag with probability 1

2 and to Hunt Hare with probability 1
2 .28

What happens when we start the population at the suboptimal All Hunt Hare
state, but allow Leaders to exercise influence over individuals? Surprisingly we
find that, in every simulation, within 800 generations stag hunters come to
dominate the entire population, except for occasional areas of hare hunters
that emerge due to the effect of correlated mutation.29 However, when this
happens, these clusters of hare hunters are quickly overwhelmed, and soon
revert to hunting stag. Figure 4.19 depicts the population state in the 100th,
300th, 500th, and 700th generations of one simulation.

Note that the system converged rapidly to the All Hunt Stag equilibrium
even though at any given stage the overall mutation rate was bounded from
above by 25 · 1

10 000 = 0.0025, the overall expected mutation rate if all of a
“leader” player’s Moore (24) neighbors imitated the “leader’s” strategy. In

26 Why use the Moore (24) neighborhood rather than just the Moore (8) neighborhood? Quite
often one’s social influence spreads beyond one’s immediate neighbors or acquaintances. It is
not uncommon for the following situation to occur: A knows B, B knows C, and A does not
know C. Nevertheless, A exerts influence upon C through B, because B tells C that A believes
something or did something. The Moore (24) neighborhood is a crude first approximation at
capturing this phenomenon, since the Moore (24) neighborhood equals the twice-iterated
Moore (8) neighborhood. Clearly other influence neighborhoods are worthy of examination,
but this shall be left a topic for further study.

27 One might consider the use of randomly chosen probabilities as an extreme case. However,
this is not an entirely implausible assumption. For example, I may have an extremely skeptical
neighbor, yet he may have a neighbor who is capable of being easily influenced. In such a case,
I may have little influence over my immediate neighbor, yet have considerable influence over
my neighbor’s neighbor. Lifting the assumption of randomly chosen probabilities requires
making further assumptions about the way influence is exercised and implemented in the
social system, which would require an argument unto itself.

28 One could also allow independent random mutations to appear alongside the mutations
correlated with the Leaders. However, in the simulations developed in Vanderschraaf and
Alexander (2005), the independent mutation rate was set to 0 so that the Leaders received no
additional help in attempting to persuade their Moore (24) neighbors to adopt their new
strategy.

29 Similar results were obtained when the model was perturbed in various ways, such as setting
λi (t) to be constant over the Moore (24) neighborhood, or varying the sizes of the
neighborhoods of correlated mutation.
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(a) 100 generations (b) 300 generations

(c) 500 generations (d) 700 generations

Figure 4.19 The spread of Hunt Stag via influence neighborhoods. Black players
follow Hunt Hare; light players follow Hunt Stag.

Vanderschraaf’s model, the total amount of mutation is much less important
than the simple fact that mutations are correlated.

The correlation described in this case is a correlation over a Leader’s influ-
ence neighborhood. A natural way to justify this sort of correlation in strategies
is to allow for the possibility of costless communication, or what game the-
orists call “cheap talk.” If players can communicate, then they can correlate
their strategies with the leader players whose messages they receive.30 The
correlated mutation of influence neighborhoods moves the network game from

30 For a nice discussion of how cheap talk can create new evolutionarily stable equilibria, and
transform the size of the basins of attraction of preexisting equilibria, see Skyrms (2003).
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Figure 4.20 Three fixed states for the Stag Hunt (x = 3, y = z = 2) on small-
world networks, with an interaction radius of 1 and an update radius of 2, and the
learning rule Imitate-the-Best.

the suboptimal to the optimal equilibrium, even though the influence neighbor-
hoods rarely appear. The road to reform can be shortened considerably by the
introduction of influence neighborhoods.

4.3 Small-world networks

In chapter 3, we saw how the final state of local-interaction models of the
prisoner’s dilemma, played on a particular type of small-world network, can
be predicted if we know the convergence patterns of the prisoner’s dilemma on
one-dimensional lattices. Can we do the same for local-interaction models of
the Stag Hunt? As figure 4.20 suggests, yes, we can.

We know that, when the interaction and update neighborhoods differ in
size (with the update neighborhood being larger), hunting stag is contagious.
Once a cluster of stag hunters of sufficient size appears, eventually everyone in
the population (if the structure of local interaction is that of a ring) will hunt
stag. The only thing we need to determine is the effect of hubs in small-world
networks – those individuals who receive slightly higher payoffs due to the
presence of an additional edge.

Consider an arrangement of players as illustrated in figure 4.21, where the
hubs are occupied by hare hunters. Assume, for the sake of argument, that the
network continues to the left of S1 and to the right of S4 with continuous regions
of stag hunters. Lastly, let’s concentrate on the case in which individuals update
strategies using Imitate-the-Best. If the interaction and update neighborhoods
are the same (and are as indicated), then the hare-hunting region is stable unless
the benefit of hunting stag is very great indeed (i.e., x > y + 2z); the higher
payoffs awarded to H1 and H6 insure that none of the interior players will
switch strategies.
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Figure 4.21 A simplified portion of a small-world network, with payoffs.

Suppose, though, that the update neighborhood consists of all players one or
two steps away from a given individual. In this case, S1 falls within the update
neighborhood of H1 and, likewise, S4 falls within the update neighborhood of
H7. Is Hunt Stag contagious?

It depends on the payoffs. Suppose that Hunt Hare is risk-dominant, so
that y + z > x. Using the canonical Stag Hunt studied by Skyrms (2003), with
x = 3 and y = z = 2, the presence of hubs prevents the normal contagion effect
of Hunt Stag from spilling into the region of hare hunters. Both H1 and H7

receive scores of 6, which exceeds the score earned by any stag hunter visible to
individuals in the region between H1 and H7. However, with payoffs of x = 4,
y = 3, and z = 2, even though Hunt Hare is risk-dominant, it is also the case
that 2z < y + 2z < 2x. So H1 and H7 will switch to hunting stag in the next
generation, and Hunt Stag will spread to take over the region of hare hunters.

What happens if people update using Imitate Best Average Payoff ? Suppose
that the interaction and update neighborhoods are the same. Then H1 sees that
hare hunters have an average payoff of 1

2 (y + 4z) and stag hunters have an
average payoff of x.31 If the payoffs are x = 8, y = 7, and z = 2, Hunt Hare is
risk-dominant. At the same time, 1

2 (y + 4z) < x, so H1 and H7 would switch
to hunting stag in the next generation, if the learning rule doesn’t require that
a player be explicitly dissatisfied with his strategy before revising it. In the
following generation, the two hub players (each of whom now hunts stag) will
receive a payoff of 2x. When H2 and H6 go to update strategies, they will see
that hare hunters receive an average payoff of 2z and stag hunters receive an
average payoff of 2x. Both H2 and H6 will switch to hunting stag.

What if the update neighborhood consists of all players one or two steps
removed from a given player? In this case, H1 sees that hare hunters receive
an average payoff of 1

4 (y + 8z) and stag hunters an average payoff of 4x/3. If

31 Recall that the averages are calculated as follows: the total score received by all individuals
following a certain strategy in your update neighborhood is divided by the number of people
following that strategy in your update neighborhood.
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x = 3 and y = z = 2, then Hunt Hare is risk-dominant and 1
4 (y + 8z) > 4x/3,

so H1 and H7 will not switch to stag hunting. However, if x = 4, y = 3, and
z = 2, then Hunt Hare is risk-dominant but 1

4 (y + 8z) < 4x/3 and 2x > y + z.
This means that the H1 and H7 will switch to hunting stag and initiate a
contagion effect.

Lastly, what happens if individuals use Best Response? This case is easily
analysed, since we do not need to consider differences between interaction and
update neighborhoods. If H1 hunts hare, he will receive a payoff of y + 2z,
whereas he would receive a payoff of x for hunting stag. If Hunt Hare is risk-
dominant, he clearly won’t switch strategies. The region of hare hunters is safe
from invasion in this case. But what if Hunt Stag is risk-dominant? Would H1

switch to hunting stag? As we’ve seen, it’s possible for Hunt Stag to be risk-
dominant and yet have y + 2z > x. When this happens, both H1 and H7 will
not switch to hunting stag, and hence this situation will prevent the contagion
effect of Hunt Stag from spreading into the region of hare hunters bounded
by H1 and H7. If Hunt Stag is sufficiently risk-dominant, though, a contagion
effect will exist even if there are very few stag hunters present initially, as
figure 4.22 shows.

There are other types of small-world network besides the ones considered
so far. Consider a hierarchical social ordering whereby each person has two
individuals who work beneath them. If we draw a social network representing
this ordering, it will be a binary tree with N vertices. If we add a new edge to
the tree, linking two individuals who are otherwise quite far apart in the graph,
we have started to transform the graph into a small-world network. Figure 4.23
shows what one such social network would look like for 1023 individuals, in
two different representations.

Suppose that individuals play the Stag Hunt with their neighbors, using a
payoff matrix of x = 3 and y = z = 2. Also assume that the update neighbor-
hood consists of all individuals connected by a path of length one or two. If
people use Imitate-the-Best, how often does Hunt Stag emerge in this hierar-
chical environment? Simulations show that, from completely random initial
conditions, stag hunting dominates approximately 86 percent of the time. This
makes the story sound a bit worse than it really is, because many of those
random initial conditions contain very few stag hunters. If stag hunters con-
stitute approximately 20 percent of the population under the initial conditions,
then the population arrives at the All Hunt Stag state roughly 95 percent of the
time.

Given the ease with which Hunt Stag spreads through the heirarchy, can the
presence of a bridge edge block its propogation, like in the other small-world
networks we’ve considered? Consider a smaller tree with a single bridge edge,
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Figure 4.22 Hunting stag can be contagious under Best Response (x = 5
2 , y = 3

2 ,
and z = 1

4 ).
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(a) A standard embedding of a complete
binary tree on 1023 vertices

(b) A radial embedding of a complete
binary tree on 1023 vertices

Figure 4.23 Two forms of a hierarchical social network.
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Figure 4.24 A binary tree with a single bridge edge.

as shown in figure 4.24. For the sake of argument, I assume that Hunt Stag has
spread throughout the network except for the subtrees rooted at players 7 and
9. Payoffs for all of the relevant players are indicated as well.

If players switch strategies using Imitate-the-Best, what will happen if the
interaction and update neighborhoods are of equal size and are as indicated?
If Hunt Stag is risk-dominant, then 2x > y + 3z (which follows immediately
from the definition of risk dominance combined with the definition of the Stag
Hunt), so all of the hare hunters will be driven to extinction over the next few
generations. If Hunt Hare is risk-dominant, then the outcome depends upon
the payoff matrix. For example, with payoffs of x = 3 and y = z = 2, players
7 and 9 both earn a payoff of 8, and the stag hunter adjacent to them earns
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(a) Initial conditions (b) Final conditions

Figure 4.25 The effectiveness of bridge edges at blocking the spread of Hunt Stag,
for the learning rule Imitate-the-Best, payoffs x = 5 and y = z = 4, and unequal
sizes of interaction and update neighborhoods.

a payoff of only 6.32 In this case, the regions of hare hunters are stable and
will not be driven out. However, if x = 6, y = 5, and z = 2, then y + 3z < 2x,
even though y + z > x, so players 7 and 9 will switch to hunting stag in the
next generation. The bridge edge was, in this case, unsuccessful at blocking the
spread of Hunt Stag.

What happens if everyone’s update neighborhood consists of all players one
or two steps away? In this case, whether players 7 and 9 switch from hunting
hare to hunting stag depends on how their payoffs compare with the payoffs
of players 6 and 2, respectively. Players 6 and 2 both receive payoffs of 3x.
Will this provide sufficient incentive for 7 and 9 to switch? If Hunt Stag is risk-
dominant, then, yes, players 7 and 9 will switch to hunting stag, and we have a
contagion effect again. If Hunt Hare is risk-dominant, then, again, it depends.
The canonical payoff matrix of x = 3 and y = z = 2 satisfies y + 3z < 3x, so
the contagion effect happens in this case, but with payoffs of x = 5, y = z = 4,
we have y + 3z > 3x, so the bridge edge prevents the spread of Hunt Stag.
Figure 4.25 shows the outcome of one simulation in which this happened.

4.4 Bounded-degree networks

We have seen how trust can emerge in a variety of social settings with more
(or less) difficulty, depending on the social structure. However, some social

32 Will the stag hunter switch to hunting hare in the next generation? No. Player 3 has player 6 in
his update neighborhood, and player 6 receives a payoff of 9. Player 4 likewise has player 2 in
his update neighborhood, who also receives a payoff of 9.
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Table 4.2. Convergence results for the Stag Hunt played on 10 000
randomly generated bounded-degree networks (kmin = 2, kmax = 4) with

equal interaction and update neighborhoods, using Imitate-the-Best

Proportion of stag hunters Number of models

p = 1 1517
0.9 ≤ p < 1 909

0.8 ≤ p < 0.9 554
0.7 ≤ p < 0.8 426
0.6 ≤ p < 0.7 389
0.5 ≤ p < 0.6 351
0.4 ≤ p < 0.5 418
0.3 ≤ p < 0.4 456
0.2 ≤ p < 0.3 571
0.1 ≤ p < 0.2 851
0.0 < p < 0.1 76

p = 0 3482

networks are effectively random. How likely is it that trust will emerge in a
randomly wired environment?

Consider a bounded-degree network of forty nodes, in which each node has
at least two and no more than four edges. Assume that individuals update using
Imitate-the-Best, that the interaction and update neighborhoods are equal, and
that the payoff matrix is our canonical Hunt Hare risk-dominant case, with
x = 3 and y = z = 2.

If we run 10 000 simulations, starting from random initial conditions33 and
a randomly chosen bounded-degree network, what happens? Table 4.2 summa-
rizes the results for one series of simulations. Most often, the population arrives
at the state All Hunt Hare; less often, it ends up at All Hunt Stag. The rest of
the time the population arrives at a polymorphic state consisting of some stag
hunters and some hare hunters.

In previous sections, we’ve seen how allowing the interaction and update
neighborhoods to differ in size had a huge influence on the ability of Hunt Stag
to dominate the population. Does the same effect occur here? Table 4.3 shows
the outcome of another set of 10 000 simulations, for which the sizes of the
interaction and update neighborhoods were unequal. In this case, the update
neighborhood consisted, as before, of all players connected to an individual by
a path of length one or two.

33 Strategies are selected according to a randomly chosen distribution, in addition to being
randomly assigned to individuals.
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Table 4.3. Convergence results for the Stag Hunt played on 10 000 randomly
generated bounded-degree networks (kmin = 2, kmax = 4) with unequal

interaction and update neighborhoods, using Imitate-the-Best. The update
neighborhood consisted of all individuals within a path of length 2.

Proportion of stag hunters Number of models

p = 1 5818
0.9 ≤ p < 1 138

0.8 ≤ p < 0.9 91
0.7 ≤ p < 0.8 66
0.6 ≤ p < 0.7 70
0.5 ≤ p < 0.6 40
0.4 ≤ p < 0.5 50
0.3 ≤ p < 0.4 35
0.2 ≤ p < 0.3 59
0.1 ≤ p < 0.2 40
0.0 < p < 0.1 7

p = 0 3586

Unequal sizes of neighborhoods do cause the population to arrive at All
Hunt Stag much more frequently, yet this happens because the likelihood that
we will arrive at a stable polymorphic state has radically declined. The number
of cases in which we arrive at the All Hunt Hare equilibrium has actually
increased from 3482 to 3586.

What happens if individuals use Best Response? Consider a Stag Hunt for
which x = 9 and y = z = 5. In this game, the risk-dominant strategy is Hunt
Hare, so All Hunt Hare is the unique stochastically stable equilibrium of the
evolutionary dynamics. Simulations verify this claim. In bounded-degree net-
works, we find that, under Best Response with a small amount of mutation,
models converge to All Hunt Hare even if we start at the All Hunt Stag equilib-
rium. Moreover, these random mutations never generated a permanent foothold
of stag hunters, even when the system was bombarded with a mutation rate of
10 percent for 100 000 periods. These results are not surprising, given that only
All Hunt Hare is stochastically stable.

However, the All Hunt Hare equilibrium does not retain its high attracting
power when we look at correlated mutations using Vanderschraaf’s notion of
an influence neighborhood. Of course, since we are no longer working with
the regular structure of a two-dimensional lattice, we cannot simply take the
influence neighborhood to be the Moore (24) neighborhood of a given player.
But there is a natural analogue: the set of all individuals connected to a player
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Figure 4.26 An influence neighborhood for a bounded-degree network. The
“Leader” vertex is colored black, vertices one step away are colored dark gray,
and vertices two steps away are colored light gray.

within two steps. Figure 4.26 shows what one such influence neighborhood
would look like.

Figure 4.27 displays the outcome of one simulation of the Stag Hunt played
on a thirty-player bounded-degree network (kmin = 4 and kmax = 8) with influ-
ence neighborhoods. In this model, Leader mutants occurred with probability
0.001. Each time a Leader appeared, he adopted the strategy Hunt Stag or
Hunt Hare at random, each strategy being equally likely. All individuals within
two steps of the Leader adopted his selected strategy with probability λi(t), as
before. After 5000 generations, the pattern is clear: although Hunt Hare is the
risk-dominant strategy, neither All Hunt Hare nor All Hunt Stag is stochasti-
cally stable. The population bounces back and forth between the two states,
spending relatively little time in polymorphic population configurations.

It is a bit strange, though, for Leaders to be as likely to be hare hunters as
they are to be stag hunters. Being a Leader means that you have considerable
influence over others. If you have considerable influence over others, they must
trust you to be right more often than not. But hare hunters are not inclined to
trust their fellow players.
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Figure 4.27 The number of stag hunters in a thirty-player bounded-degree network
obtained using the Best Response learning rule, with influence neighborhoods.

What happens if influence neighborhoods may appear at different rates and
in different sizes across the pure strategies? Consider the following modified
implementation of influence neighborhoods: at each time step, independent
Hunt Hare mutants appear with probability 0.1, and Hunt Stag mutants appear
with probability 0.001. When a stag hunter appears, everyone within two steps
of the mutant stag hunter adopts the strategy Hunt Stag with probability λi(t)
chosen at random from [0, 1]. In this variation, only stag hunters – being
inclined to trust their fellows – have neighborhoods of influence.

As figure 4.28 illustrates, this dynamic always converged to the optimal
All Hunt Stag equilibrium, even though All Hunt Hare is stochastically stable.
Moreover, this convergence occurred and persisted even though, on average,
10 percent of the players spontaneously mutated to Hunt Hare. In this case,
All Hunt Stag is the unique stable attractor of Best Response with influence
neighborhoods, even though Hunt Hare is the risk-dominant strategy! What
makes this result especially striking is that hare hunters appear 100 times as
often as Leader Hunt Stag mutants appear. Moreover, even when a Hunt Stag-
following Leader appears, the influence of that particular Leader might be
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Figure 4.28 The effective convergence of a bounded-degree network to All Hunt
Stag under Best Response, via influence neighborhoods, even though Hunt Hare
is the risk-dominant strategy.

weak, depending on the value of λi(t), which is randomly selected each time a
Leader appears. Even so, the high influx of untrusting Hunt Hare mutants cannot
prevent the overthrow of the state of nature, because efforts to establish a social
contract are correlated. Although trusting, influential Leaders appear seldom in
the social network, the coordinated play across their influence neighborhoods
enables advocates of the social contract to push the population out of the state
of nature, and to suppress the deviant Hunt Hare mutants who rebel against the
social contract.

Influence neighborhoods, even when they appear at random, can drive a
population out of the state of nature and into the optimal equilibrium. This
transition can be robust against a high rate of independent mutation, even
when the suboptimal equilibrium of the Stag Hunt game is risk-dominant. The
stability of the optimal equilibrium, here, depends upon the fact that the trusting
stag hunters have managed to correlate their efforts, while the untrusting hare
hunters have not.

How might one explain this ability of stag hunters to correlate their activ-
ity? One could allow differences in the ability to communicate between types
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of individuals. That is, stag hunters may have access to some communica-
tion channel that they can use to send messages to those in their influence
neighborhoods, whereas hare hunters may have no such reliable means of com-
municating. This is not as farfetched as it sounds. Stag hunters are – by virtue of
their willingness to hunt stag – more inclined towards activities requiring trust
than are their fellow hare hunters, and certain forms of communication require
significant levels of trust in order to be effective. Consider Osama bin Laden’s
transferring of messages throughout the al-Qaida network via couriers. Such
a communication method, albeit slow, is highly secure and effective, provided
that the couriers are not only trusted, but also trustworthy.

If differences in communication ability occur in this way, then, even though
stag-hunting Leaders appear seldom in the network, their ability to signal their
plans to others enables those over whom they have influence to coordinate
more effectively. On the other hand, even though hare-hunting mutants appear
at a much higher rate, they are unable to communicate effectively and, hence,
cannot coordinate their activity. So stag hunters can overthrow the hare-hunting
equilibrium, establish a social contract, and even manage to fight off a continual
high influx of new hare hunters.

4.5 Dynamic social networks

Social structure makes a difference for the emergence of trust, but where
does the structure come from? Can individuals belonging to an unstructured
population in the state of nature form social ties? If they engage in strategic
learning at the same time as they form social ties, will the population wind up at
All Hunt Stag, All Hunt Hare, or some polymorphic mix of the two strategies?

Let’s start with the simplest question for dynamic social networks.34 If
people don’t revise their strategies, but do revise their interaction probabilities,
what kind of social structure emerges when members of a mixed population
of stag and hare hunters interact? Figure 4.29 illustrates the initial and final
states for a dynamic social network of ten individuals. In this diagram, we
can see that stag hunters learn to interact only with stag hunters, and hare
hunters learn to interact only with other hare hunters. This happens because
stag hunters don’t receive any payoff when they interact with hare hunters,
so those pairings aren’t reinforced, and that means that stag hunters learn to

34 See also Skyrms (2003), which contains a more extensive discussion of dynamic social
networks for the Stag Hunt, including combination games (the Stag Hunt together with a
resource allocation problem) that I won’t consider here.
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Figure 4.29 The Stag Hunt on a dynamic network. Payoffs are x = 3 and y =
z = 2, with interaction probabilities updated after each round of interaction. No
strategic updating is permitted, and no discounting of the past occurs.

avoid interacting with hare hunters. Although hare hunters receive payoffs no
matter whom they interact with, the fact that stag hunters avoid interacting with
them means that Hare–Hare interactions are reinforced twice as often as Stag–
Hare interactions. Eventually, this uneven reinforcement causes hare hunters to
associate only with each other. This always happens.

If the structural dynamics always leads to the formation of exclusive Stag–
Stag and Hare–Hare interactions, one might think that nothing interesting can
happen when we add strategic dynamics. After all, regardless of whether indi-
viduals update using Imitate-the-Best or Best Response, won’t the population
always remain as it started? If people revise strategies using Imitate-the-Best,
stag hunters will imitate only stag hunters, and hare hunters will imitate only
hare hunters. Likewise, if people revise strategies using Best Response, no
change occurs because the best response to a group of players who exclusively
hunt hare is to hunt hare, and the best response to a group of players who
exclusively hunt stag is to hunt stag.

This neglects an important point: people can update strategy at a different
rate from that at which they update their interaction probabilities. Strategic
dynamics won’t make a significant difference (at least in the short and medium
run) if people revise their strategies too infrequently.35 However, if people

35 Why would it make a difference in the long run? Recall that the interaction probabilities
converge to 0 and 1 only in the limit. This means that there is always a nonzero chance that a
stag hunter will choose to interact with a hare hunter (although this is very unlikely). When this
happens, if the stag hunter also elects to revise his strategy, he may end up adopting Hunt Hare.
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Table 4.4. The Stag Hunt on a ten-person dynamic social network

Update probability All Hunt Stag All Hunt Hare

p = 0.5 5102 4898
p = 0.25 6097 3899
p = 0.1 6837 3132
p = 0.05 7166 2744
p = 0.025 7172 2566
p = 0.01 6755 2472

revise strategy at rates not too different from the rate at which they update their
interaction probabilities, then strategy revision can occur before players lock
in to (nearly) exclusive Stag–Stag and Hare–Hare preferences.

Table 4.4 shows the results from a series of simulations. A ten-person
dynamic social network was initialized with a randomly chosen set of strategies.
The interaction probability was set to 1, so each person engaged in at least one
interaction every round (some people participated in more than one interaction,
if they were visited by another). The probability of strategic updating was
varied between 0.5 and 0.01, as indicated in the table. Whenever an individual
elected to update his strategy, he did so using Imitate-the-Best.

Notice that, as the update probability decreases from 0.5 to 0.01, the prob-
ability of convergence to All Hunt Stag increases to nearly 72 percent, then
begins to decrease. The decrease occurs because, when individuals update their
strategy on the average of every 100 interactions, the structural dynamics tend
to lock in to exclusive Stag–Stag and Hare–Hare visits before the strategic
dynamics can begin to reshape the population. Once exclusive visitation pref-
erences36 form, strategic dynamics won’t change the population at all, for the
reasons discussed earlier; and it doesn’t take too long for the probabilities to
converge “for all practical purposes.” Figure 4.30 illustrates the interaction
probabilities after 100 generations for a ten-person network. Notice that, while
some hare hunters still visit stag hunters (namely, players 3, 7, and 10), none
of the stag hunters visit hare hunters with anything approaching a significant
probability.

One thing not taken into consideration is the fact that people tend to assign
greater weight to more recent experiences than to past experiences. What are

36 Or nearly exclusive preferences, since probabilities won’t converge to 0 short of the limit.
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0 0.0013 0.0013 0.1025 0.0013 0.0013 0.0013 0.6329 0.2564 0.0013
0.0025 0 0.1027 0.0025 0.4085 0.2581 0.1679 0.0075 0.0125 0.0375
0.0027 0.1142 0 0.0640 0.0027 0.3760 0.3426 0.0250 0.0139 0.0584
0.1472 0.0019 0.0019 0 0.0019 0.0019 0.0019 0.0251 0.8158 0.0019
0.0510 0.4894 0.0030 0.0390 0 0.0090 0.1771 0.1111 0.0090 0.1111
0.0111 0.2293 0.3006 0.0022 0.0066 0 0.1269 0.0155 0.0244 0.2828
0.0185 0.1777 0.3262 0.0503 0.1564 0.1511 0 0.0822 0.0291 0.0079
0.9591 0.0020 0.0020 0.0265 0.0020 0.0020 0.0020 0 0.0020 0.0020
0.3074 0.0016 0.0016 0.6812 0.0016 0.0016 0.0016 0.0016 0 0.0016
0.0716 0.0467 0.0654 0.0155 0.1152 0.3956 0.0093 0.2523 0.0280 0

Figure 4.30 Interaction probabilities after 100 interactions.

reasonable values to pick for discounting the past? Experiments conducted
by Bereby-Meyer and Erev (1998) suggest that the discount rate which best
matched people’s behavior was 0.997; other data, cited by Skyrms (2003),
suggest that reasonable rates fall in the range 0.9 to 0.999. If people discount
the past at a rate of 0.925 and play a Stag Hunt with x = 4, y = 3, and z = 2,
we find that Hunt Stag acquires the upper hand. With a discount rate of 0.925,
as the frequency of strategic updating decreases, the probability that we will
arrive at the All Hunt Stag population state increases, as seen in table 4.5.

Note that, when only one stag hunter is initially present, the population
must arrive at the state All Hunt Hare. The stag hunter will never receive a
positive payoff and, hence, whenever he elects to update his strategy, he will
imitate the first hare hunter he can. However, once the number of stag hunters
initially present has increased to two, under the structural dynamics, the two
stag hunters will tend to pair up with each other. This pairing results in each
stag hunter receiving a payoff of 8, and tends to move the entire population
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to All Hunt Stag over 87 percent of the time (as indicated in the last row of
the table). When there are three or more stag hunters, convergence to All Hunt
Stag is virtually certain. Trust and social structure can grow together.

Thus we see how social structure exercises a powerful influence on the
emergence of trust in a variety of social structures: lattices, small-world net-
works, and bounded-degree networks. All of these structures exhibit a general
tendency to promote trusting over untrusting behavior. Yet this tendency is not
universal. Trust does not always emerge, but trust does occur more often than
one might initially suspect, especially in cases in which the untrusting behavior
is risk-dominant. Given the connections between the prisoner’s dilemma and
the Stag Hunt, and the results from chapter 3, there are many roads out of the
state of nature.



5

Fairness1

How do we understand justice? Thrasymachus argued in the Republic that it
was merely the interest of the stronger party, whereas Glaucon argued that
justice derived from mutually beneficial mutual agreement. These two answers
barely touch the question, of course, for the answer depends greatly upon what
sense of “justice” we speak of, among many other things. Of the two main types
of justice – distributive and corrective – in this chapter I concentrate on the
former, in a very general sense. The discussion will turn to issues of corrective
justice in the following chapter, again understood in a very broad sense. In
both chapters, I argue that justice emerges out of the self-interested actions of
rational agents as a mutual agreement of a very special kind.

The common element to both, a mutual agreement of a special kind, suggests
that justice arises as an outcome of a process of rational deliberation, in which
several parties meet to negotiate a settlement. Negotiating a settlement is a
complex process, with many strategic considerations having to be made by
each party. Such considerations include whether one should state up-front
everything one wants at the beginning of negotiations or hold off from stating
these wants until later. The best course of action for each person would seem to
depend upon what everyone else does. Seeking to ground our notion of justice
and fairness upon the outcome of a mutual agreement among persons places us
squarely within the realm of game theory.

In its most general form, the distribution problem consists of a set of
goods to be distributed among the members of a population subject to two
constraints.

1. No good is assigned to two members of the population.
2. Each good is assigned to some member of the population.

1 Portions of this chapter are drawn from Alexander and Skyrms (1999) and Alexander (2000).
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A solution to the distribution problem is an assignment of a set of goods to
each member of the population subject to the above constraints.2

A principle of distributive justice provides a criterion for identifying a so-
lution to a distribution problem as “just” or “unjust.” A theory of distributive
justice is a set of consistent principles of distributive justice, where two princi-
ples are consistent if they do not disagree in their classification of a solution to a
distribution problem. If a solution to a distribution problem satisfies a principle
of distributive justice, then the solution is considered just, relative to that prin-
ciple; otherwise the solution is unjust, also relative to that principle. Although
a theory of distributive justice may identify several different solutions to the
distribution problem as just, if we require that all theories of distributive justice
worthy of consideration be consistent, it follows that no theory identifies the
same solution as both just and unjust.

Consider the following scenario. Two people, Sid and Nancy, face a distribu-
tion problem: they have happened across some resource, say a cake, which they
are to divide amongst themselves. How are they to agree on how to share it?
We may envision the following approach: both Sid and Nancy write down, on
a slip of paper, how much of the cake they want, expressed as a single numeric
quantity,3 and hand them to a referee. If the sum of their individual requests
does not exceed the amount of cake available, the referee awards both Sid and
Nancy what they asked for; if the sum of their individual requests exceeds
the amount of cake, neither Sid nor Nancy gets anything. (Perhaps the referee
reveals each person’s request and absconds with the cake while they argue.)

This common way of framing the distribution problem typically meets with
some common objections, so let’s handle them right away. Many people object

2 One might object that the formulation of a distribution problem offered here cannot be the most
general form because, according to the first clause, no goods are to be shared among members
of the population, and we all know that many goods are shared. To handle the case of goods that
can be shared (like cricket bats and roads) we simply modify our description of the good to be
distributed. Instead of conceiving of the good (the bat) as a single item to be assigned to one
and only one agent, we do not assign the bat itself but time-shares of the bat, one time-share to
each person who is to share it. This allows us to make the simplifying assumption that no good
can be assigned to two members of the population without loss of generality, at the cost of a
very slight increase in complexity in how we treat shared goods.

Regarding the second clause, it also might be objected that requiring each good to be
assigned to some person means that we cannot treat cases in which some goods remain
unassigned. We may wish to leave some goods unassigned if we think that assigning goods to
individuals confers some right of possession, and hence some authority to determine how the
good will be used or consumed. If the goods in question include natural resources, one might
object to this framework: we might very well want to leave some goods unassigned so that no
one may use them, thereby leaving those goods unexploited or unconsumed for later
generations to enjoy. This situation may be easily handled in our framework by enlarging the
population to include “non-actors,” who, when assigned goods, simply leave them untouched.

3 This excludes the possibility of each person asking for “As much as possible.”
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to the inclusion of the referee because the referee’s interests and preferences
do not factor into the story at all. Although this is true, the objection fails to
understand the function of the referee. The referee serves merely as a hook upon
which we hang the rules of the game. In this game, if the two players’ requests –
obtained in private, without communication – are not compatible, neither player
receives anything. Criticisms about the role played by the referee, then, translate
into criticisms about the rules of the game.4 Why do players receive nothing if
they do not separately (and privately) choose compatible requests?

The flippant answer is that those simply are the rules of the game and,
were that not the case, Sid and Nancy would be playing a different game. The
non-flippant answer is that this game captures bargaining problems in which
failure to agree on how to split the good causes the good to be lost. Think
of the bargaining problem faced by the music industry and various retailers
offering to construct an online service for selling music. The “cake” in this case
is the amount of (possible) profit that the two parties can earn. The two parties
have to reach agreement before the profit can be earned (and shared) because,
without the music industry agreeing to participate, the online music retailers
have nothing to sell and, without the online retailers, the music industry will
continue their current practice. Hence, failure to reach agreement leaves each
party in the status quo, with no new profit whatsoever.5 Another problem having
this kind of structure is wage negotiations between a firm and its workers. These
negotiations often result in disputes over how the extra capital generated by
the workers and the firm ought to be distributed (see Binmore, 1998, p. 69):
if no agreement between the management and the workers can be reached, a
strike often ensues, possibly resulting in the depletion of extra capital to divide
between the workers and the firm. Treating the extra capital to be divided as the
cake, this situation roughly approximates that of the game under discussion.

What of the claim that the decision regarding which strategy to adopt must
be made without communication occurring between the two parties? If both
players are well-informed and know everything there is to know about the
other party6 then there is nothing to be gained by pre-play communication.
If I already know everything there is to know about you, nothing you tell me
in pre-play communication will help me make a better judgement about what
strategy to adopt. By assumption, I know what offers and threats you are likely

4 In chapter 7, I introduce and examine an N -player version of divide-the-cake. This version
enables us to include the referee as another player. It turns out that this makes some difference,
but not as much as one might think.

5 Ignoring negotiation costs, etc.
6 Admittedly, there are problems with this assumption. To begin with, we never know everything

there is to know about the other party.
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Figure 5.1 Divide-the-cake played with a cake size of 10.

to make, and whether you actually will carry out a threat if I do not play the
way you want me to. Such pre-play communication serves as mere “cheap talk”
since it cannot alter the course of gameplay.7

Let us add a few more conditions to the game: we further suppose that neither
Sid nor Nancy has any prior claim to the cake and that neither of them has any
special needs. With respect to the particular task of dividing the cake, the two
are perfectly symmetric in every relevant sense. Adding these assumptions
transforms this game into the simplest version of the bargaining problem due to
Nash (1950b). The game is generally known as the Nash bargaining game, or
divide-the-cake. If the cake is sliced into ten equal pieces, the payoffs for this
game correspond to the points of figure 5.1 (all other combinations of strategies
award 0 to both players).

7 However, among boundedly rational individuals, cheap talk can make an important difference
in terms of what outcomes occur. See, for example, Skyrms (2003).
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In this game, a player’s strategy is the number of slices of cake she requests.
With a cake of size C, there are C + 1 possible strategies to choose from and
C2 + 2C + 1 possible pairings of strategies. Many of these possible pairings
of strategies are suboptimal in that they do not result in a distribution of the
entire cake – some of it is wasted – and other combinations of strategies are
suboptimal in the sense that they overshoot the total amount of cake available,
in which case neither Sid nor Nancy will receive anything. In principle, nothing
prevents the two players from adopting strategy pairs that are suboptimal in
either sense. In some cases it might even make sense for the two players to adopt
strategies that lead to a suboptimal outcome: if Sid believes that Nancy will ask
for more than half of the cake, and Sid wants to ensure that he receives at least
some cake, then he should choose his strategy taking this belief into account. If
both Sid and Nancy seek to maximize the amount of cake they receive, though,
we would expect them to coordinate their choices on Pareto-efficient strategy
pairs.8

In divide-the-cake, strategy pairs that exhaust the whole cake have an impor-
tant property: neither player benefits by changing his or her strategy if the other
player does not change as well. Suppose that Sid and Nancy have settled upon
the following distribution: Sid receives three quarters of the cake and Nancy
receives one quarter. Although Nancy may view this distribution as unfair, she
cannot improve her situation by changing strategies; increasing her demand
to anything greater causes the sum of demands to exceed the amount of cake
available, leaving both with nothing. Decreasing her demand to something less
moves Nancy to a outcome point that confers even less cake, so she will not
favor this outcome, either. All of the Pareto-efficient pairs of divide-the-cake
have this property, which is to say that they are all Nash equilibria.9

When two rational individuals play a game, it makes sense to assume that
they will eventually settle upon a pair of strategies that constitutes a Nash
equilibrium, provided that both players understand the rules of the game and
the payoffs of the game accurately reflect each player’s personal preferences.
In divide-the-cake, we would be surprised if two players in symmetric cir-
cumstances arrived at any outcome other than the 50–50 split. In perfectly
symmetric circumstances, the 50–50 split strikes us as the only fair outcome.

8 A pair of strategies (σ1, σ2) is said to be Pareto-efficient if it is not possible to improve one
player’s payoff without decreasing the payoff to the other player. In divide-the-cake, all
Pareto-efficient strategies have the property that the payoffs exhaust the amount of cake
available.

9 Moreover, all of the Pareto-efficient pairs which assign at least some cake to both players are
strict Nash equilibria. The pair assigning all of the cake to, say, Sid is not a strict Nash
equilibrium because Nancy’s payoff does not decrease if she switches strategies.
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Identifying the 50–50 split as the only fair outcome means that if someone
attempted to distribute the cake in a way other than 50–50, in conditions of
perfect symmetry and absence of prior claim to the cake, we would think the
proposed distribution unjust and that person’s behavior subject to sanction. The
severity and type of sanctions imposed generally depend upon a host of con-
textual factors. Often the mere threat of sanctions, combined with the general
knowledge that those sanctions are sufficiently likely to be imposed, motivates
individuals to act accordingly, i.e., to share the cake equally. The sanctions
imposed by the moral norm for failing to share the cake equally thus solve the
equilibrium selection problem by changing the agent’s expected payoffs for a
proposed distribution. Whereas perfectly rational agents in perfectly symmetric
situations have no reason, in the absence of the norm, for preferring the 50–50
split over the 60–40 split (since both are strict Nash equilibria), the existence
of the moral norm gives them a clear reason for coordinating on one Nash
equilibrium out of the many possible.

This explanation as to why we identify the 50–50 split as “fair” makes
our conception of fairness, in this case, ultimately instrumental. We adopt the
50–50 split because deviation from that generally accepted outcome makes us
subject to sanctions by others. We identify certain outcomes as “fair” because
labeling those outcomes, and not others, as “fair” proves useful in resolving
interdependent decision problems having multiple equilibria. That is, outcomes
identified as “fair” are solutions to the equilibrium selection problem. Yet, even
if one is willing to entertain this as a possible explanation for why we consider
the 50–50 split “fair,” an important question remains to be answered. Why the
50–50 split instead of the 60–40 split?

One might suspect that the 50–50 split gives a greater amount of cake to
each player, over the long run, than the 60–40 split. Depending on what one
means by play “over the long run,” it isn’t difficult to construct cases in which
this claim is false. In an indefinitely repeated game of divide-the-cake, any
division of cake that exhausts the total amount of cake available and randomly
assigns cake to individuals by the toss of a fair coin is equally good. Simply
note that, with a cake of size C, divided into two portions k and C − k, the
expected payoff for each player over the long run is 1

2 · k + 1
2 (C − k) = C/2.

In the long run, any division is as good as the equal split if shares are assigned
at random using a fair coin.

If appealing to maximization of long-run expected utility doesn’t suffice,
perhaps we need to take the appeal to norms more seriously.10 The problem

10 For a discussion of social norms, what they are, and how they influence individual action, see
Bicchieri (2006).
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with this account is that it merely serves to push the explanatory burden back
one step, for any behavior can be explained by postulating the existence of a
sufficiently strong norm (moral or otherwise) that serves to regulate behavior.
Norms impose costs upon deviant individuals and, with a large enough cost,
compliance with virtually any behavior can be secured (recall the Hobbesian
sovereign). Explaining a general tendency to favor the 50–50 split by appealing
to the action of a social norm simply replaces one question by another. Where
did that norm come from? In the absence of a satisfactory response to the
etiological question of the social norm, we haven’t really explained anything.
Why does that norm exist rather than some other one? Although it is presumably
true that there is a social norm invoked in circumstances like divide-the-cake11 –
in effect saying that if you ask for more than half of the cake you will be seen
as “greedy” and this is a bad thing – we need to say more.

Perhaps an evolutionary explanation exists. It is certainly true that, in a
population where everyone demands half of the cake, no alternate strategy
(greedy or modest) can invade. Any mutant requesting more than half of the
cake would receive nothing and would eventually be driven to extinction.12

11 In 1974, Nydegger and Owen conducted a series of experiments in which they had people play
two games of divide-the-cake in the laboratory. In the first game, subjects played
divide-the-cake using a dollar as the cake. In the second game, play was restricted by the
additional constraint that player 1 could not receive more than 60 cents. (According to Nash’s
analysis of the bargaining problem, since this additional rule applies only to points away from
the unconstrained solution point, it should not affect the solution. However, according to the
bargaining theory of Kalai and Smorodinsky (1975), this constraint should influence the
solution point. Behavior in the second game reflects tendencies on the subjects’ behalf to
prefer one bargaining solution over another.) In both experiments, all pairs of subjects choose
in a matter consistent with Nash’s solution, opting for the 50–50 split.

Some doubt over the generality and significance of the results may be warranted given the
small sample size. Nydegger and Owen used only ten pairs of subjects, all male undergraduates
from the same university. Even so, the claim that “[t]he outcome of this study is quite
impressive if for no other reason than the consistency of its results” (Nydegger and Owen,
1974, p. 244) seems correct. Ken Binmore has also confirmed, in private communication, that
people always opt for the 50–50 split in experiments under conditions of perfect symmetry
(provided that they haven’t been trained by earlier experiments to do something different).

12 In some replicator-dynamics models, although fitness is assumed to be proportional to the
amount of cake received, it need not be true that receiving no cake confers zero fitness upon an
individual. (In the biological interpretation, this means that the payoffs correspond to changes
in the Darwinian fitness of individuals. In the cultural interpretation, this means that all
strategies that are present in the population have a certain base chance of being imitated by
others.) If so, then even mutant strategies receiving no cake need not become extinct.
Nonetheless, it will be true that individuals receiving some cake have a higher fitness than
those receiving no cake, so even if mutants who receive no cake do not have a fitness of zero,
they will produce fewer offspring than will those who follow competing strategies. Over time
the proportion of individuals following a mutant strategy conferring zero fitness may
asymptotically approach 0, although the absolute number of individuals following that strategy
continues to increase. It is in this sense – relative frequency approaching zero – that talk of
“extinction” is to be understood.
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Mutants requesting less than half of the cake would always receive the amount
of cake they asked for, but because such mutants have a lower fitness (measured
in terms of the amount of cake received) than do those asking for half of the
cake, even these “modest” mutants would be driven out of the population.

Asking for half of the cake is an evolutionarily stable strategy: in a population
where everyone asks for half of the cake, no mutant can invade. This shows
that, in a population where everyone seeks to maximize the amount of cake
they receive, the state in which everyone opts for the 50–50 split, once arrived
at, will persist over time. Yet how likely is it that the population will arrive at
the state in which everyone follows the 50–50 split? This is the crucial question
to which we now turn.

5.1 The replicator dynamics

In Evolution of the Social Contract, Brian Skyrms (1996, pp. 9–10) sug-
gested the following evolutionary model to explain the existence of the equal
split:

Individuals, paired at random from a large population, play our bargaining game.
The cake represents a quantity of Darwinian fitness—expected number of
offspring—that can be divided and transferred. Individuals reproduce, on average,
according to their fitness and pass along their strategies to their offspring. In this
simple model, individuals have their strategies programmed in, and the strategies
replicate themselves in accord with the evolutionary fitness that they receive in the
bargaining interactions.

Skyrms has the replicator dynamics in mind here and, even though he speaks
of biological evolution, we need not take this literally. As shown in chapter 2,
the replicator dynamics admits both cultural and biological interpretations.

How likely is it that a randomly chosen initial configuration of the population
will evolve, under the replicator dynamics, to a state in which everyone follows
the strategy of fair division? Let us assume that the cake is sliced into ten
equally sized pieces. Figure 5.2(a) illustrates the evolutionary trajectories for a
population consisting solely of people who ask for four, five, and six slices of
cake, respectively.

Because the replicator dynamics is deterministic, the evolutionary trajecto-
ries cannot cross. The point in the interior of figure 5.2(a) at which it looks as if
several paths cross is really an illusion. If we magnify the region indicated by
the black rectangle, shown in figure 5.2(b), we see that four paths come very
close to each other, but veer off at the last minute.
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Demand 4

Demand 5

Demand 6

(a) Simplex space

(b) The boxed area of (a), scaled up 100×

Figure 5.2 Divide-the-dollar restricted to three strategies.

Notice also that, although the state in which everyone asks for half of the
cake is evolutionarily stable,13 it is not the only one. As figure 5.2(a) shows,
there is another stable state in which both of the strategies Demand 4 and

13 Which can be seen from figure 5.2(a) in that all of the paths in the vicinity of the Demand 5
equilibrium converge to that point. Any mutant trying to invade a pure population of fair
dividers corresponds to a displacement of the population from the apex of the triangle to a new
point in the nearby vicinity. Since all points in the nearby vicinity lie on trajectories returning
to the pure Demand 5 equilibrium, this means that the new mutants will eventually be driven to
extinction.
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Figure 5.3 Simplex-space plots for the game of divide-the-cake restricted to three
strategies.

Demand 6 are present. Moreover, this equilibrium point has a significant basin
of attraction.14 Since the Demand 4–Demand 6 polymorphism conforms neither
with the actual behavior of individuals in divide-the-cake, nor with any moral
norms that we take to apply in this or similar circumstances, these greedy–
modest polymorphisms create what Skyrms calls a “polymorphic pitfall” on
the “evolutionary road to justice.”

Demand 4–Demand 6 is not the only polymorphic pitfall that appears in the
replicator-dynamics model of the Nash game. Figure 5.3 illustrates three other
polymorphic pitfalls. Notice that also the Demand 3–Demand 7 polymorphism
is an evolutionarily stable state, and that its basin of attraction is rather large
as well. In general, all of the strict Nash equilibria are polymorphic pitfalls.
The only Nash equilibrium which lacks a sizable basin of attraction (and hence
isn’t a polymorphic pitfall) is the 0–10 equilibrium.15

14 In these diagrams, the size of the basin of attraction for an equilibrium corresponds to the area
inside the triangle in which the trajectories converge to that equilibrium.

15 The 0–10 equilibrium does not have a sizable basin for the following reason: the Demand 0
strategy, which must be present in order for Demand 10 to receive a nonzero payoff, always
earns 0, the lowest possible payoff of any strategy in the game. If any other strategy exists in



158 Fairness

The polymorphic pitfalls are the evolutionary analogue of the equilibrium
selection problem from traditional game theory. In the nonevolutionary case,
we face the problem of choosing between competing Nash equilibria with
no compelling reason in principle for selecting any particular equilibrium. In
the evolutionary case, we face the problem that there can be more than one
evolutionarily stable state, and which stable state the population arrives at may
purely be a coincidence arising from its initial state; some initial states lead
to everyone electing to ask for half of the cake, whereas other initial states
lead to outcomes in which some ask for more than half of the cake and others
ask for less than half. Both of these present a problem for giving a rational
justification for why one ought to ask for half in the game of divide-the-cake,
but for different reasons. The first problem centers on the fact that, in the
absence of further information about what strategy my opponent is going to
play, there is no knockdown argument for preferring the 50–50 split over any
other option, even when the game is iterated. The second problem is that, even
when players do not try to reason strategically about the situation, instead using
simple imitative rules to choose their future strategies, the 50–50 split is only
one possible outcome among many.

Skyrms recognizes the explanatory problem raised by the presence of unfair
polymorphisms and suggests one possible resolution. As previously noted, the
replicator dynamics assumes all pairwise encounters among individuals to be
equally likely. What if the interactions between individuals are correlated, so
that each strategy type has an increased chance of interacting with members
of its own kind? Let us denote the amount of correlation by ε, where ε = 0
means absolutely no correlation between strategies (i.e., purely random pair-
wise encounters) and ε = 1 means perfectly correlated interactions (i.e., no
one interacts with anyone of a different kind). The probability of the strategy
σi interacting with itself, which normally is si in the uncorrelated replicator
dynamics, increases to si + ε(1− si). The probability of σi interacting with
some other strategy σj , where j �= i, correspondingly decreases to sj − ε · sj .
Figure 5.4 illustrates the effect of correlation when ε = 0.1 and ε = 0.2.

Introducing correlation into the replicator-dynamics model has noticeable
consequences on the basins of attraction for fair division. In figure 5.4(a),

the population, Demand 0 will do worse than the population average, so the proportion of
individuals following Demand 0 will shrink in the next generation. One consequence of this is
that the number of individuals who follow Demand 0 never increases and, in fact, always
decreases as long as another strategy exists. An initial 0–10 polymorphism thus converges
(quite rapidly) to the state in which everyone demands 10. This point is highly unstable, and
any mutation will cause the population to converge to some other equilbrium point.
Polymorphic pitfalls must be evolutionarily stable states, and the 0–10 equilibrium is not
evolutionary stable.
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Demand 4

Demand 5

Demand 6

(a) ε = 0.1

Demand 4

Demand 5

Demand 6

(b) ε = 0.2

Figure 5.4 The simplex space for the 4–5–6 Nash game with correlation.

the basin of attraction for the unfair Demand 4–Demand 6 polymorphism has
shrunk to a fraction of its former size. By the time the correlation coefficient
reaches 0.2, the unfair polymorphisms have virtually disappeared.16 Since pair-
wise interactions between individuals are likely to be not perfectly random, but
somewhat correlated, the fact that incorporating correlation into the replicator-
dynamics model increases the size of the basin of attraction for fair division
strengthens the evolutionary explanation for why the norm of fair division is
so widely held.

Summarizing these results, Skyrms (1996) states that

In a finite population, in a finite time, where there is some random element in
evolution, some reasonable amount of divisibility of the good and some correlation,
we can say that it is likely that something close to share and share alike should
evolve in dividing-the-cake situations. This is, perhaps, a beginning of an
evolutionary account of the origin of our concept of justice.

Perhaps this is so, but it is worth concentrating on two crucial assumptions
underlying the replicator-dynamics model. First, Skyrms explicitly refers to the
population under study as finite. This assumption seems inappropriate given
that an important assumption of the replicator dynamics is that the population
must be large enough to justify identifying the expected fitness of an individual
following a strategy with the expected fitness of that strategy. In small, finite

16 For example, one of the trials displayed in figure 5.4(b) was begun at the initial point
(0.992 87, 0.000 13, 0.007) (the frequencies of Demand 4, Demand 5, and Demand 6,
respectively), which still converged to fair division even though less than 0.1 percent of the
population initially followed fair division. The initial state (0.01, 0.002 96, 0.987 04)
converged to fair division as well. However, if the initial frequency of fair division were
lowered further, we would still arrive at an unfair 4–6 polymorphism. The primary point,
though, is that it does not take much correlation to eliminate, for all practical purposes, the
basin of attraction for the 4–6 polymorphism.
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populations, this assumption need not be true. Second, the replicator dynamics
converges to fair division in the majority of cases only when there is a certain
amount of positive correlation in the population. Where does this correlation
come from, and why is it only positive?

Positive correlation means that strategies are more likely to interact with
themselves than with other strategies. Positive correlation tips the tables in
favor of fair division since the 50–50 split is the highest-scoring strategy that
plays well against itself. In the 60–40 polymorphism, the strategy which asks
for 60 percent of the cake does not play well against itself: two players who
ask for 60 percent both receive nothing according to the rules of the game.
Hence positive correlation introduces selection pressure against the strategy of
asking for 60 percent. Although players who ask for 40 percent do play well
against themselves, they don’t receive as high a payoff as people following the
50–50 split, so there is selective pressure against the strategy which asks for
40 percent. With enough positive correlation, the success of the 50–50 split is
assured.17

The above objection to Skyrms’s replicator dynamics is due to D’Arms,
Batterman, and Górny (1998), who developed a finite-population model in-
corporating both positive and negative correlation. Negative correlation, here,
means just that individuals tend to avoid interacting with members of their
own kind, preferring to interact with individuals following different strategies.
Negative correlation works in favor of strategies that ask for more than half of
the cake, and doesn’t significantly harm strategies that ask for significantly less
than half of the cake. D’Arms et al. (1998) note that allowing both positive and
negative correlation reintroduces the polymorphic pitfalls. The moral of the
story, then, is that widespread evolution of distributive justice in the replicator
dynamics depends crucially upon the assumption of positive correlation.

5.2 Lattice models

As we’ve seen for the prisoner’s dilemma and the Stag Hunt, local interaction
models give rise to results very different from that of the replicator dynam-
ics. The game of divide-the-cake proves no different. To begin, consider the
evolution of distributive justice on a lattice, where spatial position generates

17 Consider the limiting case with perfect correlation. Here, people asking for 60 percent of the
cake always receive nothing; people asking for 40 percent of the cake always get what they ask
for, as do people who ask for 50 percent. However, those asking for 50 percent do better both
than those asking for 60 percent (who earn nothing) and than those asking for 40 percent (who
earn only 40 percent), so the strategies of asking for 40 and 60 percent become extinct.
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Strategy Color Strategy Color Strategy Color

Demand 0 Demand 4 Demand 8

Demand 1 Demand 5 Demand 9

Demand 2 Demand 6 Demand 10

Demand 3 Demand 7

Figure 5.5 Color representation of strategies in the Nash bargaining game.

(a) The evolution of fair division from uniform initial conditions with an interaction radius of 1

(b) The evolution of fair division from a 4–5–6 polymorphism with initial distribution
〈0.4, 0.2, 0.4〉 with an interaction radius of 1

Figure 5.6 Divide the dollar played on a one-dimensional lattice.

correlation between strategies in a natural way. Figure 5.5 lists the correspon-
dence between colors and strategies for the Nash bargaining game used in
subsequent diagrams.

Figure 5.6 illustrates the evolution of fair division on a one-dimensional
lattice consisting of 200 individuals from two different initial conditions. The
interaction and update neighborhoods are equal and involve only each person’s
immediate left and right neighbor. Players adopt new strategies using Imitate-
the-Best. In figure 5.6(a), all eleven strategies from Demand 0 to Demand 10
are equally likely to appear. In figure 5.6(b), the only strategies initially present
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0 0 0 0 0 10 10 10 105

(a) Lack of compatible strategies for Demand 6 in a 5–6 frontier competition

10 10 10 10 5 0 6 6 6 6

(b) The strategy Demand 3 supporting Demand 6

Figure 5.7 Frontier competition between fair division and Demand 6. Colors
represent individual strategies and numbers are individual scores calculated using
an interaction radius of 1.

are Demand 4, Demand 5, and Demand 6, which are assigned to individuals
randomly using the distribution 〈0.4, 0.2, 0.4〉, which gives a small advantage
to the 4–6 polymorphism. The first generation appears on the topmost line
with successive generations listed beneath. Aside from the obvious success
with which fair division dominates, examination of the figures reveals two
features that need explanation. First, on the left-hand side of figure 5.6(a) we
see fair division successfully invading a region occupied by the strategy of
Demand 6, yet towards the center we find a vertical line that represents a
group of individuals following Demand 6 who resist invasion by fair dividers.
What is it about that arrangement of Demand 6 near the center that allows
them, unlike their fellow cohorts on the left, to resist invasion? Second, if one
inspects figure 5.6(b) carefully, one will notice that the relentless advance of
fair division occasionally pauses, proceeding to continue the advance in the
next generation. Why?

Fair division successfully invades the region of Demand 6 on the left of
figure 5.6(a) because, there, the strategy of Demand 6 is isolated: no compatible
strategies exist in the nearby vicinity. Consequently, the Demand 6 individual
on the frontier between Demand 6 and Demand 5 finds himself at a significant
disadvantage: his right-hand neighbor demands 5 and his left-hand neighbor
demands 6, so in both interactions the Demand 6 frontier competitor earns a
score of zero. However, the frontier competitor who demands 5 earns a score
of 5 because his right-hand neighbor follows a compatible strategy. Moreover,
because all of the Demand 6 neighbors of the Demand 6 frontier competitor
also earn scores of zero (they, too, have no compatible strategies surrounding
them), the only viable strategy for the Demand 6 frontier competitor to imitate,
from his point of view, is that of fair division. Consequently, the Demand 6
individual on the frontier switches to fair division for the next generation.
Figure 5.7(a) illustrates this scenario.
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Figure 5.8 The existence of “blinkers” in a 4–6 polymorphism.

However, as the standoff between Demand 6 and fair division in the center
of figure 5.6(a) reveals, fair division does not always succeed in displacing
Demand 6 in a frontier competition. If the Demand 6 strategy on the frontier
is supported by compatible strategies in the interior, a stalemate can ensue.
The reason for the stalemate occuring near the center of figure 5.6 is shown in
figure 5.7(b). There we see how the frontier Demand 6 persists even though
it receives a score of zero because the neighboring Demand 6 on his right
earns the best score in his neighborhood. In this configuration, none of the
individuals participating in the frontier competition will switch strategies in
the next generation, producing an evolutionary stalemate. This is the same
phenomenon as we saw in chapter 3 in the case of the prisoner’s dilemma:
strategies on the frontier can avoid being replaced when they are supported
from the interior.

The sequence of events shown in figure 5.6(b) indicates how fair division
can successfully invade regions occupied by a 4–6 polymorphism. In local-
interaction models with imitative strategies, strategy polymorphisms often re-
sult in the existence of so-called “blinkers”: stable local structures of period 2 in
which certain individuals oscillate between following one strategy and follow-
ing another. With an interaction and update radius of 1, a 4–6 polymorphism
settles into such “blinkers” consisting of an expanding and collapsing group of
individuals whose strategy is Demand 6. (Figure 5.8 shows why blinkers form
by calculating the scores for individuals following Demand 4 and Demand 6
in the vicinity of the blinker.) When the blinker is in its collapsed state, the
4–6 polymorphism is vulnerable to invasion. Consider the scores which result
when a fair divider is next to the lone individual following Demand 6: the
individual whose strategy is Demand 6 earns 6, the fair divider 5, and the indi-
vidual following Demand 4 on the other side of the one following Demand 6
earns 8. The fair divider does not switch strategies, because he is supported
by his adjacent neighbor who also holds the strategy of Demand 5 yet earns
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a score of 10. However, the frontier individual following Demand 6 has no
other high-scoring individuals following Demand 6 to support him; hence, the
individual following Demand 6 switches to the strategy of Demand 4 in the
next generation. This elimination of the sole individual following Demand 6
results in a frontier competition between Demand 5 and Demand 4, which is
easily proved to lead to the elimination of Demand 4. It is also easy to show
that, if a region of fair division is adjacent to the blinker in its expanded state,
fair division will be able to invade as well.

The arguments we’ve developed can be generalized, and doing so allows us
to see why fair division almost always dominates for the game of divide-the-
cake played on a one-dimensional lattice. The first task at hand is to identify
what happens in frontier competitions between competiting strategies. Once
we have determined the behavior in frontier competitions, we can use this to
determine which pairs of frontiers are “stable” when paired against each other –
that is, the frontiers result in a stalemate in which neither side advances – and
which are “unstable,” meaning that one side advances at the expense of the
other.

Suppose that the cake is divided into C pieces and let the common interaction
and update radius be r . There are a few easy cases to consider.

Frontier competition between s1 and s2, when s1 + s2 ≤ C, s1 ≤ C/2, and
s2 ≤ C/2. We can assume without loss of generality that s1 < s2. Since the
two strategies s1 and s2 are compatible, and each strategy is compatible with
itself, each player receives the number of slices of cake he asks for no matter
whom he plays. With an interaction radius of r , each player following s1

receives 2rs1 slices of cake, and each player following s2 receives 2rs2 slices of
cake. Since s1 < s2, the region following s2 wins the frontier competition and
successfully invades the region held by s1. This is the situation of figure 5.6 for
the frontier competition between Demand 4 and Demand 5.

Frontier competition between s1 and s2, when s1 + s2 ≤ C, s1 > C/2, and
s2 ≤ C/2. In this situation, s1 and s2 are compatible, s2 is self-compatible, but
s1 is not self-compatible.18 This would be, for example, the situation occurring
when a region of Demand 6 faces a region of Demand 4. Since s1 is not self-
compatible, the individual on the boundary of the s1-region earns a score of
rs1, and the individual on the boundary of the s2-region earns a score of 2rs2

(as do all members of the s2-region). If s1 > 2s2, the s1-region will win the

18 By symmetry of notation, the following argument also covers the case when s1 ≤ C/2 and
s2 > C/2.
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Figure 5.9 The mutual invasion of Demand 6 and Demand 3 from a frontier
competition when r = 2.

frontier competition, invading the s2-region; if s1 < 2s2, the s2-region wins the
frontier competition, invading the s1-region. If s1 = 2s2, a stalemate ensues
when r = 1. If r > 1, individuals within r units of the boundary will earn
scores less than rs1 and will also have some chance of switching to the strategy
s2, since their update neighborhood overlaps the s2-region. In this case, the
frontier competition will disappear through a process of “mutual invasion,” as
illustrated in figure 5.9. Notice, though, that in this process of mutual invasion
neither strategy is entirely eliminated from the population.

Frontier competition between s1 and s2, when s1 + s2 > C, s1 ≤ C/2, and
s2 > C/2. In this case, s1 is self-compatible but s2 is not, and the strategies s1

and s2 are not compatible. Given this, s2 will never earn a nonzero score and s1

always will, so the s1-region will invade the s2-region. An example of this is the
frontier competition between Demand 4 and Demand 7 with a cake size of 10.
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f ′ f m · · · g

Figure 5.10 Frontier competition between fair division and a greedy–modest
polymorphism.

Frontier competition between s1 and s2, when s1 + s2 > C, s1 > C/2, and
s2 > C/2. Since the strategies s1 and s2 are not compatible, and neither
strategy is compatible with itself, all individuals in both regions receive a score
of zero. However, no one will switch strategies because no individual with a
nonzero score exists. This produces a stalemate between the two regions, and
is the situation existing in figure 5.6 in the competition between the strategies
of Demand 7 and Demand 9.

The above four cases cover all possibilities when we have a frontier compe-
tition between two regions occupied by a single strategy. Let us call a strategy
asking for more than half of the cake a “greedy” strategy and one asking for
less than half of the cake a “modest” strategy. The first case proves that, in a
region consisting solely of modest strategies, where at least one person asks for
half of the cake, eventually all will adopt the strategy of asking for half of the
cake. The third case proves that, whenever fair division faces a purely greedy
region, fair division will ultimately dominate.

What happens when a region of fair division faces a greedy–modest poly-
morphism in a frontier competition? Suppose that, on the boundary between
the two regions, a fair divider faces a modest individual, with all fair dividers
on the left and the greedy–modest polymorphism on the right. The situation
envisioned is that of figure 5.10. Let’s consider this in stages.

Can the fair divider be replaced by a modest individual? Not given the
situation illustrated. Located r − 1 spaces to the left of the fair divider f on
the frontier is a fair divider f ′ who interacts with 2r − 1 fair dividers and one
modest individual. Hence f ′ earns a score of 2r · C/2, which is greater than
any possible score obtainable by a modest individual. Since f ′ falls within the
update neighborhood of f , the frontier fair divider will never adopt the modest
strategy in the next generation. Furthermore, since f ′ falls within the update
neighborhood of the r − 2 fair dividers between f and f ′, none of these fair
dividers will switch to a modest strategy, either.

Can the fair divider be replaced by a greedy individual? It is possible for
this to happen, but it ultimately harms the greedy–modest polymorphism in
the long run. To see this, suppose that somewhere within r spaces of f on the
right there is a greedy individual g. Because f ′ earns a score of rC, in order
for a greedy individual to replace f , the greedy individual g must earn a score
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Figure 5.11 Invasion of a minimal 3–7 polymorphism by fair division in a frontier
competition.

strictly greater than rC. Let M be the number of modest individuals in the
neighborhood of g. In order for the score of g to exceed rC, it must be the case
that M is at least r + 1 since g cannot ask for more than C pieces of cake.

If we suppose, then, that g has enough modest individuals in his neighbor-
hood to earn a score higher than f , what happens? The boundary fair divider f

(perhaps with some other fair dividers), will switch to g, but so will all modest
individuals within g’s neighborhood. Since M is at least r + 1, this creates a
frontier competition between a region of fair dividers and greedy individuals,
on one side, and greedy individuals and the rest of the greedy–modest poly-
morphism on the other. Since we have already proved that fair division can
invade a pure region occupied by greedy strategies, fair division will be able to
invade and recoup the lost territory in the next generation. In most cases, the fair
dividers will win more territory than they lost, resulting in a net gain for fair di-
vision. Figure 5.11 illustrates this for a simple frontier competition between fair
division and a minimal 3–7 polymorphism. By applying this argument again
to the new frontier competition with the shifted boundary, we can see that fair
division – even if occasionally pushed back by an unusually successful greedy
strategy – will ultimately expand, driving out the entire greedy–modest poly-
morphism. In short, whenever there is a small cluster of fair dividers present
in a population that follows the strategy of Imitate-the-Best, the spread of fair
division is inevitable.

What happens in two dimensions? Figure 5.12 illustrates a typical evolu-
tionary trajectory for a randomly initialized world on a two-dimensional lattice
in which all strategies are equally likely, with the Moore (8) neighborhood used
both for interaction and for updating. The upper-left image shows the original
state of the world. Successive generations are presented left to right by rows
so that the leftmost image of row n+ 1 is the successor to the rightmost image
of row n. As we see, by the end of the ninth generation the majority of the
population has adopted the strategy Demand 5.19

19 Except for two small regions of Demand 4 and Demand 6 in the center and bottom center of
the world. By the eleventh generation, all agents followed the strategy of fair division. These
images were suppressed because the trajectory is obvious.
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Figure 5.12 The emergence of fair division from a randomly initialized world,
with all strategies equally likely, under the Moore (8) neighborhood.

Close inspection of figure 5.12 shows that fair division begins to gain the
upper hand after the first generation, and establishes an appreciable presence
by the end of the second. One might wonder whether this rapid increase in
the number of fair dividers occurs primarily because of the initial success fair
division has under the initial conditions, namely, when strategies are more or
less uniformly distributed. Such situations will typically hold only in relatively
few cases and, even then, the approximately uniform distribution of strategies
will not persist much beyond the first generation; after that, players change
strategies in ways that will certainly move the frequencies of strategies in the
population away from uniformity. However, if the first few generations provide
fair division with an advantage not shared by other strategies, this small initial
advantage might allow fair division to expand to occupy regions of sufficient
size that other strategies cannot displace it.
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Figure 5.13 Proportions of the population following each strategy for the first
four generations of figure 5.12.

Let si denote the probability that a given player interacts with an individual
following strategy i. The expected payoff for all strategies in divide-the-cake,
where strategies are randomly distributed on the lattice, is

E(Demand i) = ni

∑
0≤j≤10−i

isj ,

where ni is the number of neighbors in the interaction neighborhood of each
player. Since this value is common to all players, it can be ignored. It is easy
to calculate the expected fitness for all strategies for any vector 〈s0, . . ., s10〉
of strategy frequencies. In the case we are considering si = sj for all i and
j , so we can factor out this common value of 1

11 from the sum. The expected
payoff of strategy i under uniform conditions is 1

11 i(10− i + 1), which means
that Demand 5 and Demand 6 tie, with expected values under uniform initial
conditions of 30

11 . The success of fair division thus cannot be explained by it
having an advantage under uniform circumstances that is not shared by other
strategies. Figure 5.13 shows this to be true: the two strategies exhibiting the
most extreme growth in the first two generations are Demand 5 and Demand 6.
In fact, the rate of growth of Demand 6, due to random fluctuations in the
positioning of strategies on the lattice, actually exceeds that of Demand 5.

A closer look at figure 5.12, especially the regions temporarily occupied by
unfair polymorphisms, suggests that fair division’s success in frontier competi-
tions in two dimensions proceeds along lines similar to that in one dimension.
Figure 5.14 illustrates a frontier competition between fair division and the 4–6
polymorphism. (In order to preserve the frontier, the lattice does not wrap at
the boundary.) Over time, we see that fair division slowly invades the region
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Figure 5.14 A frontier competition between fair division and the 4–6 polymor-
phism in two dimensions.

originally occupied by the unfair polymorphism. Within eight generations, fair
division has made significant progress towards eliminating the unfair popula-
tion. (This rapid elimination of unfair strategies occurs because of the relatively
small dimensions of the lattice. On a 100× 100 lattice, fair division completely
dominates typically within sixty generations.) If the lattice is allowed to wrap
at the edges, fair division dominates twice as fast because the unfair polymor-
phism is eaten away from both sides at once.

The type of neighborhood used both for interaction and for updating has
little effect on the convergent state of the population, although it does influence
the path followed to reach that state. Figure 5.15 illustrates the different evolu-
tionary trajectory followed by a population begun in an initial state similar to
that of figure 5.12, but using the von Neumann neighborhood for interaction
and updating instead. Although fair division still wins out in the end, it takes
longer due to the reduced size of the imitation neighborhood. Figure 5.16 again
considers a world having similar initial conditions to those of the previous
two, but using the Moore (24) neighborhood. On account of the greater radius
of interaction of the Moore (24) neighborhood, fair division moves to fixation
considerably faster than in any of the previous models. The larger neighborhood
also allows the unfair polymorphisms (in this series, the unfair polymorphism
is the familiar Demand 4–Demand 6 polymorphism) to establish their strongest
presence yet (measured in terms of the average area occupied by a region of
unfair polymorphisms) before being overrun.

Table 5.1 summarizes the final convergent state of the world for several
different combinations of neighborhoods and dynamics. The neighborhoods
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Figure 5.15 The emergence of fair division from a randomly initialized world,
with all strategies equally likely, under the von Neumann neighborhood.

Figure 5.16 The emergence of fair division from a randomly initialized world,
with all strategies equally likely, under the Moore (24) neighborhood.
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(a) Type 1 (b) Type 2 (c) Type 3

Figure 5.17 Three nonstandard neighborhoods used in table 5.1.

examined include the von Neumann, Moore (8), and Moore (24), as well
as three nonstandard types indicated in figure 5.17. The type-1 nonstandard
neighborhood was randomly constructed by choosing a subset of the Moore (24)
neighborhood by a series of coin tosses. The important point to note is that, in
general, mean times to convergence are quite rapid. Models using the Moore (8)
neighborhood usually converged to fair division within sixteen generations.
This is a considerable improvement over the results of Skyrms (1996) and
Kandori et al. (1993), whose stochastically stable equilibrium selects only the
equilibrium of fair division in the limit. The larger Moore (24) neighborhood
leads to faster convergence because the radius of influence of any given single
player is greater (table 5.2).

Does the evolution of fair division at all depend on the amount of cake
individuals attempt to split? In Evolution of the Social Contract, Skyrms (1996)
reported an interesting relationship between granularity of the good and the
distribution of the resulting polymorphism. If we assume that players divide
a cake consisting of ten slices, we find that under the replicator dynamics fair
division takes over the population roughly 62 percent of the time with some
percentage of the population falling into one of the 1–9 or 2–8 polymorphic
traps. However, increasing the total number of pieces the cake is sliced into
leads to an increase in the total number of populations that will evolve into
something “near” fair division. In particular, Skyrms found that a cake divided
into 200 pieces went to fair division ±3 pieces approximately 94.1 percent of
the time; all trials went to fair division ±11 pieces (table 5.2).

Since most populations evolving on the lattice arrive at a pure state of fair
division already, one natural question inverts the one considered by Skyrms:
how coarsely can we slice the cake while still attaining fair division? Table 5.3
lists the results as the cake size varies from ten to two pieces, for each of the
three dynamics considered, under the Moore (8) neighborhood. Lattice-based
models exhibit a strong tendency for the strategy most akin to fair division to
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become fixated in the population. When the size of the cake is even, admitting
a perfect 50–50 split, in the vast majority of cases the model converges to a
state in which the appropriate strategy dominates (i.e., Demand 4 when the
cake is divided into eighths). When the number of pieces into which the cake
is divided is odd, so that no even split is possible,20 the population tends to
become “as close as possible” to the 50–50 split. (In chapter 7, the multiplayer
version of divide-the-cake shows a similar tendency, converging as closely as
possible to the egalitarian distribution across N persons.) In these cases, “as
close as possible” means a polymorphic state in which, for an N -piece cake,
one strategy demands �N/2� and the other demands �N/2� + 1.

Randomly initialized populations almost always converge to fair division.
Nonetheless, as the statistical results above indicate, in some small fraction of
the cases unfair polymorphisms persist. Fair division typically fails to dominate
when too few people initially follow that strategy. When isolated and paired
against incompatible strategies, fair division may be driven to extinction by
the end of the first generation. Once fair division has been eliminated, the
population then evolves to some other polymorphic state.

The persistence of polymorphic pitfalls in the cases discussed so far stems
from the fact that no mechanism exists for reintroducing a strategy into the
population once it has been eliminated. If we allow individuals to experiment
with novel strategies – the cultural evolutionary analogue of mutations – we
obtain a virtual guarantee that a population will converge to fair division within a
reasonable amount of time, no matter what the initial state of the population was.
I say a “virtual guarantee” because random mutations introduce an inescapable
stochastic element into the model, which prevents us from being able to say,
with certainty, what population state the model will have reached at some future
time.21

For example, consider a world in which no one initially follows the strategy
of fair division, but where, in each generation, each player has a 10 percent

20 Recall that agent strategies are restricted to integer values, so that the natural strategy of asking
for 4.5 slices of the cake when the total cake size equals 9 slices cannot be employed.

21 This qualification does not prove to be that important in practice – at least for the game of
divide-the-cake. The extreme tendency of populations to converge to fair division means that,
even if a substantial proportion of the population spontaneously mutated into members of
another polymorphism, they would be readily driven out. The only way this could be prevented
from happening is if all of the members of the population mutated at once to another
polymorphism. The low probability of such an event means that this possibility exists in a
sense that matters only to philosophers. For example, if every individual in the population
mutates (this is equivalent to assuming the probability of mutation equals 1) the probability
that each mutant on a 100× 100 lattice converts to strategies in a compatible polymorphic
pair, such as 4–6 or 3–7, is ( 2

11 )10 000 ≈ 2.361× 10−7404. This probability becomes
significantly lower if we assume a more realistic mutation rate of, say, µ = 0.001. In this case,
the probability plummets from 2.361× 10−7404 to 2.361× 10−37 404.
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chance of mutating (a relatively high mutation rate). For all practical purposes,
in a population of any significant size within one or two generations a mutation
will introduce the strategy of fair division into the population.22 There remains
a small chance that no mutation will introduce the strategy of fair division
into the population within t generations, for any t . Admittedly, this chance
goes to zero as t →∞ (and does so rather quickly), giving us the “virtual
guarantee” that the population will eventually converge to fair division spoken
of earlier. Of course, when we speak of a population “converging to a state of
fair division,” we must adapt the definition of “converge” accordingly so that it
makes sense to talk of a population having converged to a state of fair division
even when a small fraction of the players follows other strategies, since this
will most typically be the case in the presence of mutations. We also must
specify which learning rule we speak of, for mutation does not always produce
fair dividers in the long run, regardless of the learning rule. Figure 5.21 below
shows how mutation can produce a suboptimal outcome when agents use a
naı̈ve best-response rule.

Figure 5.18 illustrates how even a small mutation rate suffices to overturn
an unfair population within a few generations. The images in this particular
series were not sampled at constant intervals, so one should not take apparent
differences in the diffusion rate of the Demand 5 strategy to be significant.
The total number of generations required for fair division to achieve complete
domination was exactly thirty.

The amount of time required to move a population from a polymorphic
pitfall to a state in which almost everyone23 follows fair division depends on
the frequency of mutations µ. Inspection of figure 5.18 reveals that the key step
in the emergence of fair division is the introduction of the Demand 5 strategy
into a site surrounded by sufficiently many compatible ones (in this case, the
only compatible strategy is Demand 4). Figure 5.19 shows a close-up of the
first few generations after such a critical mutation has occurred. If µ is small (or
if there are not many sites with compatible strategies), obviously one will have
to wait longer. In comparison with the time required for the model of Kandori
et al. (1993) to return to fair division if it becomes trapped in a polymorphic
pitfall, the wait in this case seems hardly significant: the run portrayed in
figure 5.18, which had µ = 0.0005, had the critical mutation occurring in the
second generation.

22 This assumes that when a mutation occurs there is a reasonable chance that any other strategy
will result. (The probability distribution determining the frequency with which mutant
strategies arise, though, need not be uniform.)

23 We must qualify this because a nonzero mutation rate typically results in a small amount of
mutational “noise” appearing each generation.
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Figure 5.18 Emergence of fair division out of a 4–6 polymorphism as a result of
mutation.

Figure 5.19 A close-up of the critical mutation in figure 5.18.
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Figure 5.20 The persistence of fair division in a world with an unusually high
mutation rate (µ = 0.1).

Mutations may move a population trapped in an unfair polymorphism to a
state in which almost everyone follows the strategy of Demand 5, but can the
opposite happen as well? Can mutations cause a population to leave a state in
which (almost) everyone opts for the equal split for a state in which almost
everyone follows one strategy of an unfair polymorphism? For Imitate-the-
Best the answer is a qualified no. It is possible, albeit very unlikely, for every
agent in the population to mutate into an agent following one strategy of an
unfair polymorphic pair in the same generation. Mutations may, in principle,
cause the population to jump from a state of fair division into any other state,
but the chance of this happening is extremely low. If the mutation rate is µ,
then the probability of n mutations occurring, none of which transforms an
agent’s strategy to that of fair division, equals

(
10
11 µ

)n
.24 Although a population

may be tranformed out of a state in which fair division dominates by mutation,
one would expect to wait an extraordinarily long time for this to occur, even
with a relatively high mutation rate. If µ = 0.05, then the probability of such
mutations occurring for 200 agents (much less a population of several thousand)
is 3.2769× 10−269. Furthermore, given the ease with which mutations move
a population away from an unfair polymorphism towards fair division, even if
such an unlikely population shift did occur, it would not last for long. Brought
together, all of this means that states in which most follow the strategy of fair
division have remarkable stability properties, even in the presence of a large
amount of mutation. Figure 5.20 illustrates the robustness properties of fair
division in an extreme case.

24 Assuming that the probability of any strategy produced via mutation is equally likely, with a
cake size of 10.
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Figure 5.21 The disadvantageous state resulting when all players employ the
best-response update rule.

Thus far we have seen how boundedly rational agents who act to maxi-
mize individual gain using Imitate-the-Best may successfully arrive at uniform
agreement on behavior corresponding to our norms of share-and-share-alike.
What happens when agents follow a more sophisticated learning rule, like Best
Response? Will they arrive at the same outcome more rapidly? Interestingly,
this turns out to be not true in general, as figure 5.21 illustrates. In that figure all
agents use Best Response, explicitly adopting that strategy calculated to yield
the best expected payoff under the assumption that neighboring agents will not
change their strategies in the next generation. We find that the best-response
update rule leads to an extremely suboptimal outcome, measured from the point
of view of an individual agent’s utility. In the regions alternating between the
strategies of Demand 4 and Demand 6, each agent receives on average only
two slices of cake, in notable contrast with the five slices received each turn by
their fair-playing brothers.25

Do mutations prevent the Best Response from coordinating on the subopti-
mal equilibrium? It turns out that introducing mutants into the population can
make the situation much worse. Figure 5.22 shows a population that began
under uniform initial conditions with a mutation rate of 0.1. (Using a high
mutation rate approximates running the model at a lower mutation rate for a
longer time, provided that any two mutants that appear are not so close that

25 The average payoff for agents in the “blinker” region equals 2 because, when an agent and all
of his neighbors follow Demand 6, no one receives anything. In such a situation, the
best-response strategy for a given agent (assuming that none of his neighbors change their
strategies) would be to follow Demand 4. Thus, in the next generation, all agent requests can
be satisfied; each agent receives cake according to the pattern 0, 4, 0, 4, 0 . . ., giving an
average payoff of two.
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Figure 5.22 The disadvantageous state resulting when all players employ the
best-response update rule (with mutations).

both of them can affect the interactions or payoffs of any other single player.)
In the absence of mutation, as seen in figure 5.21, stable local regions of fair
division or 4–6 polymorphisms form. In the presence of mutation, gradual con-
solidation of regions occurs until, after more than 22 000 generations, the entire
population (save for the mutants) has converged to the terribly suboptimal 4–
6 polymorphism! The lesson to take away is that, in strategic environments
it is, on occasion, to a player’s benefit not to be too clever when updating
strategies.

5.3 Small-world networks

As argued in previous chapters, the final states to which small-world networks
converge can be analyzed by considering the small-world network to be a series
of one-dimensional lattices connected by hubs. Figure 5.23 illustrates the final
convergent state of the game of divide-the-cake played on five small-world
networks with an interaction radius of 1. Fair division dominates in two of the
five worlds, occupies approximately half of the population in two others, and
does not appear at all in one.

With an interaction and update radius of 1, hubs can block the expansion
of fair division if the hubs surrounding the region of fair division are suitably
populated by individuals following other strategies. For example, consider a
region of Demand 5 surrounded on both sides by hubs occupied by the strategy
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(a) (b) (c)

(d) (e)

Figure 5.23 The final convergent states of divide-the-cake played on five small-
world networks, r = 1.

a
AB

b

Figure 5.24 A region of fair division trapped between two hubs occupied by
Demand 4.

Demand 4, as illustrated in figure 5.24. If the bridge edge did not exist, players
a and b would adopt the strategy Demand 5 in the next generation. However,
because the bridge edge exists, players A and B each earn a score of 12 since
they both have three neighbors rather than just two. This success of A and B

prevents a and b from adopting the strategy of fair division even though a and b

receive a lower score than do their fair-playing neighbors. The important feature
here is that the higher score earned by A and B “supports” the poor-performing
boundary players and effectively blocks the expansion of fair division.

Divide-the-cake played on a small-world network enables us to say some-
thing useful about the medium- and long-run dynamics. In the absence of
mutation, the possible long-run convergence patterns for a small-world net-
work can be predicted as follows. Consider the set of basins of attraction for
the game of divide-the-cake played on lines of various length (the relevant
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lengths are determined by the bridge edges, which effectively cut the ring into
segments). Weight each of these basins of attraction by the proportion of state
space it occupies. Then the set of possible long-run convergence patterns for
the small-world network is obtained by simply piecing these smaller segments
together, with the probability of any given outcome occuring being the product
of weightings assigned to each individual section. In the absence of mutation,
it is not meaningful to distinguish between the outcomes of the evolutionary
dynamics in the medium and long run – once the population has settled into a
stable state, it will remain there indefinitely.

However, if mutations are allowed, but at a sufficiently low level, then it
becomes possible to differentiate between the outcomes of the dynamics over
the medium and long run. With a low mutation rate, the population will first
converge to one of the possible patterns described above – this is the medium-
run outcome. As mutants are slowly introduced, though, eventually a fair divider
will appear in one of the regions occupied by another polymorphism. In most
cases,26 this Demand 5 mutant will expand in the next generation and begin
a frontier competition between the unfair polymorphism and a local region of
fair dividers. As we’ve seen earlier, such frontier competitions always end in
favor of fair division. Over the long run, the population will eventually settle
into a state in which almost everyone follows the strategy of fair division.27

5.4 Bounded-degree networks

Consider the interactive situation represented in figure 5.25. There we have
fifteen individuals playing divide-the-dollar on a bounded-degree network with
kmin = 2 and kmax = 3. One noteworthy feature of this kind of network is that
it features a particularly small population, especially compared with the local-
interaction models considered so far in this chapter. In a small population, any
initial assignment of strategies done according to a randomly chosen vector

26 This qualification is necessary because it is possible for the polymorphic region to contain a
number of blinkers. If the random mutation event happens to place the fair divider right in the
middle of a blinker (or between two adjacent blinkers), the fair divider may not interact with
any compatible strategies, thus earning a score of 0 and being eliminated at the end of the
round.

27 This qualification is needed for two reasons. First, because of the standard reason that having a
nonzero mutation rate means that there is always some chance (albeit small) of having unfair
dividers appear. The second reason is that, as some of the previous figures have illustrated, the
extra payoff conferred to players incident on a bridge edge can lead to the preservation of
small islands of strategies other than Demand 5. When such islands appear, the only way to
displace them is via mutation, which may take a very long time.
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Figure 5.25 Divide-the-dollar played on a bounded-degree network, with kmin =
2, kmax = 3, N = 15.

from the strategy simplex28 might not include representatives of all possible
strategies. As figure 5.25 shows, there are only six of eleven possible strategies
included. In this case, the population converged to Demand 4 in six generations.

For a fixed topology, how likely is it that fair division will emerge? Taking
the topology of figure 5.25 as a benchmark, let us draw 10 000 random vectors
from the strategy simplex and use these to generate 10 000 initial assignments
of strategies (one assignment of strategies for each random vector) to the fifteen
individuals.29 Using the above network both for interaction and for updating,
and the learning rule of Imitate-the-Best, what are the convergence results?30

28 For the game of divide-the-dollar with a cake size of C, the strategy simplex is the set of
vectors 
v = 〈v0, v1, . . ., vC〉 such that vi ≥ 0 for 0 ≤ i ≤ C and

∑C
i=0 vi = 1. If 
v is a vector

from the strategy simplex and P = {1, . . ., N} is the population of agents, an initial
assignment of strategies to P done according to 
v is a set of strategies {σ1, . . ., σN } chosen
randomly using the distribution 
v. Since we consider only pure strategies, this means that
σi = j with probability vj . For small N , strategies might not be present in the original
assignment even if 
v places positive probability on that strategy.

29 The same vector can give rise to many different initial assignments of strategies, due to
sampling. For example, using Mathematica to select fifteen strategies according to the
distribution 〈0.158, 0.0809, 0.2158, 0.0428, 0.0189, 0.2066, 0.0504, 0.0576, 0.0485,

0.09, 0.03〉, two different evaluations of the same command returned
{6, 10, 5, 3, 1, 9, 1, 4, 8, 6, 8, 3, 10, 7, 1} and { 3, 6, 10, 6, 8, 7, 3, 9, 6, 1, 5, 3, 3, 10, 6 }. I
ignore this fact in the following.

30 What does “convergence” mean in cases in which the model may land in a cycle of period 2 or
longer? The definition of convergence used here is the following: run the model forward for
ten generations (so that any initial transient noise dies out). If, at generation t , where t > 10,
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Figure 5.26 A bounded-degree network that converges to a nonstandard polymor-
phic state.

In such a model, we find convergence to fair division 3038 times. The
4–6 polymorphism occurs 2195 times, and the 3–7 polymorphism occurs 598
times. The remaining possibilities occur much less frequently. We find the 2–8
polymorphism in only 74 of the 10 000 simulations, and the 1–9 polymorphism
occurs only 10 times. (As one might expect, the 0–10 polymorphism never
occurs.) However, if you add up these values, it seems that nearly half of the
simulation runs have gone missing. Only 5915 of the 10 000 runs converged to
a polymorphism. What happened?

Figure 5.26(a) reveals what happened. Bounded-degree networks, as we’ve
seen before, can behave quite differently from lattice models and small-world
networks. Whereas no lattice model can have a stable polymorphic population

the state of the model at t equals the state of the model at some time t ′ < t , then the model has
“converged.” The state of the model at time t is the assignment of strategies 〈σ1, . . ., σN 〉 to all
N players. Two states st = 〈σ t

1, . . ., σ t
N 〉 and st ′ = 〈σ t ′

1 , . . ., σ t ′
N 〉 are equal if σ t

i = σ t ′
i for

i ∈ { 1, . . ., N }. This somewhat awkward definition of convergence is required in order to
catch cases in which the model falls into cycles of period 2 or longer. It is also necessary
because there exist basins of attraction in bounded-degree networks that have no exact period.
For example, polymorphisms of Demand 4 and Demand 6 can have ties occurring among the
highest scorers in an individual’s update neighborhood (both Demand 4 and Demand 6 can
earn scores of 12), which means that the tie-breaking rule may be invoked. For certain
configurations, this can produce nonperiodic behavior, although it “clusters” around a basin of
attraction. For example, one bounded-degree network of twenty individuals with kmin = 2 and
kmax = 4 converged to a 4–6 polymorphism that exhibited such nonperiodicity. The numbers
of individuals following Demand 4 and Demand 6 for sixty generations after “convergence”
were, respectively, {14, 19, 15, 15, 14, 19, 15, 15, 14, 18, 15, 15, 14, 19, 15, 15, 14, 18, 15, 15,
14, 19, 15, 15, 14, 19, 15, 15, 14, 19, 15, 15, 14, 18, 15, 15, 14, 18, 15, 15, 14, 18, 15, 15, 14,
18, 15, 15, 14, 18, 15, 15, 14, 18, 15, 15, 14, 19, 15, 15} and {6, 1, 5, 5, 6, 1, 5, 5, 6, 2, 5, 5, 6,
1, 5, 5, 6, 2, 5, 5, 6, 1, 5, 5, 6, 1, 5, 5, 6, 1, 5, 5, 6, 2, 5, 5, 6, 2, 5, 5, 6, 2, 5, 5, 6, 2, 5, 5, 6, 2, 5,
5, 6, 2, 5, 5, 6, 1, 5, 5}.
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Table 5.4. The nonstandard mixed states for divide-the-dollar
played on a bounded-degree network

Mixed states Total

4, 5, 6 1428
3, . . ., 7 1141
2, . . ., 8 488
1, . . ., 9 446
Other 582

consisting of Demand 5 and Demand 4 (with a cake size of 10), such stable
states exist in bounded-degree networks.

To see how such nonstandard polymorphic states can be stable, consider
figure 5.26(b). Of all the individuals following Demand 4 in the population,
only A, B, and C interact with individuals following Demand 5. Both A and
B interact with exactly one such person, and C interacts with two. How-
ever, A, B, and C all have interaction neighborhoods of size 3, giving them
a total score of 12. The Demand 5 individuals with whom A, B, and C in-
teract have interaction neighborhoods of size 2, so these individuals following
Demand 5 earn a score of only 10. Thus, A, B, and C receive a higher pay-
off than anyone they interact with and, so, under Imitate-the-Best, neither A,
B, nor C will switch strategies, leaving a stable polymorphism. The three
players serve to shield the rest of the Demand 4 group from the rest of the
population.

Table 5.4 lists the nonstandard mixed states that were previously omitted.
One word about how these states were counted: although the 1428 mixed
states labeled “4, 5, 6” are guaranteed to have all three strategies present,31

all remaining mixed states guarantee only that at least one individual followed
a strategy between the endpoints and that no one followed a strategy lying
beyond the endpoints. For example, the “3, . . ., 7” mixed state could have
twelve individuals following Demand 3, two individuals following Demand 7,
and only one person following Demand 6; however, no “3, . . ., 7” mixed state
will ever include an individual following Demand 2 or Demand 10.

The results we have been discussing so far were obtained using 10 000
different initial conditions on the same underlying topology. What difference
does varying the underlying network make? Table 5.5 lists the results from

31 If no individuals following Demand 5 were present, this “mixed state” would collapse into a
standard 4–6 polymorphism.
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Table 5.5. Convergence results for divide-the-cake played on 10 000
bounded-degree networks where N = 15, kmin = 2, and kmax = 3

Polymorphism Total Mixed state Total

Fair division 3486 4, 5, 6 811
4–6 2361 3, . . ., 7 924
3–7 659 2, . . ., 8 512
2–8 85 1, . . ., 9 511
1–9 11 1, . . ., 10 639

0–10 1

a second run of 10 000 models in which the ith model used the same initial
conditions as for the ith model of the run reported earlier and in table 5.4, but
with a different, randomly chosen, bounded-degree network.32 Comparing the
results of the two, we see that random variation of the underlying topology
does make a difference in the convergence behavior, but primarily involving
the presence of mixed population states. Fair division still dominates most
frequently – 3486 times out of 10 000 when the topology is varied, compared
with 3038 times out of 10 000 when the topology is held fixed – but mixed states
consisting of Demand 4, 5, and 6 appear only 811 times out of 10 000 compared
with 1428 times out of 10 000 with a fixed topology where kmin = 2 and
kmax = 3. This makes sense: networks with low values of kmax tend to have more
than one connected component, and, when there is more than one connected
component, separate groups of fair dividers and other polymorphisms can form
independently.

The above suggests that fair division does reasonably well when played
on bounded-degree networks – in the sense that it becomes the predominant
strategy quite often – yet it does so with significantly less frequency than
on the lattice. This change is due to the irregular structure of the interaction
and update neighborhoods. On the lattice, everyone has the same number of

32 Each bounded-degree network was randomly chosen as follows. Let N denote the number of
vertices in the network. A random-degree vector 
v of length N was constructed, where vi

specified the desired degree of the ith vertex. (The particular distribution of degrees was
constructed using a random probability distribution over the finite set { kmin, . . ., kmax }.) Given
such a vector 
v, the graph used both for the interaction neighborhood and for the update
neighborhood was made using the Combinatorica command RealizeDegreeSequence,
if possible. Since not all degree sequences are realizable, if a randomly generated degree
sequence turned out to be not realizable, a different random-degree vector was generated.
(Combinatorica is a standard package included with Mathematica, and was written by Steven
Skiena and Sriram Pemmaraju.)
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neighbors (ignoring edge effects) and my neighbors and yours overlap to a
great extent. In a bounded-degree network, the social structure is less uniform.
Even if you and I are spatially adjacent on the circle, not only may we not
interact with each other, but also we may share no common neighbors. The
irregularity of the graph structure – variable number of neighbors plus the lack
of overlap of the neighborhood structures – allows irregular polymorphisms,
like the 5–4 polymorphism, to survive, and makes it more difficult for fair
division to dominate.

Introducing mutations alters the situation. Figure 5.27 illustrates the
medium-run behavior for four bounded-degree networks with a mutation rate
of 10 percent. Each network contains twenty individuals with kmin = 1 and kmax

of 2, 4, 6, and 8, respectively. The initial state of each network appears on the
left and a plot of time-series data for 500 generations is shown on the right. In all
cases, fair division becomes dominant within a relatively short period of time.
In addition, note that, once fair division has become dominant, mutations are
rarely able to knock fair division from its privileged position of being followed
by the majority of the population. In cases in which this does happen, such as
the second plot with kmax = 4, the reintroduction of the Demand 5 strategy by
mutations soon restores the population to a state in which the majority follows
fair division. Note also that, the more the edge density increases (that is, as
the average number of social interactions increases), the harder it is to displace
fair division by mutation. The more friends you play with, the more likely it is
that you will play fair, and the less likely you are to stop playing fair once you
start.

Table 5.6 and 5.7 show convergence data for a number of bounded-degree
networks when mutations are permitted. Networks with fifteen individuals had
a mutation rate of 10 percent, networks with thirty individuals a mutation
rate of 5 percent, and networks with sixty individuals a mutation rate of 2.5
percent. Two facts immediately leap out from the page. The first is that, with
the exception of the networks with low kmin and kmax, all networks converge
to fair division; the second is that, again excepting networks with low kmin and
kmax, convergence does not take long at all.

Why don’t networks with low kmin and kmax tend to converge as readily to fair
division? It all has to do with connectivity. Consider the networks consisting of
fifteen individuals. Of these, all that failed to converge to fair division within
1000 generations were disconnected graphs. This does not mean, though, that
only connected graphs converge to fair division: for networks with kmin = 1
and kmax = 2, only 127 of the 567 which converged to fair division were con-
nected. What happens is that connectivity greatly speeds up the rate at which
convergence to fair division occurs: the 127 connected graphs had a mean
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Figure 5.27 Medium-run behavior for four bounded-degree networks with a mu-
tation rate of 10 percent. The x-axis indicates the generation, and the y-axis the
number of individuals who follow a particular strategy.
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Table 5.6. Numbers of runs out of 1000 that converge to Demand half for the
indicated kmin and kmax within 1000 generations

kmax

kmin 2 3 4 5 6 7 8 9 10

1 567 852 954 980 992 997 999 1000 1000
2 – 1000 1000 1000 1000 1000 1000 1000 1000
3 – – 1000 1000 1000 1000 1000 1000 1000
4 – – – 1000 1000 1000 1000 1000 1000

N = 15 5 – – – – 1000 1000 1000 1000 1000
6 – – – – – 1000 1000 1000 1000
7 – – – – – – 1000 1000 1000
8 – – – – – – – 1000 1000
9 – – – – – – – – 1000

1 359 699 887 960 987 996 999 998 1000
2 – 1000 1000 999 1000 1000 1000 1000 1000
3 – – 1000 1000 1000 1000 1000 1000 1000
4 – – – 1000 1000 1000 1000 1000 1000

N = 30 5 – – – – 1000 1000 1000 1000 1000
6 – – – – – 1000 1000 1000 1000
7 – – – – – – 1000 1000 1000
8 – – – – – – – 1000 1000
9 – – – – – – – – 1000

1 223 544 777 911 971 989 993 999 999
2 – 1000 1000 1000 1000 1000 1000 1000 1000
3 – – 1000 1000 1000 1000 1000 1000 1000
4 – – – 1000 1000 1000 1000 1000 1000

N = 60 5 – – – – 1000 1000 1000 1000 1000
6 – – – – – 1000 1000 1000 1000
7 – – – – – – 1000 1000 1000
8 – – – – – – – 1000 1000
9 – – – – – – – – 1000

convergence time of 18 generations, whereas the 440 which were disconnected
had a mean convergence time of 180.5 generations, slightly over a tenfold
increase! In addition, the number of connected components matters. Those
disconnected graphs that managed to converge to fair division had, on average,
only 2.7 connected components, whereas the disconnected graphs that failed
to converge to fair division (within 1000 generations) had, on average, 5.6
connected components. Lastly, the size of each connected component matters:
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Table 5.7. Average numbers of generations taken to converge to Demand half

kmax

kmin 2 3 4 5 6 7 8 9 10

1 144.1 92.6 56.8 39.7 33.4 32.4 34.9 34.3 33.1
2 – 27.9 32.5 28.5 28.2 29.6 33.0 30.5 31.9
3 – – 27.6 26.1 25.3 27.3 31.6 32.7 31.0
4 – – – 26.0 23.4 26.6 27.1 27.1 28.2

N = 15 5 – – – – 18.9 24.4 27.1 25.4 28.5
6 – – – – – 24.2 24.2 26.6 24.3
7 – – – – – – 22.7 22.1 24.6
8 – – – – – – – 20.2 20.3
9 – – – – – – – – 19.0

1 193.6 133.0 94.7 63.9 43.8 41.8 44.1 46.4 46.1
2 – 39.2 51.2 40.2 33.4 38.0 41.7 42.1 50.3
3 – – 32.9 30.5 27.9 32.9 38.9 37.6 45.7
4 – – – 27.9 21.9 32.0 40.9 42.6 47.5

N = 30 5 – – – – 20.2 32.5 39.3 38.6 48.1
6 – – – – – 29.5 39.1 45.0 46.0
7 – – – – – – 37.4 40.7 45.8
8 – – – – – – – 36.9 43.9
9 – – – – – – – – 36.2

1 252.7 149.0 142.4 98.6 79.6 64.0 54.0 58.6 59.4
2 – 29.4 29.2 24.6 19.9 17.0 16.5 17.6 20.1
3 – – 15.3 15.4 14.3 14.6 16.2 16.8 19.9
4 – – – 11.9 10.7 11.7 14.8 16.1 20.1

N = 60 5 – – – – 8.1 10.7 14.1 15.8 18.7
6 – – – – – 10.9 14.7 16.5 19.6
7 – – – – – – 14.2 15.2 18.4
8 – – – – – – – 14.5 16.7
9 – – – – – – – – 15.1

the disconnected graphs which converged to fair division had connected com-
ponents with 5.54 agents per component, on average, whereas disconnected
graphs failing to converge to fair division had connected components with only
2.67 agents per component, on average.

This all makes sense, on reflection. Disconnected graphs effectively model
isolated populations that never come into contact. The only way such a model
can converge to everyone following fair division is if separate acts of mutation
move each isolated subpopulation to a state following fair division. If there
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Figure 5.28 A bounded-degree network that will be difficult to move to the state in
which everyone asks for half of the cake through mutation. Vertex labels indicate
the player’s strategy.

are many connected components, separate acts of mutation need to move each
connected component to a state of fair division. When the connected compo-
nents are of small size, there is a lower probability that one person inside the
connected component will mutate in a way that serves to move the connected
component to a state in which all share equally. These factors alone would slow
down the rate of convergence, but there are other factors at work.

Recall that, to avoid sampling bias, we are drawing initial population states
using randomly chosen distributions. That is, we first select a random prob-
ability distribution over all eleven strategies and then, using this probability
distribution, randomly assign strategies to individuals in the population. Many
initial strategy assignments to individuals belonging to disconnected social
networks will make convergence to fair division more difficult because not
only do mutations need to introduce the strategy of fair division into each
separate connected component, but also mutations will need to target specific
individuals.

Consider figure 5.28, which illustrates one network that will be difficult to
move to the state in which everyone asks for half of the cake via mutation. Of
the six connected components, only one has the strategy Demand 5 initially
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present. According to the learning rule of Imitate-the-Best, that entire connected
component will switch to asking for half of the cake in the next round.33 All
other connected components, though, will remain as they are because every
player earns a score of zero.

Now suppose that the players in the remaining components begin to exper-
iment with alternative strategies. Notice that four of these components feature
strategies compatible with Demand 5. The easiest way for fair division to take
over would be for individuals adjacent to these compatible strategies to mutate
into fair dividers. If that happened, imitative learning would cause the rest of
the component to switch to fair division within two iterations. Of course, since
we are placing no constraints on the kinds of novel strategies that may be in-
troduced into the population, it is possible for the agents following strategies
compatible with fair division to adopt strategies incompatible with fair division.
If that happens, we have a case like the last connected component in figure 5.28
(look for the cluster of three players following Demand 9, Demand 8, and
Demand 10). In that component, it isn’t enough for just a single player to adopt
the strategy of fair division: a new fair divider will still receive a score of 0.
(At least in this case the new mutant fair divider won’t be persuaded to stop
asking for half of the cake since all of his neighbors also earn a score of 0.)
Here, multiple mutations are required in order to convert the component to fair
division: one to introduce a fair divider, and a second to introduce a strategy
compatible with it.

In short, the more connected components there are, the harder it is to move
the entire population to fair division because – although fair division is likely
to be imitated – imitation works only within a single component. The smaller
a connected component is, the harder it is to get that connected component to
follow fair division because contagion effects are less likely to help with the
transition. In the limiting case of a single vertex not connected to any other
vertex, the only way to move to fair division is via mutation. In the next-
simplest case, that of two vertices connected by a single edge, nearly a fifth of
all possible initial conditions will require two independent mutations in order
to arrive at a state of fair division. When there are eleven possible strategies,
ranging from Demand 0 to Demand 10, five of the eleven are incompatible

33 The individual following Demand 5 will earn a score of 5 due to his one neighbor following
the compatible strategy of Demand 2. The individual following Demand 7 will receive a score
of 0 because his only neighbor follows the incompatible strategy of Demand 5, and the
individual following Demand 2 will earn a score of 2. The highest-scoring individual in the
update neighborhood of both the Demand 2 and the Demand 7 players is the Demand 5 player,
so they will adopt the strategy Demand 5 for the next round. The Demand 5 player will not
switch strategies because none of his update neighbors received a higher score.
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Figure 5.29 The results of 10 000 iterations for a thirty-person bounded-degree
network, with kmin = 2, kmax = 4, and µ = 0.05.

with fair division. Of the 121 possible assignments of strategies to two vertices,
25

121 ≈ 20.66 percent have strategies incompatible with Demand 5 assigned to
both vertices, necessitating two independent mutations in order to have that
component move to a state of fair division.

Once a bounded degree network has settled into a state of fair division, can
mutations move it to an unfair state? This is not possible on the lattice and,
for all practical purposes, is not possible on bounded-degree networks, either.
Figure 5.29 plots the distribution of strategies for a thirty-person bounded
degree network over 10 000 generations, with a mutation rate of 5 percent. Fair
division generally dominates, and only once (for a very brief period of time,
around generation 4000) is surpassed in frequency by the strategy Demand 4.

5.5 Dynamic networks

Fairness emerges with considerable frequency on a variety of social networks.
Yet all of these simulations assume that the underlying social network has been
specified ahead of time. If we allow the social structure to be generated over
time, is it still the case that fairness emerges as readily as before?

Figure 5.30 illustrates the beginning and end states of a dynamic network
consisting of fifteen individuals. The dynamics considered here is the basic
one-person interactions discussed in section 2.2.5; that is, each person selects
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(c) Interaction probabilities

Figure 5.30 A fifteen-person dynamic network playing divide-the-dollar.

one individual at random (using his personal probability vector) with whom
to play divide-the-dollar. Each player receives the appropriate payoff for their
choice of strategy and, at the end of each round of interaction, each player
updates his personal probability vector. In addition, the simulation shown in
figure 5.30 gives each person a 50 percent chance of revising his strategy using
Imitate-the-Best at the end of each round of play. If a player chooses to revise
his strategy, he selects another person from the population at random (again
using his personal probability vector), and compares his payoff with that of the
randomly selected individual.

What we see is that, after 1000 iterations, all individuals follow the strategy
of fair division. Figure 5.31 shows a time-series plot of the distribution of
strategies for each of the 1000 iterations. Within 200 iterations, fair division
obtains the upper hand in the population and eventually drives all competing
strategies to extinction shortly after 800 iterations.

This particular success of fair division depended on a number of factors. The
most obvious and important one is that fair division was initially represented in
the population. (Since we didn’t allow individuals to experiment with adopting



5.5 Dynamic networks 197

Table 5.8. Convergence patterns for a dynamic social network playing divide
the dollar (N = 15, updating of interaction probabilities occurred every

round, and the probability of strategic updating was 1
2 ). The total number of

simulations run was 10 000. Each simulation was run for 1000 iterations.

All Demand Total All Demand Total

1 3 6 325
2 22 7 1242
3 565 8 561
4 2517 9 146
5 3624 10 5
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Figure 5.31 A time-series plot of the number of individuals following each strat-
egy, for a basic fifteen-member dynamic network.

novel strategies, there would have been no way for fair division to dominate
had it not initially been represented.) But the most crucial nontrivial factor is
that the few fair dividers initially present were able to pair up with compatible
strategies early on. Had the fair dividers been unable to do so, they would have
switched to another strategy capable of generating positive payoffs.

In the absence of experimentation, it’s not uncommon for fair division to be
driven to extinction. As table 5.8 shows, in 10 000 simulations (each beginning
from a randomly selected distribution), fair division drove all other strategies
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to extinction only 36 percent of the time.34 However, since each model was
initialized using a randomly selected set of strategies,35 in many cases the
strategy of fair division wasn’t present in the initial population. If we look at
only those cases in which fair division was initially present, we find that, of the
5979 simulations which contained fair division among the original strategies,
3624 of them converged to the state in which everyone asks for half of the cake,
more than 60 percent of the time.

34 There were another fifty-one simulations in which fair division was present, but these cases are
highly anomalous insofar as they had only a single fair divider present when the simulation
was terminated. In these cases, the final population state consists entirely of strategies asking
for more than half of the cake, so no individual receives a payoff greater than 0. The reason
why such odd states evolved is that the initial distribution of strategies typically consisted of a
very small number of non-greedy strategies. The average number of individuals asking for less
than half of the cake was 3.5 and, of these, the most commonly followed strategy was to ask
for nothing! Consequently, the non-greedy individuals would very quickly be replaced by
greedy individuals, leaving the population frozen in a state in which everyone was squabbling
over cake and no one received anything.

35 A “stick-breaking” algorithm was used to choose an initial set of strategies for the population:
ten random numbers between 0 and 1 were selected and sorted into increasing numerical order.
This partitions the interval [0, 1] into eleven segments. If segments are numbered from 0 to 10,
beginning with the segment whose left endpoint is 0, the length of the ith segment can be
viewed as the probability of strategy i being present in the initial population. This algorithm
gives unbiased sampling from the space of all possible initial states of the population.
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Retribution

Symmetries are important in bargaining games. Symmetric games represent
situations in which every person at the negotiating table is essentially equal,
in the sense that each faces the same set of possible gains or losses. In other
words, the payoff I receive if I follow s and you follow s ′ is the same as the
payoff you would receive if I followed s ′ and you followed s.

Important as symmetric games are, many games played in real life are
asymmetric. On the African savannah, competition between impala and leop-
ards provides a striking example of a naturally occurring asymmetric game.
Leopards are carnivores, capable of running at speeds exceeding 60 miles an
hour. Impala, a type of African antelope, are herbivores and possess great leap-
ing abilities: long jumps exceeding 11 meters have been recorded, as well as
jumps of more than 3 meters in height. These differences in natural endow-
ments between the two species give rise to key asymmetries in the strategy sets
available to members of each species during an interaction. Leopards try to kill
and eat impala, but impala do not try to kill and eat leopards. The differences in
the individual strategy sets are reflected in the possible payoffs to each player:
impala face death if they choose the wrong strategy in an encounter, whereas
leopards merely face going hungry for a bit longer.

In the social world, many types of interaction are asymmetric. Our concep-
tion of property rights creates an asymmetry between buyers and sellers. The
strategy sets between the two players are not equal, and, if buyers and sellers
cannot agree on the final price of a good, our mutual belief in these property
rights dictates that, at the disagreement point, the seller keeps the good offered
for sale.

The best-known, and most widely studied, example of an asymmetric bar-
gaining game is the ultimatum game.1 In the ultimatum game, one player is

1 The related “dictator game” being a close second.

199
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assigned the role of ultimatum “proposer” and the second player the role of
ultimatum “receiver.” The proposer has an initial endowment of some good and
must offer a certain amount of the good to the receiver (this is the “ultimatum”).
The receiver may then either accept or reject the offer. If the offer is accepted,
the receiver gets the amount offered and the proposer gets the amount remain-
ing. If the offer is rejected, neither player receives anything. In the following,
I will often say that the proposer issues a “demand” to the ultimatum receiver.
Thinking of the interaction in terms of issuing a demand (“You must agree to
this amount, or no deal!”) fits in better with the name of the game. According to
this terminology, the demand is just the amount of the good that the ultimatum
proposer insists upon keeping for himself, and hence equals the original amount
of the good minus the proposed offer.

The situation modeled by the ultimatum game differs considerably from
that of divide-the-cake, as do the strategic considerations involved during de-
liberation. For sake of discussion, assume that player 1 received one dollar
and that offers are restricted to increments of one dime. The extended-form
representation of this game is shown in figure 6.1. In that diagram, the circles
represent choice points. The root node represents player 1’s choice and is the
start node for the game. Payoffs to each player are listed at the terminal nodes
of the tree, the first element in the ordered pair being the payoff to player 1,
the second the payoff to player 2. As the game tree indicates, a strategy for the
ultimatum game must consist of two parts: (1) a specification of what offers a
player will make when in the role of proposer and (2) a specification of what
offers a player will accept when in the role of receiver.

Many Nash equilibria exist in the ultimatum game. Any strategy pair in
which the ultimatum proposer offers i pieces to the other player and the re-
ceiver accepts offers of n− i pieces is a Nash equilibrium. However, in some
forms of the ultimatum game no strict Nash equilibria exist. To see this, note
that the structure of the game allows inessential changes to be made to a strat-
egy in ways that are not called into play. Consider the case in which the cake
divides into n pieces and we forbid purely altruistic behavior whereby a player
demands nothing and purely greedy behavior whereby a player demands every-
thing; in this case, the game has 2n−1 · (n− 1) possible strategies.2 Any Nash
equilibrium will consist of strategies that issue ultimatums of m pieces and ac-
cept offers of m pieces. However, there are 2n−2 strategies that issue ultimatums
of m pieces and accept offers of m pieces, all of which are indistinguishable in

2 There are n− 1 possible offers one may make as an ultimatum proposer. Considering the set of
the n− 1 possible offers, as the ultimatum receiver one can accept any subset of these offers
(including the empty set). Thus there are 2n−1 acceptance strategies.
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Figure 6.1 An extended-form representation of the ultimatum game with player 1
in the role of ultimatum proposer.

terms of their expected payoff in a population issuing ultimatums of m pieces;
a player may freely switch among any of these strategies without doing any
worse, which means that there are no strict Nash equilibria.3

Given that so many Nash equilibria exist for the ultimatum game, some
have suggested that perhaps the concept of a Nash equilibrium is not the right
solution concept for this game. Suppose that player 2 decides at the start that
she will accept only offers of 50 /c or more, rejecting all other offers out of
dislike of the unfair division (although she does not mind an unfair division

3 There are 2n−2 such strategies because, although they all accept offers of m pieces, they may
accept any combination of offers of 1, . . ., m− 1, m+ 1, . . ., n− 1 pieces, and there are 2n−2

such combinations.
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if it favors her). Now suppose that player 1 offers her only 30 /c. According
to player 2’s original strategy, she ought to reject this offer outright; however,
doing so will leave her worse off than she will be if she accepts the offer, even
though she may be unhappy over the division. The strategy which accepts only
offers of 50 /c does well when played against itself, but it requires one to commit
oneself to a course of action that, when the time comes to act on it, is not in the
best interest of the individual. Some strategies in the ultimatum game require
individuals to commit themselves to courses of action that would require them
to go against their explicit self-interest.

Attempts at providing appropriate refinements of the concept of a Nash
equilibrium have spawned a veritable cottage industry. Some have argued that
the appropriate solution concept for the ultimatum game is subgame perfection,
in which an equilibrium is subgame perfect if the strategies present in that
equilibrium are also in equilibrium when restricted to any subgame. Consider
the strategy which makes only fair offers (half of the cake) and accepts only fair
offers. Call this strategy “Fairman.” Although Fairman is in a Nash equilibrium
when paired with itself (no player can do better by changing her strategy), it
is not subgame perfect: if a Fairman’s hand trembles when slicing the cake,
causing him to offer slightly less than half of the cake to the other player, the
recipient will reject the offer, leaving both with a payoff of zero. It would have
been better for the recipient Fairman to accept the offer, even though it is less
than half of the cake, because then at least both would walk away from the
encounter with some payoff.

More generally, in a mixed population containing players of all strategies,
Fairman does not do as well as the strategy which makes a fair offer but accepts
any offer. (Call this strategy “Easy Rider.”) If one thinks a credible equilibrium
of a game must be subgame perfect, the number of credible equilibria is fewer
than the number of Nash equilibria. If players act to maximize expected utility,
proposers should demand the entire cake minus a very small amount (if the
cake is infinitely divisible), or should demand N − 1 pieces, if the cake has N

pieces. Receivers, on the other hand, should accept any nonzero offer.
The ultimatum game first began to receive serious attention in 1982 when

Güth, Schmittberger, and Schwarze found in a seminal experiment that, in many
cases, people failed to play subgame-perfect strategies. In the experiment by
Güth et al., graduate students in economics from the University of Cologne
were divided into two groups of equal size, with all players in the first subgroup
assigned the role of ultimatum proposer and all players in the second subgroup
assigned the role of ultimatum receiver. Subjects from the first group were
paired randomly with subjects from the second group and informed of the
random pairing, so no ultimatum proposer would have reason to believe he
knew the identity of his particular receiver.
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Ultimatum proposers were instructed to write their demands on a slip of
paper, which was then given to the receiver. After examining the ultimatum,
the receiver then wrote their response as to whether the offer was accepted.
Güth et al. found that demanding half was the most popular strategy, used one
third of the time with an acceptance rate of 100 percent. Greedy strategies
demanding more than 75 percent occurred only 24 percent of the time and had
an acceptance rate of 75 percent.

When the same subjects were brought back one week later for a repeat of the
experiment, ultimatum proposers tended to move closer to the subgame-perfect
strategy, with 43 percent making greedy demands. However, although proposers
tended to move towards subgame-perfection in their behavior, more receivers
tended to move away from subgame-perfection, choosing to reject greedy
offers. Overall, the total acceptance rate dropped to 56 percent. Summarizing
their results, Güth et al. concluded that “[S]ubjects often rely on what they
consider a fair or justified result . . . subjects do not hesitate to punish if their
opponent asks for ‘too much’ ” (Güth et al., 1982, p. 384).

This requires qualification, since a separate consistency check discovered
that subjects were generally willing to let their opponents “get away with”
more than they were willing to ask for (or so subjects claimed). After the two
trials, Güth et al. ran an experiment in which all subjects participated both
as ultimatum proposer and as ultimatum receiver. Subjects were first given
forms on which they indicated what their demand would be as ultimatum
proposer. Afterwards, a second form was distributed on which subjects wrote
what offer(s) they would accept as ultimatum receivers. Responses to the first
question were randomly paired with answers to the second question (allowing
for the possibility that a subject might play the ultimatum game with himself
or herself), and the ultimatum proposer paid the appropriate amount.

Although most subjects gave responses as ultimatum receivers consistent
with their demands as proposers, this did not hold in general. Five of the thirty-
seven subjects (13.5 percent) gave inconsistent responses.4 More surprising,
though, was the fact that nearly half (seventeen of thirty-seven) of the subjects
were willing to accept demands from another player that were greater than their
own. On average, such players would accept demands which were 1.20DM
more than what they themselves requested. The modal “leniency” for this set
of seventeen players was 0.50DM, but four players were willing to accept
demands that gave the proposer 2DM above what they requested. (One should
note that the total payoff to both players was 7DM, so some players were

4 A subject’s response when in the role of ultimatum receiver is said to be inconsistent with that
subject’s demand made as an ultimatum proposer if the subject would reject the demand he
makes. In table 6.1, the strategies S2, S3, S6, and S8 are inconsistent in this sense.
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quite lenient regarding the “greedy” demands they would accept from their
opponent.) Although players do reject proposals that they judge to give “too
much” to their opponent, some players have high thresholds for what they
consider to be “too much.”

The results of Güth et al. surprised many because players generally failed to
play the game-theoretic solution. If game theory did not capture the behavior
of individuals in the simple situation modeled by the ultimatum game, what
reason was there for thinking game-theoretic analyses of more-complex sit-
uations would be of any predictive value? With the predictive role of game
theory at stake, many subsequent experiments were performed in the attempt
to determine the relevant factors which influenced people’s behavior.

The story is too complicated to retell in detail here; see Thaler (1988), Roth
(1995), and Güth and Tietz (1990) for more comprehensive surveys. In short,
though, it turns out that there are many different ways in which societies have
learned to play the ultimatum game. In some, people tend to make and accept
moderately fair offers, as reported by Güth, Schmittberger, and Schwarze. In
others, people tend to make hyperfair offers (i.e., giving away more than half
of the cake) and these offers are subsequently rejected.5 If we just concentrate
on the behavior noted by Güth et al. in the original series of experiments – a
general tendency to make and accept fair offers – is it possible to provide an
evolutionary explanation?

Since many possible strategies in the ultimatum game have an odd structure
(for example, the strategy in which a person demands seven pieces of the
cake and accepts only offers of one, two, and five), we need to restrict our
discussion to a subset of the total set of possible strategies. One restricted
version considers the set of strategies listed in table 6.1. This version, which
I will call the ultimatum subgame to distinguish it from the case in which all
possible strategies are present, considers a select set of eight strategies. The four
named strategies are the most interesting, since only these have the coherence
expected of a rational agent.6 We include the other four strategies primarily to
allow all possible acceptance types into the population.

5 See Henrich et al. (2004). The proposed explanation for this behavior is that, in these societies,
the large offer would be interpreted as a gift and, by accepting the offer, the ultimatum receiver
would incur an obligation to return a similar gift in the future.

6 Imagine populations consisting of each of the eight possible strategies in table 6.1. The four
unnamed strategies have the irrational property that they do not accept their own demands,
meaning that in a world containing only that strategy all agents receive no utility during any
interaction. On the other hand, the four named strategies accept their own offers, so a world
consisting purely of those strategies will be one in which agents receive a certain amount of
utility after each interaction. Pure populations of the four strategies are Pareto-optimal since no
cake goes to waste during any interaction.
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Table 6.1. Common strategies for the ultimatum subgame

Role

Proposer Receiver

S1 (Gamesman) Demand 9 Accept all
S2 Demand 9 Reject all
S3 Demand 9 Accept 5, Reject 9
S4 (Mad Dog) Demand 9 Accept 9, Reject 5
S5 (Easy Rider) Demand 5 Accept all
S6 Demand 5 Reject all
S7 (Fairman) Demand 5 Accept 5, Reject 9
S8 Demand 5 Accept 9, Reject 5

There are several ways to model this bargaining situation in an evolutionary
context. One could divide the population into two different groups, the Pro-
posers and Receivers, such that agents belonging to the Proposer population
always assume the role of ultimatum proposer, and agents belonging to the
Receiver population always assume the role of ultimatum receiver. Another
alternative keeps the population as a single group, assuming instead that all
individuals are equally likely to be the ultimatum proposer or receiver, leaving
it to chance to decide who has what role. One can think of fate flipping a fair
coin to decide who has initial possession of the cake.

In what follows, I assume that the role a particular agent holds in an in-
teraction with another agent is determined randomly each time they interact.
Thus, a single agent may both propose and receive ultimatums in a single
generation and may give an ultimatum to a neighboring agent one generation
while receiving an ultimatum from the same neighbor later. This means that
both components of an individual’s strategy (i.e., what they shall demand when
in the role of ultimatum giver and what they will accept when in the role of
receiver) will typically be exercised each generation.

6.1 The replicator dynamics

In Evolution of the Social Contract, Brian Skyrms does not use the ultimatum
game to tell a story about the origin of norms of fairness, generosity, or retribu-
tion. Instead, he emphasizes that evolution need not respect modular rationality.
A strategy exhibits modular rationality if it specifies a rational choice (given the
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agent’s underlying preferences) at each possible choice point. In the ultimatum
game, if we assume that people want more cake rather than less, the strategies
of Fairman and Mad Dog are not modularly rational since they require the agent
to perform an action that gives her no cake when an alternative action, giving
her some cake, is also available.

In principle, there is no reason why we cannot interpret his replicator-
dynamics model of the ultimatum game along the same lines as we did the
replicator-dynamics model of the Nash bargaining game in the previous chapter.
Skyrms certainly thinks nothing prevents us from doing so, for he writes “Why
have norms of fairness not been eliminated by the process of evolution? . . . How
then could norms of fairness, of the kind observed in the ultimatum game, have
evolved?” (Skyrms, 1996). Is it possible for norms of fairness to evolve under
the replicator dynamics?

In the ultimatum subgame, there are eight possible strategies players might
follow. In a world where all strategies are equally likely, Fairmen become extinct
and a polymorphism containing roughly 87 percent Gamesmen and 13 percent
Mad Dogs results (Skyrms, 1996, p. 31). However, not every mixed population
leads to the extinction of Fairmen; in particular, a mixed state consisting of 30
percent Fairman and equal proportions of the remaining strategies evolves to a
state in which Gamesman, Mad Dog, and all other strategies except for Easy
Rider and Fairman are extinct. There are other plausible initial conditions that
converge to states in which norms of fairness dominate, such as the initial con-
dition given by the state vector 〈0.32, 0.02, 0.10, 0.02, 0.10, 0.02, 0.40, 0.02〉.

Although Skyrms does not broach the question of whether polymorphic
pitfalls exist for the ultimatum game, it is easy to see that they do, just as in
the Nash bargaining game. Figure 6.2 illustrates the simplex for the ultimatum
game when we restrict the possible strategies to Gamesman, Mad Dog, and
Fairman. The basin of attraction for a pure Fairman state fills only one quarter
of the phase space. Not only does the problem of polymorphic pitfalls exist for
the ultimatum game, but also it is worse than the problem encountered in the
Nash bargaining game.7

7 Some may think that the problem of polymorphic pitfalls is mitigated somewhat in the case of
the ultimatum game due to the fact that the outcome is efficient. In the Nash bargaining game,
the outcome is inefficient because, in a population containing a mix of Demand 4 and
Demand 6, there are times when two people following Demand 4 get paired to play the game,
which causes two pieces of cake to be wasted. In the cases considered here for the ultimatum
game, all of the resource gets distributed in the polymorphic pitfalls, so there is no waste.
Although this is so, there is still an explanatory problem in that the polymorphic pitfalls do not
represent the behavior we find in human populations. Fair division in the ultimatum game is the
modal offer, at least according to the results of Güth et al. (1982), but, in these
replicator-dynamics models, that outcome occurs too infrequently.
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Figure 6.2 Simplex diagrams for the ultimatum game.

If we run simulations in which the initial conditions are selected at random,
how often does the norm of fairness emerge? Out of 10 000 trials, a norm of
fairness emerged in only 15 percent of the cases. All other cases converged to
a state consisting solely of Gamesmen and Mad Dogs.8

Introducing correlation into the model will not eliminate the polymorphisms,
unlike in the Nash bargaining game. On account of the structure of the ulti-
matum game, the expected payoff for Gamesman interacting with Gamesman
(or Mad Dog) equals the expected payoff for Fairman interacting with Fairman
(or Easy Rider). Introducing correlation in the ultimatum game merely serves
to change the rate at which the population traverses an orbit in phase space.
In the limiting case of perfect correlation, when the correlation coefficient
ε equals 1.0, there will be some initial fluctuation in the frequencies as the
self-incompatible strategies S2, S3, S6, and S8 are eliminated. Once they are
absent, though, the strategy frequencies will remain frozen at their current val-
ues. Under perfect correlation, the expected payoffs for Gamesman, Mad Dog,
Fairman, and Easy Rider are equal. If we want to tell an evolutionary story for
how norms of fairness emerged in the ultimatum game, we will have to look
beyond the correlated replicator dynamics.

8 The simulations were done with Mathematica using the continuous replicator dynamics. Since
the continuous replicator dynamics never causes a strategy to become extinct in a finite amount
of time, if it originally has a presence in the population, the following rule was used for
determining when a simulation “converged” to a particular outcome: a solution to the set of
differential equations, given the initial conditions, was calculated numerically for the time
interval [0, 10 000]. If, at t = 10 000, a strategy’s representation in the population was less than
10−10, it was considered to be extinct.
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Strategy Color

Gamesman Demand 9, accept all

S2 Demand 9, accept nothing

S3 Demand 9, accept 5

Mad Dog Demand 9, accept 9

Easy Rider Demand 5, accept all

S6 Demand 5, accept nothing

Fairman Demand 5, accept 5

S8 Demand 5, accept 9

Figure 6.3 Color representation of strategies in the ultimatum game.

Figure 6.4 The ultimatum game played on a 200-person ring with Imitate-the-Best.

6.2 Lattice models

To begin, consider the ultimatum game played on a 200-person cycle, where
each agent interacts and learns from his immediate neighbors (one on the
left and one on the right) using Imitate-the-Best. Figure 6.4 illustrates the
evolutionary trajectory for one randomly initialized world, using the color
scheme indicated in figure 6.3.
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Regions occupied both by Easy Rider and by Fairman are perfectly static.
This makes sense, because, in the absence of strategies that make unfair offers,
both Easy Rider and Fairman are payoff-equivalent and so there is no reason
for the imitative dynamics to favor one over the other. However, it is also the
case that frontier competitions between Mad Dog and Fairman are static as
well. This seems peculiar, because Mad Dog rejects fair offers. Why does this
arrangement prove to be locally stable?

Consider what happens in the interaction between players at the boundary.
The scenario envisioned is the following:

· · · f2 f1 m1 m2 · · ·

where f1 and f2 follow the strategy Fairman and m1 and m2 follow the strategy
Mad Dog. (Also assume that all unlisted players to the left follow Fairman, and
all unlisted players to the right follow Mad Dog.) In the interaction between f1

and m1, it doesn’t really matter who is assigned the role of ultimatum proposer.
If it is f1, he makes a fair offer to m1, who rejects it. If it is m1, he makes an
unfair offer to f1, who rejects it. In either case, neither player receives anything
from the interaction. Consequently, the only payoff f1 receives is from his
interaction with f2 (and it does not matter who is assigned the role of proposer,
here), so f1’s total score will be 5. Likewise, the only nonzero payoff m1 will
receive is from his interaction with m2.

Suppose that m1 is assigned the role of ultimatum proposer in his interaction
with m2. In this case, m1 makes an unfair offer to m2, which is accepted, and
hence m1 receives a payoff of 9. Why doesn’t f1 adopt the strategy Mad Dog? He
won’t switch to Mad Dog because f2, who appears in f1’s update neighborhood,
receives a total score of 10 since f2 is surrounded by two Fairmen. This high-
scoring Fairman in the interior thus prevents the region of Mad Dog from
advancing, even though the Mad Dog player on the boundary earned a higher
score than did the Fairman on the boundary.

Now suppose, though, that m1 is assigned the role of ultimatum receiver
in his interaction with m2. In this case, m1 accepts the unfair offer from m2

and receives a paltry payoff of 1. Yet the region of Fairmen does not manage
to invade because, even though m1 earned a lower score than f1, the interior
Mad Dog player m2 received a payoff of 9 from his interaction with m1. In this
case, it is the high-scoring Mad Dog in the interior which prevents the boundary
from moving to the right.

If interaction and update neighborhoods are unequal, say with agents learn-
ing from their two nearest neighbors on the right and left, the story changes.
Whereas the maximum possible score for a Fairman who interacts with two
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Figure 6.5 Unequal interaction and update neighborhoods (interaction radius of
1, update radius of 2) destabilize the frontier competition between Fairman and
Mad Dog.

people is 10, the maximum possible score for a Mad Dog who interacts with two
people is 18.9 If the update neighborhood extends further than the interaction
neighborhood, Fairmen on or close to the boundary may see interior Mad Dogs
receiving payoffs greater than 10, and switch strategies. Figure 6.5 illustrates
this process.

Another point of interest concerns regions occupied both by Gamesman and
by Mad Dog. Although these two strategies are behaviorally indistinguishable
in the absence of other strategies,10 chance plays a big role in determining
how well any particular player does. If a Gamesman or Mad Dog is lucky and
assigned the role of proposer in the majority of his interactions, he can earn
a high enough score to cause others to imitate his strategy. This explains the
randomly shifting boundary between Gamesman and Mad Dog in figure 6.5.
Whether Gamesman or Mad Dog comes to dominate a region is entirely a
matter of chance.

Lastly, note that frontier competitions between regions of Fairmen and
Gamesmen lead to the eventual elimination of the strategy of Fairman. We’ve
seen that frontier competitions between Fairmen and Mad Dogs are stable.
Although Gamesmen are more lenient (they are willing to accept any offer
made), when a Gamesman accepts a fair offer this serves only to increase both
players’ scores by the same amount. How does this translate into an advantage
for Gamesman?

9 The Mad Dog may be assigned the role of ultimatum proposer in both interactions. If the
unfair offers are accepted, then the Mad Dog receives a payoff of 9 from each interaction.

10 Both make and accept unfair offers.
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Table 6.2. Random assignment of roles to players favors Gamesman in a
frontier competition against Fairman

f2 f1 g1 g2 g3

1. 10 5 → 0+ 1 → 9+ 1 → ?
2. 10 5 → 0+ 1 → 9+ 9 ← ?
3. 10 5 → 0+ 9 ← 1+ 1 → ?
4. 10 5 → 0+ 9 ← 1+ 9 ← ?
5. 10 10 ← 5+ 1 → 9+ 1 → ?
6. 10 10 ← 5+ 1 → 9+ 9 ← ?
7. 10 10 ← 5+ 9 ← 1+ 1 → ?
8. 10 10 ← 5+ 9 ← 1+ 9 ← ?

Consider table 6.2. The top of the table lists the names of five players,
two following Fairman and three following Gamesman. Although chance de-
termines who issues the ultimatum in the interaction between f1 and f2, this
makes no difference to the outcome: both players receive a payoff of 5 from
the interaction. This is not the case for the interactions between f1 and g1, g1

and g2, and g2 and g3. The eight rows of the table list all of the possible ways in
which the assignment of roles to these players may take place. For each relevant
pairwise interaction, an arrow points to the ultimatum proposer. Payoffs listed
for a player on a given row are written in the form l + r , where l denotes the
payoff received from the left interaction, and r the payoff received from the
right interaction. (The total payoff received, then, is simply the sum.)

The boundary Fairman, f1, will switch to becoming a Gamesman only when
g1 earns a payoff strictly greater than 10.11 This happens in rows 7 and 8, where
g1 earns a score of 14. So f1 will switch to Gamesman 25 percent of the time.

Why does g1 rarely switch to Fairman? (Take a close look at figure 6.4,
it does happen.) Rows 1, 2, 5, and 6 are the only cases in which g1 earns a
lower score than that of f1. In rows 1, 2, and 6, although g1 earns a lower
score than that of f1, g2 earns a strictly higher score than that of f1. When g1

goes to imitate the best, he thus continues to employ the Gamesman strategy.
Moreover, in the one remaining case – row 5 – player g2 earns a score equal
to that of f1, so, half of the time that the assignment of roles conforms to this

11 According to the rule of Imitate-the-Best, there would also be a chance of f1 switching to
Gamesman if f1 earned a score less than 10 and g1 earned a score of 10. When there occurs a
tie between maximally scoring players in an agent’s update neighborhood, a coin is flipped to
determine who is imitated. It just so happens that this cannot happen in this case.
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pattern, g1 will continue to employ the Gamesman strategy. In short, g1 will
switch to Fairman only 1

16 th of the time.
How often does a norm of fairness, or retribution, emerge? Let us take a

“norm of fairness” to mean that the majority population follows the strategy
of Easy Rider or Fairman. Likewise, take a “norm of retribution” to mean
that the majority follows the strategy of Fairman. The emergence of an unfair
norm corresponds to the majority of the population following the strategy of
Gamesman or Mad Dog.

With these definitions, figure 6.6 illustrates three problems for determining
the emergence of norms of fairness. First, we need to make precise what we
mean by “the majority” of the population following a certain strategy or com-
bination of strategies. Do we mean a simple majority, or some supermajority?
Second, once we’ve made precise the definition of convergence to a norm, it
need not happen within a short period of time. The model of figure 6.6 ran
for 1000 generations, keeping a mix of Gamesman, Mad Dog, Easy Rider,
and Fairman the entire time.12 Finally, given the role that chance plays, the
population might not ever converge to a norm, although the chance that this
will not happen if we run the model a very long time is small.

Yet, even so, one thing seems clear: interaction on the ring virtually pre-
cludes the emergence of norms of fairness or retribution. This becomes evident
from looking at the results of frontier competitions: a frontier competition
between Fairman and Mad Dog leads to a stalemate; A frontier competition
between Easy Rider and Mad Dog leads to the extinction of Easy Rider; a
frontier competition between Fairman and Gamesman almost always leads to
the extinction of Fairman; and one between Easy Rider and Gamesman almost
always leads to the extinction of Easy Rider.

Once a population falls into the state consisting only of the four named
strategies, the outcome is clear: the elimination of norms of fairness. How
likely is it that a randomly initialized model falls into a state conducive to the
elimination of fairness? Out of a series of 10 000 simulations, each started at a
random initial condition, not one failed to evolve to a state in which only the
four named strategies were present.

Does mutation help the emergence of a norm of fairness, as in the case of
divide-the-cake? As figure 6.7 shows, the answer is no. Although small groups
of Fairmen or Easy Riders can be inserted into the population, and may persist

12 Many people would consider 1000 generations to be an extremely short period of time.
However, if these are truly supposed to be interpreted as models of cultural evolution, then
1000 iterations of a strategy-revision process is rather a lot. How many times do you revise
your strategies in the course of a day, a week, or a month?
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Figure 6.6 The failure of a norm to emerge in the ultimatum game played on a
cycle (interaction radius and update radius of 1).

for a short period of time, they are eventually driven out. The only strategies
which persist in the long run are Gamesman and Mad Dog.

In two dimensions, the story is much the same. Figure 6.8 illustrates a typical
evolutionary trajectory for a randomly initialized world where people play the
ultimatum game with their neighbors, using the Moore (8) neighborhood both
for interaction and for updating. As before, within the first few generations the
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Figure 6.7 Mutations do not assist the emergence of fairness in the ultimatum
game (mutation rate of 1 percent, equal sizes of interaction and update neighbor-
hoods).

majority of the population has become Gamesman or Mad Dog, and, within
twelve generations, Fairman has become extinct.

In all of the lattice models considered so far, the initial assignment of
strategies has been selected from a random distribution over all eight strategies.
Assuming that a sizable number of agents will follow the strategies S2, S6,
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Figure 6.8 The success of Gamesman and Mad Dog over Fairman in a randomly
initialized world, with all strategies equally likely, under the Moore (8) neighbor-
hood.

S3, or S8 may strike one as implausible. The strategies S2 and S6 do not
accept any offers whatsoever, so agents following those strategies must prefer
receiving no cake to receiving any cake, at least when someone else issues
the ultimatum. One could tell a story to rationalize such behavior, but, by and
large, this sort of behavior would probably not occur very frequently. Similarly,
one would expect to find few agents following S3 or S8, since these refuse
to accept the very offers they make. What happens if we initialize the model
in a state in which strategies are distributed according to Skyrms’ “plausible
initial state” vector 〈0.32, 0.02, 0.1, 0.02, 0.1, 0.02, 0.4, 0.02〉? (Recall that,
under the replicator dynamics, this state leads to a final population containing
56.5 percent Fairmen and 43.5 percent Easy Riders.) As figure 6.9 shows, this
initial state, too, ultimately converges to Gamesman and Mad Dog.

As in the one-dimensional case, allowing mutations to occur does not sig-
nificantly change the short-term behavior of the model. For low mutation rates,
µ < 0.01, the population settles into the standard Gamesman–Mad Dog poly-
morphism about as rapidly as if no mutations were allowed. For higher mutation
rates, i.e., µ ≥ 0.01, this standard convergence pattern becomes increasingly
hidden behind mutational noise as µ increases. For µ = 0.1, one can clearly
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Figure 6.9 Domination by Gamesman in a world initialized from the plausible
initial state vector 〈0.32, 0.02, 0.1, 0.02, 0.1, 0.02, 0.4, 0.02〉.

see the population converging to the standard polymorphism behind the speckle
of mutations, but, by the time µ = 0.5, mutational noise completely obscures
the convergence pattern in the background.

One surprising fact about the ultimatum game, which runs counter to the
behavior of divide-the-cake, is that the state consisting purely of Fairmen (or
of Fairmen and Easy Riders) is extremely unstable in the presence of mutation.
The replicator dynamics allows stable Fairman–Easy Rider polymorphisms,13

provided that the amount of mutation allowed is sufficiently small. However,
on the lattice, the presence of any mutation whatsoever causes the system to
converge eventually to a Gamesman–Mad Dog polymorphism.

Figure 6.10 illustrates a typical evolutionary trajectory for a two-dimensional
lattice beginning in a state in which all follow the Fairman strategy. In a mixed
population containing only Fairmen and Easy Riders, the two strategies are
indistinguishable; hence, any Fairman who mutates into an Easy Rider will
remain since his score will be identical to that of his Fairman neighbors. Over
time, the number of Easy Riders steadily increases. Ultimately, a Fairman

13 See Skyrms (1996).
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Figure 6.10 The extinction of Fairman through the process of mutation.

who mutates into a Gamesman uses the presence of Easy Riders to establish
a foothold in the population and then proceed to drive all other strategies to
extinction. The particular run portrayed had a mutation rate of 0.001. Similar
behavior occurs for any reasonable value of µ, except that it takes much longer
for the critical mutation to occur if µ is small, and much less time if µ is large.

Intuitions about the evolution of populations playing the ultimatum game
shaped by the replicator dynamics would lead one to expect Gamesmen to be
able to infiltrate a population successfully only after a certain percentage have
become Easy Riders. After all, such must be the case (at least for the replicator
dynamics) if Fairman–Easy Rider polymorphisms are stable for certain muta-
tion rates. Yet such intuitions turn out to be misleading, as figure 6.11 shows.
In these four images, we see just how little the growth of a Gamesman cluster
in a Fairman population depends upon the presence of Easy Riders: only one
Easy Rider exists in the neighborhood of the Gamesman mutant whose strategy
spreads to his entire interaction neighborhood. Contrary to our expectations,
the most substantial growth occurs in regions consisting purely of Fairman.14

We have seen the phenomenon of Gamesman advancing into regions occu-
pied by Fairmen in the one-dimensional case. Figure 6.12 shows that the same
can happen in the two-dimensional case. If we initialize a world containing
only Fairmen, with a small cluster of Gamesmen positioned anywhere in the
world, then the Gamesman cluster may nevertheless spread to overtake the

14 Careful examination reveals that, in the fourth slide of figure 6.11, the upper-right
“Gamesman” seems to appear in a location inaccessible from the previous generation. First,
the “Gamesman” in question is not, in fact, a Gamesman, but an S2 agent (the limited color
palette available creates this confusion). Second, this S2 agent appeared by mutation, as did
several other transitory strategies in the other slides, so there is no problem with the model.
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Figure 6.11 Close inspection of Gamesman mutation.

Figure 6.12 A successful Gamesman invasion in a world containing no Easy
Riders (using the von Neumann neighborhood).

entire world. So Gamesman domination does not critically depend upon hav-
ing a minimal level of Easy Riders present. This raises the following question:
“What role does Easy Rider have in aiding Gamesman domination?”

In short, the answer is “a relatively minor one, less important than you
might think, but still essential.” The role played by Easy Rider in Gamesman
expansion is essential because an isolated Gamesman has probability 0 of
surviving indefinitely in a pure population of Fairmen. To see this, suppose
that a player G from an initially pure population of Fairmen mutates into a
Gamesman. Let m be the number of neighbors of G for whom he is assigned
the role of ultimatum proposer, and let N (G) denote the neighbors of G, with
|N (G)| standing for the number of neighbors of G.

Suppose, for the time being, that 0 < m. In this case, G’s score equals 5 ·
(|N (G)| −m). If m < |N (G)|, there exists a neighbor of G who did not receive
an ultimatum from G. Call this player F ∗. Then F ∗’s score is 5 · |N (F ∗)|,
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which, on the lattice, is greater than the score of G, so G will replace his
strategy by the Fairman strategy for the next generation. If m = |N (G)|, then
G receives a score of 0 since all offers he makes will be rejected. In this case,
G will replace his strategy in the next round by the Fairman strategy, since
none of his neighbors will have a score of 0. The only stable state arises when
m = 0, since in this case G issues no ultimatums and accepts all offers made
to him, so G’s score will equal 5 · |N (G)|. Only in this last case will G follow
the Gamesman strategy for more than one generation. Yet two points deserve
notice. First, in the last case G’s score equals that of his neighbors, so G does
not replace his Gamesman strategy at the end of the current generation, but he
does not spread his Gamesman strategy to surrounding cells, either. Second,
the probability of this last case occurring is 1/2|N (G)|, so the probability that G

will continue to follow the Gamesman strategy for n generations is 1/(2|N (G)|)n,
which converges to 0 as n→∞.

Now consider what happens when the population has a few Easy Riders
sprinkled throughout. If an isolated cell mutates into a Gamesman, nothing will
have changed from the above; but if a player G adjacent to an Easy Rider mutates
into a Gamesman, the story changes entirely. If G issues an ultimatum to the
Easy Rider and receives ultimatums from all his other neighbors, G’s score
equals 5 · (|N (G)| − 1)+ 9, which exceeds the score of all of his neighbors.
This means that all of G’s neighbors will adopt the Gamesman strategy in the
subsequent round, resulting in the rapid expansion seen between the first two
generations of figure 6.11. With no Easy Riders present, the best a Gamesman
mutant can do is hold her own, but the presence of even a single Easy Rider
makes it possible for a Gamesman to establish a significant presence within a
single generation.

Any Gamesman adjacent to a single Easy Rider has only a 1/2|N (G)| chance
of obtaining such a score because the assignment of roles must occur in exactly
the right way; but when the number and distribution of Easy Riders is such
that a single Gamesman mutant may be adjacent to several at once, the odds of
obtaining a score sufficient to spread the Gamesman strategy increase markedly.
For example, consider the situation in which the Gamesman mutant has two
Easy Rider neighbors. A sufficient condition for G to expand to occupy all
of N (G) is that G receives a score of 5 · |N (G)| + 1 or more (exceeding
the maximum Fairman–Easy Rider score of 5 · |N (G)|). There are exactly
|N (G)| + 1 ways in which this may happen: G may issue an ultimatum to
exactly one Easy Rider while receiving ultimatums from the Fairmen and the
remaining Easy Rider (two ways, each producing a score of 5(|N (G)| − 1)+
9); G may issue ultimatums to both Easy Riders while receiving ultimatums
from the Fairmen (one way, with a score of 5(|N(G)− 2| + 18); or G may issue
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ultimatums to both Easy Riders and one Fairman while receiving ultimatums
from the remaining Fairmen (|N (G)| − 2 ways, with a score of 5(|N (G)| −
3)+ 18). Any other possibility lowers G’s score below the critical amount
needed to spread the Gamesman strategy.

An isolated single Gamesman in a mixed population of Fairmen and
Easy Riders has only three possibilities – die out immediately, remain con-
fined to a single site, or expand to take over all of N (G). Since expansion
occurs only when the Gamesman earns a score greater than 5|N (G)|, we can
use this to calculate the probability that an isolated Gamesman will expand as
a function of the number of Easy Riders in N (G).

Let e and f be the numbers of Easy Riders and Fairmen in N (G), respec-
tively, let N = |N (G)|, and assume that G is isolated in a neighborhood contain-
ing only Easy Riders and Fairmen. Trivially, e + f = N . Let n be the number
of Easy Riders to which G issued ultimatums and m be the number of Fairmen
to which G issued ultimatums. Then G’s score is 5(N − (n+m))+ 9n. If G

is to expand, he must have a score exceeding 5N , so we have an upper bound
on the size of m:

5(N − (n+m))+ 9n > 5N

9n > 5(n+m)

4

5
n > m.

We know that n must be as least 1 in order for G to expand (since m is an
integer, possibly zero). Thus, the values of m that allow G to expand to fill
N (G) are all integers m such that 0 ≤ m and m < 4

5 n.
Let ��k�� denote the greatest integer less than k. Then the number of ways in

which the ultimatum game may be played between G and her neighbors such
that G expands to fill N (G) for the next generation is precisely
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To see this, fix 1 ≤ i ≤ e as the number of Easy Riders in N (G) to which
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Fairmen in
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for the appropriate j . By previous argument, the appropriate value of j is⌊⌊
4
5 i

⌋⌋
. Thus, G may issue ultimatums to i Easy Riders while receiving a score

greater than 5N in exactly

�� 4
5 i��∑

j=0

(
e

i

)(
f

j

)

ways. Summing over i gives the claim.
With only one Easy Rider in N (G), the ultimatum game permits the expan-

sion of G in exactly one way:

1∑
i=1

�� 4
5 i��∑

j=0

(
e

i

)(
f

j

)
=

(
1

1

)(
f

0

)
= 1.

Thus, the probability that an isolated mutant Gamesman adjacent to a single
Easy Rider will expand is 1/2|N (G)|, or 1

256 for the Moore (8) neighborhood.
However, with two Easy Riders, the number of ways in which the game may
be played favoring G markedly increases:
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= 2+ 1+ f.

For the Moore (8) neighborhood, the ultimatum game favors G nine times,
raising the probability of G expanding to 9

256 , nearly a tenfold increase.
Table 6.3 lists the probabilities that G will expand to fill all of N (G) for
various parameters.

Under the Moore (8) neighborhood, an isolated Gamesman surrounded by
three Easy Riders has a 14.45 percent chance of taking over all of N (G) in the
next round. Although this is a relatively low probability, when mutations occur
the population will soon collect enough Easy Riders to increase significantly
the frequency of Easy Rider–Gamesman interactions. If one or two such inter-
actions take place every generation, it will not be long before the Gamesman
takeover begins.

Once a block of Gamesman has appeared in a polymorphic Fairman–
Easy Rider population, it rapidly spreads to take over the entire population,
as previously noted. We now turn to the question of why the resident Fairman–
Easy Rider population seems virtually incapable of stopping the spread of the
greedy strategy once it has obtained a foothold in the population. We’ve already
analyzed this on the ring; it is more complicated in two dimensions.
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Table 6.3. The probability a Gamesman will expand as a function of e

von Neumann Moore (8) Moore (24)

e Pr(G) e Pr(G) e Pr(G) e Pr(G)

1 1
16 1 1

256 1 5.96× 10−8 13 0.42

2 5
16 2 9

256 2 1.49× 10−6 14 0.59

3 11
16 3 37

256 3 1.79× 10−5 15 0.74

4 15
16 4 93

256 4 1.39× 10−4 16 0.85

5 163
256 5 5.41× 10−4 17 0.93

6 219
256 6 1.70× 10−3 18 0.97

7 247
256 7 5.03× 10−3 19 0.991

8 255
256 8 0.014 20 0.998

9 0.036 21 0.999
10 0.081 22 ≈1
11 0.16 23 ≈1
12 0.28 24 ≈1

This phenomenon depends on two factors: the stochastic element present
in the ultimatum game (i.e., the assignment of roles to individuals) and the
constrained interactions between individuals. One concept we need to introduce
is the idea of the support of a player P . Define the support of a player P to
be all the players in his neighborhood who follow the same strategy. These
players “support” P in the sense that their presence reduces the chance that
P will change her strategy to a different one during the update phase. For
example, consider the extreme case in which the support of P equals P ’s entire
neighborhood. If P “changes” her strategy at all, she can adopt only a strategy
followed by one of her neighbors; but if her neighbors all follow exactly the
same strategy, P can only “change” her strategy to the one she currently follows,
which does not alter the state of the world.15

We can explain why Gamesmen dominates so readily if the following two
claims hold in a typical frontier competition between Gamesmen and Fairmen.

15 If this sounds like an implausible example, realize that this happens all the time inside a pure
population of Gamesmen. Individuals who, through unlucky coin flips, were assigned the
role of ultimatum receiver in all their interactions, will earn a score lower than those of all of
their opponents. Thus, in keeping with the imitate-the-best-neighbor update rule, these
unlucky souls will seek to change their strategy at the end of the current generation to
one that did better. Unfortunately, the only strategy they can choose is the Gamesman
strategy.
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1. Whenever a boundary Gamesman G earns a lower score than some
Fairman F in his update neighborhood, a member of G’s support usually
earns a higher score than F .

2. It is relatively likely that a boundary Gamesman earns a score greater than
that of any member of a boundary Fairman’s support.

Indeed, this was what we saw in the one-dimensional case. We thus face a
problem of calculating the probabilities that an agent will switch strategies at
the end of the current generation.

To begin, notice that there are three possible interpretations of what we mean
when we say “calculate the probability that an agent will switch strategies at
the end of the current generation.” If we just want the probability that an agent
will update her strategy using Imitate-the-Best, we merely need to determine
the probability that she earns a score lower than that of at least one of her
neighbors. However, we may want to know not just the probability that an
agent will update her strategy, but the probability that she adopts a strategy
different from the one she currently follows. This requires a different analysis:
we must calculate the probability that the agent in question earns a score strictly
less than all neighbors not belonging to her support. Finally, we may want to
know how likely it is that the agent may adopt a strategy different from the one
currently followed. This case requires that we determine the probability that
an agent earns a score less than that of at least one agent following a different
strategy. To make matters tricky, none of these three probabilities need be
the same, although, to be sure, we can state qualitative relationships among
them.

Let us now consider the first question: “How likely is it that a Fairman,
in a frontier competition, will earn a lower score than that of his immediate
Gamesman neighbor?” Answering this requires us to examine only the in-
teractions occurring between the Fairman and his immediate neighbors, and
the Gamesman and his immediate neighbors. If agents use the von Neumann
neighborhood for interacting and updating, the relevant interactions are those
shown in figure 6.13(a). (Figure 6.13(b) shows the interactions needed for an-
alyzing the Moore (8) neighborhood.) In both diagrams, agent G follows the
Gamesman strategy and agent F follows the Fairman strategy. The strategies
of neighboring agents are indicated by the label “g” or “f ,” depending on
whether they are Gamesmen or Fairmen. Dashed lines indicate interactions for
which the assignment of the role of ultimatum proposer does not really matter,
because it will not affect the payoff to the players involved. Edges are numbered
for later reference.
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Figure 6.13 Relevant interactions for determining probabilities for a two-person
subset of the spatialized ultimatum game.

For the von Neumann neighborhood, G may issue ultimatums to none,
some, or all of his Gamesman neighbors; at the same time, he might issue an
ultimatum to F . Although one does not know in advance whether G will or
will not be an ultimatum giver or receiver for any particular interaction in any
particular generation, if one is given an assignment of roles for each pairwise
interaction, one can calculate the scores that G and F would receive.16

First, some notation. Let 
r = 〈r1, . . ., rm〉 be a vector specifying role assign-
ments, using either 0 or 1. (It will often prove useful to vary the interpretation
of the 0 or 1 depending on which interaction we are talking about.) If n is an
integer, we will write n
r to mean the vector 〈nr1, . . ., nrm〉, multiplying each
component by n. For a vector 
v = 〈v1, . . ., vm〉, we define 
v + n, for an integer
n, to mean 〈v1 + n, . . ., vm + n〉. Finally, let |
v| =∑

i vi , the sum of all the
components of 
v.

For the von Neumann neighborhood, there are only four role assignments
we need to concern ourselves with. These are the edges labeled with a number
in figure 6.13(a). Given a role vector 
r = 〈r1, r2, r3, r4〉, we then know the
scores both for G and for F . Let us interpret r1 = 1 as meaning that F is the
ultimatum proposer for that interaction (with r1 = 0 meaning that G is the pro-
poser). For all other ri , we interpret ri = 1 as meaning that G is the ultimatum
proposer.

Given these conventions, the score of G equals 5r1 + |8〈r2, r3, r4〉 + 1|. The
score for F equals 5r1 + 15. Since there are only sixteen possible assignments

16 Notice that, for this case, we do not need explicitly to keep track of the roles held by F .
Interactions between Fairmen yield the same score to each regardless of who issued the
ultimatum, so we do not need to keep track of whether F issued or received ultimatums from
her three Fairman neighbors. The only interaction F has with someone who is not a Fairman is
with G. Thus, if we explicitly keep track of the roles G has, we implicitly know F ’s score.
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of roles, we can straightforwardly enumerate all of the possibilities:


r G F

〈0, 0, 0, 0〉 3 15
〈0, 0, 0, 1〉 11 15
〈0, 0, 1, 0〉 11 15
〈0, 0, 1, 1〉 19 15


r G F

〈0, 1, 0, 0〉 11 15
〈0, 1, 0, 1〉 19 15
〈0, 1, 1, 0〉 19 15
〈0, 1, 1, 1〉 27 15


r G F

〈1, 0, 0, 0〉 8 20
〈1, 0, 0, 1〉 16 20
〈1, 0, 1, 0〉 16 20
〈1, 0, 1, 1〉 24 20


r G F

〈1, 1, 0, 0〉 16 20
〈1, 1, 0, 1〉 24 20
〈1, 1, 1, 0〉 24 20
〈1, 1, 1, 1〉 32 20

Notice that G earns a lower score than F eight times, and F earns a lower
score than G eight times as well. If this were all there was to the story, each
strategy would be equally likely to replace the other. Explaining the advance
of Gamesman under the von Neumann neighborhood, as seen in figure 6.12,
thus requires that we consider the scores earned by the members of the update
neighborhood of G and F , as well.

The same type of analysis can be performed for the Moore (8) neighborhood.
Here, though, the role vector 
r has ten components. Let us adopt the convention
that a 1 for r2, r9, and r10 means that F was the proposer, a 1 for r1 means that
f1 was the proposer, and a 1 for r3 means that f2 was the proposer. For all other
components, a 1 indicates that G was the proposer. Given these conventions,
the score for G is |5〈r1, r2, r3〉| + |8〈r4, r5, r6, r7, r8〉 + 1|, and the score for F

is |5〈r2, r9, r10〉| + 25.
As before, one can go through and enumerate all of the possible assignments

of roles to players. Since there are 210 = 1024 possibilities, they cannot be listed
here like we did for the von Neumann case. However, it is easy to determine
computationally what the scores both for G and for F would be. It turns out
that G earns a lower score than F in exactly 512 of the 1024 cases, and F earns
a lower score than G in the remaining 512 cases.

Thus, explaining why Gamesmen are so successful in spreading into Fairman
territory requires that we consider scores earned by the update neighbors, as
well. A Gamesman in a frontier competition will be replaced by a Fairman
only if every neighbor in the Gamesman’s support has a lower score than that
of some Fairman in the Gamesman’s neighborhood (and that Fairman earned a
higher score than did the Gamesman). This raises the complexity of the situation
considerably, for the sample space increases exponentially with the number of
pairwise interactions.17 As the number of pairwise interactions increases, not
only does the number of possible score distributions grow, but so also does

17 Each pairwise interaction between agents A and B can proceed in two ways: A can issue the
ultimatum to B, or vice versa. For n independent pairwise interactions, the size of the sample
space is 2n.
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Figure 6.14 A complete interaction map for players in a frontier competition
between Gamesman and Fairman, using the von Neumann neighborhood.

the number of ways in which any one particular score distribution may be
obtained.

Consider the complete interaction map for a boundary Gamesman in a fron-
tier competition with Fairmen as indicated in figure 6.14. (It is the “complete”
interaction map because it lists all of the interactions both for a boundary
Gamesman and for all of his immediate neighbors.) There are thirteen edges
for which the assignment of roles matters for determining whether G will
change strategies. The number of possible assignments that need to be consid-
ered is 213 = 8192. It is straightforward to set interpretative conventions on the
components of a role vector, as above, for calculating scores. On performing
the same kind of analysis as earlier, but over a slightly larger space, we find the
following.

� Out of the 8192 possible assignments, 7779 lead to outcomes in which
either G has a higher score than F or at least one of g1, g2, and g3 has a
higher score than F . This prevents G from switching to Fairman.

� There are only 264 possible assignments of roles that may lead to G

adopting the strategy of Fairman. This happens when a tie between g2 and
F occurs. This happens when both g2 and F earn a score of 20, and G earns
a score of 8 or 16.
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Figure 6.15 A complete interaction map for players in a frontier competition
between Gamesman and Fairman, using the Moore (8) neighborhood.

� There are only 149 possible assignments of roles that lead to G adopting the
Fairman strategy, with certainty.

� There are 2560 different assignments that give G a score greater than 20,
thereby causing F to switch to the Gamesman strategy, with certainty, in the
following round.

To summarize, G has approximately a 1.8 percent chance of becoming a Fair-
man the following round, but F has a 31.25 percent chance of becoming a
Gamesman.

Thus we see how, for the von Neumann neighborhood, eventual Gamesman
domination of a population of Fairmen can be explained entirely in terms of the
support of each strategy. A boundary Gamesman seldom switches strategies to
become a Fairman because, typically, at least one of his Gamesman neighbors
earns a score greater than those of all of his Fairman neighbors, thus insuring
that he will continue to use the Gamesman strategy for the next round of play.
On the other hand, a boundary Fairman tends to switch strategies to become
a Gamesman because frequently (roughly a third of the time) her Fairman
neighbors do not earn scores high enough to beat out her Gamesman neighbor.

In principle, nothing prevents us from analyzing the case for the Moore (8)
neighborhood using the same method as for the von Neumann neighbor-
hood. (Figure 6.15 illustrates the complete interaction map for the Moore (8)
neighborhood.) In practice, though, because the number of edges that need to
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be considered increases from thirteen to thirty-nine, the size of the role space
becomes prohibitively large. Whereas a space of size 213 can be exhaustively
searched in mere fractions of a second on a computer, one of size 239 takes
much, much longer.

Instead, we can use random sampling to estimate the probabilities of G

switching to become a Fairman and of F switching to become a Gamesman.
Out of 100 000 000 randomly selected role assignments for the thirty-nine
edges, it turns out that F switches to become a Gamesmen 52.5 percent of
the time. In contrast, G switches to become a Fairman about 1.9 percent of the
time. The structure of social interactions on the lattice thus greatly favors the
spread of Gamesman.

6.3 Small-world networks

Consider a small-world network where the default underlying structure is that
of a simple cycle. Each player interacts with, and learns from, his fellow players
on the immediate left and right. Let pi and pj be two players connected by a
bridge edge, and suppose that no other bridge edge is incident on the players
pi+1, . . ., pj−1. How does this affect the evolutionary dynamics under Imitate-
the-Best?

Consider the network shown in figure 6.16. Suppose that p11 through p19

follow the Fairman strategy and that all other players follow Mad Dog. Players
p11 and p19 each interact with two Fairmen, receiving payoffs of 10, and one
Mad Dog, receiving payoffs of zero. The Mad Dog does not receive anything
from his reaction with his Fairman neighbor, and will receive either 1 or 9 from
the interaction with his Mad Dog neighbor, depending on the outcome of the
coin toss.

Let’s fix the discussion on p10. If he wins the coin toss and issues a proposal
to p9, it turns out that p10 is more likely to become a Fairman than would be the
case if he lost the coin toss to p9. When p10 issues the ultimatum, he receives a
payoff of 9, and p9 receives a payoff of 1. Because p10’s score of 9 is less than
that of his neighboring Fairman p11, whether he switches depends entirely on
how well p9, his Mad Dog neighbor, does. If p9 loses the coin toss with p8, then
p9 earns a total score of 2, and consequently p10 will become a Fairman with
certainty. This happens half the time. However, if p9 wins the coin toss with
p8, then p9’s score is 10. This score equals that of p11, so when p10 updates
strategies he picks a strategy at random by tossing a fair coin. This happens
half the time that p9 wins the coin toss with p8. Thus, the total probability that
p10 becomes a Fairman is 3

4 .
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Figure 6.16 A minimal small-world network.

However, if p10 loses the coin toss with p9, this means that p9 receives a
payoff of 9 from the interaction. When p9 interacts with p8, half the time he
earns a score of 18 (when he wins the coin toss) and half the time he earns a
score of 10, tying with p11. The only time p10 switches to become a Fairman,
when he loses the coin toss with p9, is when p9 also loses his coin toss with p8,
and then p10 chooses to imitate p11 instead of p9. Thus, the total probability
that p10 becomes a Fairman is 1

4 .
At some point, though, p10 will become a Fairman. Once this happens,

he will never switch back to Mad Dog. Then p11 will have three neighbors
following Fairman and receive a total payoff of 15. This exceeds any possible
payoff that p9 might receive when interacting with one Mad Dog and one
Fairman. Hence, p10 will never switch back to Mad Dog. Yet this is the furthest
that Fairman will advance, for from this point on the local dynamics follows
the pattern identified for a one-dimensional lattice.

What happens if p11, . . ., p19 are Fairmen but everyone else is a Gamesman?
If p11 issues an ultimatum to p10, the offer is accepted and both receive 5 from
the interaction. However, p10’s maximum score is 14, which occurs when p10

issues an ultimatum to p9. This, though, is less than the score of 15 that p11
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receives (recall that p12 and p19 are both Fairmen), so the region of Fairmen is
protected from the advance of Gamesmen.

If p10 issues an ultimatum to p11, the offer is rejected and both receive
nothing. The maximum score for p10, in this case, is 9, which occurs when
he issues an ultimatum to p9. However, because p11 has two other Fairmen
neighbors, p11 receives a total score of 10 and thus will not switch strategies.

Suppose, though, that in the original scenario we change p11 from following
the strategy of Fairman to Easy Rider. If p11 issues an ultimatum to p10, nothing
changes from the previously examined case when p11 was a Fairman. However,
if p10 issues an ultimatum to p11, the outcome changes significantly. The unfair
offer is accepted, giving p11 a payoff of 1 and p10 a payoff of 9. Now, p11’s
total score will be 11 (because p12 and p19 are both Fairmen) and the maximum
score of all of p11’s Fairmen neighbors is 15 (which is earned when p19 issues
an ultimatum to p20). This makes the region susceptible to invasion: if p10

issues an ultimatum to p9, he earns a total score of 18. In this case, p11 will
switch to become a Gamesman.

Now that the hub is occupied by a Gamesman, what happens next? There
are several possible outcomes, depending on the outcomes of coin flips that
assign roles to players. Rather than enumerate them all, let us just consider a
couple of cases.

First, it is possible for p11 to switch to being a Fairman. Suppose that p11

issues ultimatums to everyone he interacts with. Then his total score is 9, since
p10 accepts the unfair offer but all other players reject the offer. Also suppose
that p19 issues an ultimatum to p20, a Gamesman. Because p19 has another
Fairman neighbor, he will earn a total score of 10. Finally, suppose that p10

receives an ultimatum from p9. Then p11 earns a score less than p19, and p19

also happens to earn a score greater than the scores of every other player in p11’s
update neighborhood – so p11 will switch to being a Fairman. If this happens,
the region of Fairmen demarcated by the bridge edge will be protected from
invasion.

Second, it is also possible for p11 to switch to being a Fairman while the
other player incident on the bridge edge, p19, switches to become a Gamesman.
What needs to happen for this to occur is the following: first, p20 must issue
an ultimatum to p1 and receive an ultimatum from p19. This gives p20 a total
score of 14. Second, p11 needs to issue an ultimatum to p19, which is rejected.
(Remember that we are assuming that players p12, . . ., p19 are Fairmen.) This
suffices for getting p19 to imitate p20’s strategy during the update phase.

Finally, given the right combination of chance assignments of roles to play-
ers, it is possible for p11 to spread his Gamesman strategy to the other two
players he is connected to, taking control of both nodes connected by the
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bridge edge. This occurs when he receives ultimatums from his two Fairman
neighbors, and issues an ultimatum to his one Gamesman neighbor. His result-
ing score is 19, which exceeds the score of 12 earned by p12 and the maximum
possible score of 15 for p19. The spread of Gamesman to such an extent re-
moves all protection to the Fairman region conferred by the bridge edge, and
eventually results in its elimination.

A small-world network built on top of a cycle thus provides greater protec-
tion for the survival of fair behavior than occurs on the lattice – if fair behavior
manages to obtain control of a region protected by a bridge edge. However,
if individuals can experiment with novel strategies, or make mistakes, then
ultimately we will see the population arrive at a state in which a polymorphic
mix of Gamesman and Mad Dog dominates. It may take considerably longer
for such a state to occur, compared with what occurs on the lattice, because
the spread of Gamesman into regions of Fairmen requires the advantageous
positioning of an Easy Rider at one end of a bridge edge.18 Social structure
provides some protection for fairness, in this case, but still not enough.

6.4 Bounded-degree networks

Table 6.4(a) tabulates the results for a series of simulations in which the ultima-
tum game was played on bounded-degree networks. The underlying network
contained fifty individuals, each of whom updated strategies using Imitate-the-
Best. For each simulation, a completely random assignment of strategies was
initially used, as well as a randomly generated network conforming to the indi-
cated parameters. One thousand simulations were run for each of the specified
values of kmin and kmax.

As on the lattice and for small-world networks, strategies that both make
and accept fair offers have a rough time of it. The greedy Gamesman–Mad Dog
polymorphism comes to dominate the population more than 70 percent of the
time in almost all cases (the few exceptions occur in bounded-degree networks
with relatively few edges). Polymorphisms of Fairman and Easy Rider dominate
much less frequently, with the range typically being between 10 and 20 percent
of the time. Even so, the random structure proves more conducive to the
evolution of fair offers than is the case on one- and two-dimensional lattices.
On one-dimensional lattices, fair offers were, at best, confined to relatively

18 In contrast to the normal one- and two-dimensional lattices, which simply required the creation
of a cluster of Gamesmen somewhere in the population.
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small regions of the lattice. In two dimensions, strategies making fair offers
never came to dominate the population.

What if people experiment with new strategies? As table 6.4(b) illustrates,
this only makes matters worse. With an experimentation rate of 2 percent, mean-
ing that a single mutant appears every generation, on average, the frequency
with which the Gamesman–Mad Dog polymorphism comes to dominate in-
creases significantly, ranging from a minimum of 69 percent (when kmin = 2
and kmax = 3) to a maximum of 91 percent (when kmin = 9 and kmax = 10).
The behavior of making fair offers evolves more frequently than it does on the
lattice, but still not often enough to explain the widespread tendency to make
fair offers found by Güth, Schmittberger, and Schwarze.

6.5 Dynamic social networks

Let us begin by considering a population of fifteen individuals using a very
simple type of dynamic social network: each player updates his vector of inter-
action probabilities at the end of each generation, no strategic revision ever takes
place, and the past is discounted at a rate of 1 percent. In this framework, popu-
lations initialized containing a random mix of Gamesman, Mad Dog, Fairman,
and Easy Rider evolve to develop the kind of social structure one would expect:
Fairmen learn to interact only with other Fairmen and Easy Riders. Gamesmen
learn to interact with Gamesmen, Mad Dogs, or Easy Riders. Easy Riders learn
to interact with Fairmen, Easy Riders, or Gamesmen. Mad Dogs associate ex-
clusively with Gamesmen or other Mad Dogs. This makes sense: these pairings
are the only ones among the four named strategies which confer nonzero pay-
offs. Figure 6.17 illustrates the state of one population after 30 000 iterations.

Now suppose that we add strategic updating to the mix. In particular, suppose
that each player revises his strategy 1 percent of the time using Imitate-the-
Best. We keep the discount rate at 1 percent, and assign the initial state of the
population using a random distribution over all eight strategies. Out of a series
of 1000 simulations, in which each simulation was run for 20 000 generations,
we find convergence to the Gamesman–Mad Dog polymorphism in 266 cases,
and convergence to the Fairman–Easy Rider polymorphism in 346 cases!

Nonstandard polymorphisms containing a mix of the named fair and unfair
strategies occur as well. (The remaining 388 cases are of this type.) Of these
388 cases, Fairman and Easy Rider are followed by seven or more individuals
more than 62 percent of the time. In these mixed polymorphisms, the other
players follow either Gamesman or Mad Dog; the strategies S2, S3, S6, and S8
do not appear at all.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 0 0 0 0 0.488 0 0.511 0 0 0 0 0 0
2 0 0 0.453 0 0 0 0 0 0.546 0 0 0 0 0 0
3 0 0.415 0 0 0 0 0 0 0 0 0 0 0 0.584 0
4 0 0 0 0 0.241 0.758 0 0 0 0 0 0 0 0 0
5 0 0 0 0.245 0 0 0 0 0 0 0 0.754 0 0 0
6 0 0 0 0.313 0 0 0.686 0 0 0 0 0 0 0 0
7 0.413 0 0 0 0 0.586 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0.199 0 0.800 0
9 0.480 0.519 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 1. 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.
12 0 0 0 0 0.819 0 0 0.180 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 1. 0 0 0 0 0
14 0 0 0.643 0 0 0 0 0.356 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 1. 0 0 0 0

Figure 6.17 The ultimatum game played on a dynamic social network after 30 000
iterations. The discount rate was 1 percent, and no strategic updating was per-
formed. (The interaction probabilities were truncated at three decimal places,
which explains any cases that fail to sum to 1.)

Since none of the final states contain any strategy other than Gamesman,
Mad Dog, Fairman, or Easy Rider, what happens if the population starts in
a state containing some mix of these four? Out of 1000 simulations, 175
converged to the Gamesman–Mad Dog polymorphism and 320 converged to
the Fairman–Easy Rider polymorphism. Populations favoring fair offers, then,
evolve considerably more often than do populations favoring unfair offers when
beginning from initial conditions containing only the named strategies.

Moreover, of the 175 which converged to the Gamesman–Mad Dog outcome,
most started out with relatively few individuals making fair offers. In these
cases, the mean number of Fairmen or Easy Riders initially present was only 3.2.
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Of the 825 simulations which did not converge to an unfair polymorphism, in
542 the total number of individuals following Fairmen or Easy Rider increased
over the time the simulation was run. Only in 79 simulations did the total
number of Fairmen or Easy Riders decrease without convergence to a complete
Gamesman–Mad Dog polymorphism.

Recall our explanatory target: the first significant experimental work on
the ultimatum game found that the modal offer for the ultimatum game was
half of the cake, which was used approximately a third of the time. “Greedy”
offers, by which I mean offers that attempted to keep more than 75 percent
of the cake for the ultimatum proposer, were used approximately 25 percent
of the time. Do the evolutionary models considered provide a possible expla-
nation of this phenomenon? Unlike the results obtained in previous chapters,
where local interaction models tended to favor the emergence of cooperation,
trust, and fairness in a relatively straightforward way, here the answer is more
complex.

Certain social structures prove extremely hostile towards the evolution of fair
offers. The clearest examples of such hostile structures that we’ve considered
are one- and two-dimensional lattices. Here, strategies that make unfair offers
(yet play well with themselves) flourish at the expense of those strategies which
offer half the cake. If the underlying social structure is that of bounded-degree
networks, though, these structures tend to be more conducive to the evolution of
fair offers. Nevertheless, even bounded-degree networks result in strategies that
make fair offers dominating the population less frequently than was reported
by Güth et al. (1982) for their experiment.

The story improves somewhat when we turn our attention to dynamic so-
cial networks. With a modest discount rate, infrequent imitative learning, and
beginning from states containing a random distribution of all eight strate-
gies, those which offer half of the cake came to dominate the population
roughly a third of the time. Unfair polymorphisms came to dominate the pop-
ulation roughly 27 percent of the time. This, at least, places us within the right
ballpark.

Nevertheless, several caveats should be attached to this possible explanation.
First, some would argue that the Güth et al. (1982) data are not the right object
to try to explain. Binmore et al. (1985, 1988) argued that the reported preference
for “fair” offers appears as an artifact of Güth’s experimental structure. If people
have sufficient opportunity to play the game, and come to appreciate its strategic
structure, then, claimed Binmore et al., they will eventually move towards the
subgame-perfect solution. Indeed, Güth’s data provide some support for this,
since people did tend to behave more like Gamesmen when they returned to
play the ultimatum game a second time after a break.
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If the Güth data are not the right explanatory target, though, neither is the
subgame-perfect solution. Experimental work has shown (see Henrich et al.,
2004) that the types of behavior which exist in the ultimatum game are much
more variegated than always making fair offers or always making greedy offers.
Since the task of providing evolutionary explanations has to start somewhere,
why not start with the Güth data? Since we have some signs of being able to
tell an evolutionary story for that data using dynamic social networks, we have
some reason to believe that it may be possible to explain the other data using
an evolutionary model. An important question for future work is that of how
far the explanatory project sketched in this chapter can be extended to account
for other varieties of behavior in the ultimatum game.

A second caveat concerns the definition of “convergence.” In section 6.5,
when I say that a particular strategy or polymorphic pair of strategies has
“come to dominate” the population, what I mean is that the entire population
has evolved to follow that strategy or pair of strategies. For one type of dy-
namic social network, this definition stands in pretty good agreement with the
frequency of use of fair or unfair offers in the Güth experiments.

However, there are other ways of measuring convergence. For example, we
might, instead, use how frequently a particular strategy appears in the final
state of the simulation, aggregated over all conducted trials. Each of the 1000
simulations conducted, for a given set of parameters, produced a particular
set of strategies used by the fifteen players in the last generation. We can then
tabulate the proportion of people following Gamesman or Mad Dog (or Fairman
or Easy Rider) out of the 15 000 final strategies. Evaluating convergence in this
way, we find that simulation 2, with a discount rate of 1 percent, a rate of
strategy updating of 1 percent, and initial conditions randomly selected from
all eight possible strategies, had the following convergence patterns: Gamesman
was used 27 percent of the time, Mad Dog 16 percent of the time, Easy Rider
35 percent of the time, and Fairman 19 percent of the time.19 When we evaluate
convergence in this way, the simulation results don’t look quite so good.

Finally, a third caveat depends on the fact that the evolutionary outcomes
reported here for the ultimatum game depend crucially on the formal model
used. Page, Nowak, and Sigmund (2000) developed a rather different evolu-
tionary model and found that, on the two-dimensional lattice, “evolution leads
to strategies which show some degree of fairness.” In their model, strategies
consist of an offer amount, p, and an acceptance threshold, q. An ultimatum
receiver will accept any offer that leaves him with more than his acceptance

19 Failure to sum to 1 due to rounding.
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threshold. A second point of difference lies in the propagation of strategies.
Strategies spread on the basis of probabilities derived from how successful they
were.20 Fair, or modestly fair, strategies do better on the lattice under this for-
malization of the ultimatum game than they do if we formalize the bargaining
problem using the ultimatum subgame.

Accounting for the variety of behaviors found in the ultimatum game will, I
suspect, ultimately require the use of formal models of greater complexity than
those I’ve discussed here. Nevertheless, it is notable how well the simulation
data for dynamic social networks accord with the results found by Güth et al.
(1982). More work obviously needs to be done, but the preliminary results
found here should make one hopeful of ultimately being able to provide an
evolutionary explanation.

20 This is not quite the same as Imitate with Probability Proportional to Success. In the Page
et al. model, each site in the lattice is considered to generate a certain number of offspring.
These offspring then compete with their neighbors to occupy a particular site. The probability
that a site s will be occupied by a strategy of type t is equal to the number of offspring of type t

at s and its neighboring sites (the Moore (8) neighborhood), divided by the total number of
offspring produced by s and its neighboring sites.
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Multiplayer games

Hume motivates his account of the emergence of conventions with a famous
example.“Two men,” he writes, “who pull at the oars of a boat, do it by an
agreement or convention, tho’ they have never given promises to each other.”1

Hume’s problem can be modeled as a simple two-player game in which each
person has a choice of two strategies: Pull or Slack. One can then examine how
likely it is that the mutually beneficial outcome of Both Pull emerges. Hume
doesn’t provide us with specific values for Pulling or Slacking, so, if we want
to model this problem using game theory, we have to go beyond what Hume
tells us and supplement his account with particular payoff values.

It seems clear that Both Pull is the best outcome for each player. The worst
outcome occurs when I Pull and you Slack, because then the boat doesn’t move
and my effort is wasted. Unless we are both sadists who receive pleasure by
forcing the other individual to work hard for no reason, there’s no reason why
the payoff I receive by Slacking when you Pull should be any different from the
payoff I receive when we Both Slack, and vice versa. In this case, the ordinal
values for the payoff matrix would be

You

Pull Slack

Me
Pull (1, 1) (3, 2)

Slack (2, 3) (2, 2)

The problem faced by Hume’s boatmen is a Stag Hunt, which we examined at
length in chapter 4.

Hume may have been content to consider the problem of cooperation in a
two-man boat, but Erik the Red would have had no truck with such a simple

1 A Treatise of Human Nature, Book III, Part II, Section II, p. 490.
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problem. The typical Viking drakkar, or longship, had between twenty and
thirty oarsmen, and the largest known drakkar required sixty. The strategic
difference between these two situations is noteworthy. In the two-person case,
my participation is a necessary condition for the boat moving. If I don’t row,
we won’t move. However, in the many-person case, my participation ceases
to be a necessary condition of the boat moving, provided that not everyone
need row in order to move the boat. Given this, how likely is it that all the
oarsmen will settle upon All Pull (or Enough Pull) in the absence of an explicit
agreement?

The strategic difference between the boatmen problems faced by Hume and
Erik the Red generalizes. We have seen how interaction in structured environ-
ments can, in many cases, promote the emergence of cooperative, trusting, and
fair behavior. Yet all the games considered thus far are simple two-player games
like the one considered by Hume. What happens when we consider multiplayer
variants of the prisoner’s dilemma, the Stag Hunt, and divide-the-cake in struc-
tured environments? What complications does moving from the two-player
case to the many-player case pose for the emergence of moral behavior?

7.1 Multiplayer local-interaction models

One complexity arising in the move from two-player games to multiplayer
games is the question of how to formulate a local-interaction model of a
multiplayer game. We will consider two different forms, one extending the
framework of local-interaction models developed so far, and a second based on
spatial proximity. These two forms by no means exhaust the possibilities for
multiplayer local-interaction models, but they are a natural place to begin.

The extension proceeds as follows: given a graph G, such as the one ap-
pearing in figure 7.1, consider the group defined by the set of all individuals
connected to some player j by an edge, together with player j herself. Call
this the group associated with j .2 So, for example, in figure 7.1 the group
associated with player 13 consists of players 8, 12, 13, 14, and 18. The group
associated with player 5, on the other hand, consists solely of players 4, 5, and
10. Whether all groups have the same number of players thus depends on the
actual structure of the graph.

Given these induced group definitions, game play proceeds in the following
way: each group plays the associated multiplayer game (synchronously), with

2 Note that this is not the same thing as the neighborhood of player j . The neighborhood of a
player, whether it be the interaction or update neighborhood, never includes that player.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25
1→ { 1, 2, 6 }
2→ { 1, 2, 3, 7 }
3→ { 2, 3, 4, 8 }
4→ { 3, 4, 5, 9 }
5→ { 4, 5, 10 }
6→ { 1, 6, 7, 11 }
7→ { 2, 6, 7, 8, 12 }
8→ { 3, 7, 8, 9, 13 }
9→ { 4, 8, 9, 10, 14 }
10→ { 5, 9, 10, 15 }
11→ { 6, 11, 12, 16 }
12→ { 7, 11, 12, 13, 17 }
13→ { 8, 12, 13, 14, 18 }
14→ { 9, 13, 14, 15, 19 }
15→ { 10, 14, 15, 20 }
16→ { 11, 16, 17, 21 }
17→ { 12, 16, 17, 18, 22 }
18→ { 13, 17, 18, 19, 23 }
19→ { 14, 18, 19, 20, 24 }
20→ { 15, 19, 20, 25 }
21→ { 16, 21, 22 }
22→ { 17, 21, 22, 23 }
23→ { 18, 22, 23, 24 }
24→ { 19, 23, 24, 25 }
25→ { 20, 24, 25 }

Figure 7.1 A basic von Neumann graph G and the induced groups.

each player receiving a score equal to the sum of the individual payoffs for each
multiplayer game he participates in. Notice that, when a player has a large group
associated with them, that player will be likely to receive a score higher than
those of players with smaller associated groups. Why? A player j has a large
associated group when j is connected to a number of players p1, p2, . . ., pn

via edges. Not only will j receive a payoff from the single game he plays with
p1, p2, . . ., pn, but also j will receive a payoff from the group associated with
p1, the group associated with p2, and so on.

Once the interaction phase has finished, each individual modifies his strat-
egy using a learning rule applied to his update neighborhood. (As before, the
learning rule used by a player remains fixed throughout.) The update neighbor-
hood for a player is defined, as before, using another graph, which may include
individuals with whom he does not play a game.

Note that, when individuals update strategies via imitative learning, this
introduces a natural bias towards the strategies used by people in larger groups.
While one might wish to avoid incorporating such a bias, doing so would
require excluding many natural learning rules. Imitate-the-Best would have to
be omitted, as would Imitiate Proportional to Success. Even the learning rule
which chooses a new strategy on the basis of the average payoff received by
all members in a player’s update neighborhood who use that strategy suffers
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Figure 7.2 A proximity model of local interactions.

from such a bias. Such a bias seems difficult to avoid without concentrating
overmuch on artificial learning rules; hence, no further worry about such bias
will appear below.

The second model to consider for multiplayer games is a spatial-proximity
model. In this model, each player j is located at a particular position (xj , yj ) in
the plane. Each player also has an interaction radius ρj , which can be thought
of as how far away j is willing to travel in order to gather his neighbors together
in order to play a game. The group associated with j , in this case, corresponds
to all individuals located within the circle having center (xj , yj ) and radius
ρj . Figure 7.2 illustrates the interaction radius (highlighted in black) for the
light-colored individual in the middle, with all members belonging to the group
colored black.

In the proximity model, each group, as before, plays a multiplayer game with
each individual receiving a score equal to the sum of the individual payoffs
for each game he participates in. After each round of interaction, each player
engages in strategic learning by applying a learning rule to all the individuals
falling within his update neighborhood. The update neighborhood for a player j

is determined by an update radius ρ ′j , which need not equal the interaction
radius.
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(a) Promixity model as a graph-based
local-interaction model

(b) Proximity model with forty interaction
radii included

Figure 7.3 How a proximity-based local-interaction model can be viewed as a
graph-based local-interaction model.

Thus far, nothing differentiates the proximity model from the graph-
based local-interaction models: every proximity model corresponds to a
local-interaction model given the right sort of underlying graph (see figure 7.3).
What does differentiate the proximity model from a local-interaction model is
that, at the end of each update phase, each individual migrates to a new spatial
position, with the membership of their interaction and update neighborhoods
changing accordingly. The method of migration is simply a random walk: each
player moves to a new point selected at random within the unit square centered
upon his current position. The cumulative effect of individual migration thus
tends to make groups transient entities.

7.2 Cooperation

The key strategic feature of the two-player prisoner’s dilemma is the following:
the best collective result obtains when both you and I Cooperate and, no matter
what you do, it is always in my interest to Defect. The multiplayer prisoner’s
dilemma has the same basic form, the key difference being that, instead of my
payoff depending solely upon your strategy and my strategy, in the multiplayer
case, my payoff depends on my strategy and what proportion of the group I
belong to chooses to Cooperate.3

3 This particular form of the multiplayer prisoner’s dilemma is due to Fletcher and Zwick (2000).
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Let ci denote the limit of the payoff received by Cooperators as the proportion
of Cooperators in the group approaches zero, and let di denote the limit of the
payoff received by Defectors as the proportion of Cooperators in the group
approaches zero. In addition, let m denote the rate of increase of payoffs both
to Cooperators and to Defectors as the proportion of Cooperators in the group
increases. The last assumption – the common rate of increase in payoff –
makes sense if we think that the payoffs received both by Cooperators and
by Defectors are solely the result of the efforts of Cooperators. Defectors, by
definition, siphon off resources from the group without contributing anything
to the common pool, so the payoff Defectors receive should increase solely
according to the number of Cooperators present. By the same argument, though,
the payoffs received by Cooperators should also increase solely according to
the number of Cooperators.4

Suppose that each player in the group has the strategy of either Cooperate
or Defect, and let p denote the proportion of Cooperators in the group. Each
Cooperator then receives a payoff of mp + ci and each Defector receives a
payoff of mp + di . Figure 7.4 plots the payoffs received by Cooperators and
Defectors as the proportion of Cooperators increases from 0 to 1 for ci = 0
and di = 1

4 . If everyone Cooperates, all receive a payoff of 0.5; if everyone
Defects, all receive a payoff of 0.25. As in the two-player case, the state in
which All Cooperate is preferable to the state in which All Defect. At the same
time, because the black line representing the payoff to Defectors always lies
above the gray line representing the payoff to Cooperators, it is always in the
interest of an individual to Defect rather than Cooperate – no matter how many
people in the group Cooperate.

What of the requirement that the state in which everyone cooperates must be
the collectively optimal outcome? Upon inspection of the graph in figure 7.4,
one may wonder whether it is possible for the gain received by a single Defector
to be so large that it offsets the corresponding loss incurred by all the other
Cooperators in the group. If this were possible, we would not have a pure
generalization of the two-player prisoner’s dilemma.

The collective optimality of Cooperate requires that moving from the state
in which everyone cooperates to the state in which everyone cooperates, except
for one defector, produces a decrease in the overall payoff. A violation of the

4 Why assume, though, that payoffs increase linearly with the number of Cooperators? This is
just the simplest starting assumption. It would be interesting to consider cases for which
“economies of scale” exist in the production of goods by Cooperators. In this case, the
temptation to be a Defector would decrease as the number of Cooperators grew.
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Figure 7.4 A multiplayer prisoner’s dilemma. The black line represents the payoff
curve for Defect, the gray line the payoff curve for Cooperate (m = 1

2 , ci = 0, and
di = 1

4 ).

collective optimality means, of course, the opposite. Formally, if s (a positive
integer) denotes the size of the group, a violation of the collective optimality
of Cooperate occurs5 when

(s − 1)

(
m · s − 1

s
+ ci

)
+m · s − 1

s
+ di > s(m+ ci),

which is nothing more than di > m+ ci . Notice that di is the payoff received
by a Defector when the proportion of Cooperators in the population is zero,
and that m+ ci is the payoff received by a Cooperator when everyone in
the population cooperates. This means that the only way a violation of the
collective optimality of Cooperate can occur is if the parameters di , ci , and
m are chosen so that it is no longer the case that individuals prefer the state
in which everyone cooperates to the state in which everyone defects. In short,
the payoff scheme we’ve identified generalizes both of the core features of the
two-player prisoner’s dilemma.

Now consider our most basic social network: a simple cycle or ring such
that each person is connected to one individual on his left and right. Suppose

5 Strictly speaking, a violation of the collective optimality of All Cooperate includes the
possibility that some mix of cooperators and defectors produces as good a collective result as
the state All Cooperate. I do not consider this possibility in the following.
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Figure 7.5 A cluster of three Defectors surrounded by Cooperators. Total payoffs
are indicated for the prisoner’s dilemma with m = 1

2 , ci = 0, and di = 1
4 .

that everyone Cooperates except for one lone Defector. Suppose also that the
values of m, ci , and di are 1

2 , 0, and 1
4 , respectively. If everyone learns using

Imitate-the-Best, what happens?
Given this social structure, all of the groups consist of three persons (each

player, plus his immediate neighbors on the left and right). A group consisting
entirely of Cooperators yields a payoff of mp + ci = 1

2 · 1+ 0 = 1
2 to each

member of the group. A group containing one Defector and two Cooperators
yields a payoff of 1

2 · 2
3 + 1

4 = 7
12 for the Defector and a payoff of 1

2 · 2
3 + 0 = 1

3
for each Cooperator.

From this, we can calculate the total payoffs for each person in the popula-
tion. The lone Defector plays three games: one for the group associated with
his neighbor on the left, one for the group associated with himself, and one
for the group associated with his neighbor on the right. All of these groups
contain exactly one Defector and two Cooperators, so his total payoff is 7

4 . The
Cooperators adjacent to the lone Defector likewise play three games; however,
only two of the games involve groups containing a single Defector. One game
is played among a group containing only Cooperators. Each of these two Coop-
erators thus receives a payoff of 1

3 + 1
3 + 1

2 = 7
6 . All other Cooperators receive

a payoff of 3
2 . Under Imitate-the-Best, the two Cooperators adjacent to the

lone Defector will switch to defecting in the subsequent generation, creating a
cluster of three Defectors.

After the first generation, the distribution of strategies is that indicated in
figure 7.5. What happens now that there is a cluster of defectors present in
the population? In order to calculate the payoffs for each player under this
configuration of strategies, we need to know the payoffs both for Defectors and
for Cooperators under every possible composition of groups. If we use WD(G)
to denote the payoff received by a Defector in the group G, and WC(G) to
denote the payoff received by a Cooperator in the group G, these payoffs are
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as follows:

WD({D, D, D }) = m · 0+ di = 1
4

WD({C, D, D }) = m · 1
3 + di = 5

12

WD({C, C, D }) = m · 2
3 + di = 7

12

WC({C, D, D }) = m · 1
3 + ci = 1

6

WC({C, C, D }) = m · 2
3 + ci = 1

3

WC({C, C, C }) = m · 1+ ci = 1
2 .

The total payoffs received by all players in figure 7.5 are indicated in the
figure.6

Under Imitate-the-Best, the cluster of Defectors will not expand any further.
Although the two Defectors on the edge (D1 and D3), with payoffs of 5

4 , have
received higher payoffs than have the Cooperators adjacent to them (C3 and
C4), neither of those Cooperators will switch to defection. Why? Because,
in each of their update neighborhoods, there exists another Cooperator (C2

and C5, respectively) who has received a payoff of 4
3 . One can increase the

size of the cluster of Defectors from 3 to 4, or even larger, and the same
result holds: the cluster of Defectors will not spread further. Although the final
configuration of strategies depends upon the initial state of the population,
we can state what it will qualitatively look like: it will consist of clusters of
Defectors of size 3 or more, surrounded by clusters of Cooperators of size 4 or
more.7

If interaction and update neighborhoods differ in size, though, the story
changes. Suppose that the update neighborhood contains the two nearest players
on the left and right of each agent, and consider the case of figure 7.5 again.
The two Defectors who receive payoffs of 5

4 will switch to cooperating because
both of them have a Cooperator who earned a payoff of 4

3 belonging to their
update neighborhood. In this case, clusters of Defectors who share a border with
three or more Cooperators will shrink, as Defectors on the boundary switch
to cooperating. Figure 7.6 illustrates the spread of Cooperate for two different
cases with unequal sizes of interaction and update neighborhoods.

On a two-dimensional lattice, we find that some of the qualitative behavior
identified in chapter 3 continues to hold in the multiplayer case. Figure 7.7

6 Remember that, although each player is incident on two edges, each player actually receives the
payoff from three games.

7 There have to be four or more adjacent Cooperators in order to insure that boundary
Cooperators like C4 are adjacent to Cooperators like C5 who have earned payoffs of 4

3 .
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(a) Interaction radius = 1, update radius = 2 (b) Interaction radius = 1, update radius = 3

Figure 7.6 The prisoner’s dilemma on a ring. The initial strategy distribution
had approximately 75 percent of the population cooperating. Gray indicates the
strategy Cooperate, black the strategy of Defect.

Figure 7.7 The multiplayer prisoner’s dilemma (m = 1
2 , di = 1

7 , and ci = 0)
played on a 50× 50 lattice, with the Moore (8) neighborhood both for group
structure and for updating, and Imitate-the-Best. The initial strategy distribution
assigned Cooperate to 97.5 percent of the population.

illustrates how populations containing a mix of Cooperate and Defect can be
stable under Imitate-the-Best. Likewise, figure 7.8 shows how, for a slightly
different payoff function (one increasing the desirability of defecting), the
population quickly slides into the Hobbesian war of all against all.

In general, though, it is much more difficult for Cooperate to spread in the
two-dimensional case. Out of 1000 simulations using random initial condi-
tions, the Moore (8) neighborhood for determining group structure, and the
Moore (24) neighborhood for strategic updating, only twenty-seven converged
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Figure 7.8 The multiplayer prisoner’s dilemma (m = 1
2 , di = 1

4 , and ci = 0)
played on a 50× 50 lattice, with the Moore (8) neighborhood both for group
structure and for updating, and Imitate-the-Best. The initial strategy distribution
assigned Cooperate to 97.5 percent of the population.

to the state of All Cooperate. Of these, sixteen began with conditions favorable
to Cooperate, with over 90 percent of the population initially cooperating.8

If the benefit of defecting is not too large, it is possible for Cooperators
to drive Defectors to extinction, as figure 7.9 illustrates. In order for this to
happen, though, a properly shaped cluster of Cooperators of the right size
must be present. The cluster has to be “properly shaped” in order for there
to be one Cooperator who receives a high enough payoff to prevent adjacent
Cooperators from switching to Defect. For example, it isn’t enough for there to
be a connected region of twenty-five Cooperators: twenty-five Cooperators in a
line surrounded by Defectors will all switch to defecting in the next generation.
However, if the twenty-five Cooperators happen to be arranged in a 5× 5 grid
(and the Moore (8) neighborhood determines the group structure), the central
Cooperator will receive a payoff of 9 · (m+ ci), preventing the rest of the
Cooperators from switching to Defect.

The proximity model of the multiplayer prisoner’s dilemma proves very
hostile to the emergence of cooperation. Consider the following environment:

8 The remaining eleven also began with conditions favouring Cooperation, only not so much. All
but one of the eleven had more than 80 percent of the population cooperating, and in the one
exception Cooperators constituted 76 percent of the initial population.
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Figure 7.9 The spread of Cooperate in the multiplayer prisoner’s dilemma (m =
1
2 , di = 1

7 , and ci = 0) with unequal sizes of interaction and update neighborhoods.

400 individuals, each with an interaction radius of 4 and an update radius of
8, positioned at random on a torus of width 40 and height 40. (As before, the
learning rule used was Imitate-the-Best, and the payoff parameters were m =
1
2 , di = 1

4 , and ci = 0.) After each interaction and update phase, individuals
move from their current position to a new location somewhere within the unit
square centered upon them. Out of 1000 simulations beginning in a state with
80 percent of the population consisting of cooperators, not a single model
converged to the state of All Cooperate. All simulations converged to the state
All Defect.

It is possible for Cooperate to drive Defect to extinction, but Cooperators
need to be given a significant head start in order for this to occur (and even
then it happens infrequently). Figure 7.10 shows a plot of time-series data for
one simulation in which this happened. Beginning with 97.5 percent of the
population cooperating, within seventy generations Cooperate had managed to
drive Defect to extinction. It is worth noting, though, that what we have here
amounts to little more than an existence proof of the possibility of Cooperate
coming to dominate. The odds strongly favor the state All Defect over All
Cooperate.

The story changes slightly if the attractiveness of defection is reduced. Using
the same parameters as before, but with an intercept value of di = 1

6 for the
payoff function, the state of All Cooperate emerges roughly 26 percent of the
time when the initial distribution of strategies had 80 percent of the population
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Figure 7.10 Time-series data for the number of Cooperators present in a proximity
model of the multiplayer prisoner’s dilemma (m = 1

2 , di = 1
4 , ci = 0).

cooperating.9 If the initial frequency of Cooperate is increased to 95 percent,
the state of All Cooperate occurs 97 percent of the time. If the population
begins in a state in which everyone cooperates, save for a single Defector, then
the Cooperators were able to drive out the Defectors 100 percent of the time in
simulations.

7.3 Trust

The problem of trust, as represented in the two-player Stag Hunt, can
be generalized in several different ways.10 In the form considered here, let
S denote the maximum payoff to stag hunters, which is obtained when every-
one in the group hunts stag, and let H denote the payoff to hare hunters. If
n

j

S denotes the number of individuals in subgroup j who hunt stag, and n
j

H

denotes the number of individuals in subgroup j who hunt hare, then the payoff
to Stag Hunters is S · nj

S/(nj

S + n
j

H ) and the payoff to hare hunters is H . In the
ordinary two-player Stag Hunt, it is always better for one person to hunt stag
if the other person does; here, it is only in a player’s interest to hunt stag if a
certain percentage of the group hunts stag.11 Why assume that the payoff to
stag hunters increases linearly in proportion to the number of stag hunters in

9 That is, 262 times out of 1000 simulations.
10 See also Skyrms (2003).
11 The critical threshold being when n

j

S/(nj

S + n
j

H ) > H/S.
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Figure 7.11 A payoff function for the multiplayer Stag Hunt.

the group? As with the multiplayer prisoner’s dilemma, linearity provides the
simplest starting assumption. Figure 7.11 illustrates the payoff function for the
multiplayer Stag Hunt with S = 4 and H = 3.

What are the dynamics, using Imitate-the-Best, on a simple cycle where
each person is connected to one player on the left and right? Let the values S

and H be fixed. An isolated stag hunter surrounded by hare hunters receives a
total payoff of S. For each of the three games he plays, he receives a payoff of
S/3. The surrounding hare hunters all receive a total payoff of 3H . Provided
that S/3 < H , an isolated stag hunter will switch to hunting hare in the next
generation.

If we have an isolated group of two stag hunters, both stag hunters will
switch to Hunt Hare if 5

9 S < H . In this case, each stag hunter plays three
games, one in which he is the only stag hunter (receiving a payoff of S/3), and
two in which two thirds of the group are stag hunters (receiving a payoff of
2S/3, for each game). Hare hunters, as before, receive a total payoff of 3H .
Similarly, it is easy to show that an isolated group of three stag hunters will be
driven out if 7

9 S < H , and an isolated group of four stag hunters will be driven
out if 8

9 S < H . Groups of five or more stag hunters aren’t any less susceptible
to being driven out by hare hunters than are groups of four, unless the graph
which determines the update neighborhood differs from the graph determining
the interaction group structure.

Suppose that players update their strategy by looking at their two nearest
neighbors both on the left and on the right. In this case, we can predict what
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Table 7.1. Simulation results

von Neumann Moore (8)

Stag Hunters (s) Models Stag Hunters (s) Models

s ≤ 100 0 s ≤ 100 355
100 < s ≤ 200 106 100 < s ≤ 200 520
200 < s ≤ 300 374 200 < s ≤ 300 102
300 < s ≤ 400 327 300 < s ≤ 400 19
400 < s ≤ 500 136 400 < s ≤ 500 4
500 < s ≤ 600 44 500 < s 0
600 < s ≤ 700 8
700 < s ≤ 800 2
800 < s ≤ 900 3
900 < s 0

will happen by reversing the above inequalities. That is, the center player in
a group of three stag hunters receives a payoff of 7

3 S, so, if 7
3 S > 3H , the

bordering hare hunters will switch to hunting stag in the next generation. In a
group of four adjacent stag hunters, both of the innermost stag hunters receive
a payoff of 8

3 S, so the bordering hare hunters will switch if 8
3 S > 3H . Since it

is a defining feature of the Stag Hunt that S > H , the presence of four adjacent
stag hunters is thus enough to guarantee that Hunt Stag will dominate on a cycle
with an expanded update neighborhood, unless the benefit of hunting stag is
very slight indeed.

What happens in two dimensions? Simulations provide a first glimpse into
the answer to this question. If we begin with a 50× 50 lattice in a randomly
selected state with equal numbers of stag hunters and hare hunters, we find
that it never converges to a state containing only stag hunters, but it also
never converges to a state containing only hare hunters. The evolutionary
dynamics under Imitate-the-Best instead carry the population to a polymorphic
state containing a mix of the two strategies. The results for a series of 1000
simulations for the von Neumann and Moore (8) neighborhoods are shown in
table 7.1.

Yet it is possible for the state All Hunt Stag to emerge. Figures 7.12(a)
and (b) illustrate how, from initial conditions under which slightly more than
50 percent of the players hunt stag, a global state of trusting behavior evolves.
What explains the difference between the simulation results above and the
results of figure 7.12?
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(a) Convergence to All Hunt Stag under the von Neumann neighborhood

(b) Convergence to All Hunt Stag under the Moore (8) neighborhood

Figure 7.12 The multiplayer Stag Hunt using two different graphs both for group
structure and for updating (S = 4, H = 3). Black represents the strategy Hunt
Hare and gray the strategy Hunt Stag.

Consider the case in which the von Neumann neighborhood determines
both the group structure and the update neighborhoods for all players. In this
environment, a hare hunter always receives a payoff of 5H .12 Hare hunters
switch to hunting stag if they are next to a stag hunter who earns a payoff
strictly greater than their own. How likely is it that a random assignment of
strategies to players brings this about?

Figure 7.13 illustrates the problem. The central stag hunter s is connected to
a hare hunter h, the player whose probability of switching to Hunt Stag we want
to determine. Although we know that h’s payoff does not depend on the strategy

12 Remember that a player always appears in one more game than the number of edges she is
incident on.



254 Multiplayer games

?

? ?

hs?

?

?

? ?

?

?

?

1

2 3 4

5 6 7

8 109

11

Figure 7.13 The figure used in determining the number of ways in which a hare
hunter can be replaced.

of any of her neighbors, we still need to concern ourselves with the assignment
of strategies to her immediate neighbors (labeled 4, 7, and 10 in the diagram)
because the strategy followed by these players affects the composition of three
of the groups in which s participates (the dashed line indicates one of the five
groups). Because there are eleven players appearing among the five groups for
whom the strategies are indeterminate, there are 211 = 2048 assignments of
strategies to consider.

One can easily calculate the payoffs earned by s for every possible assign-
ment of strategies to the eleven other players. Once this has been done, it is
then possible – in some cases – to determine how many payoffs exceed 5H ,
given the relative size of S and H . The qualification “in some cases” is needed
because, for example, if all we assume is that S > H ≥ 0, we cannot say, with
certainty, whether any particular assignment of strategies will cause h to adopt
hunting stag. However, if we know that S > 5

4 H ≥ 0, we can say, with cer-
tainty, that 50 out of the 2048 possible assignments of strategies to players will
cause the hare hunter to change.

To see this, consider the following strategy vector:


s1 = 〈1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1〉,
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where the ith component of 
s1 denotes the strategy assigned to player i in
figure 7.13 (we use “1” to denote Hunt Stag and “0” to denote Hunt Hare).
Given this vector, s finds himself interacting in five groups:

g1 = {Stag, Stag, Hare, Stag, Stag}
g2 = {Stag, Hare, Stag, Stag, Stag}
g3 = {Stag, Stag, Stag, Stag, Stag}
g4 = {Stag, Stag, Stag, Stag, Hare}
g5 = {Hare, Stag, Stag, Stag, Hare}.

The payoffs earned by a stag hunter in these five groups are 4S/5, 4S/5, S,
4S/5, and 3S/5, respectively. The total payoff earned by the stag hunter equals
the sum of these, i.e., 4S. Thus, if we know that S > 5

4 H ≥ 0, we know that
the hare hunter h of figure 7.13 will switch to hunting stag.

Consider, though, the following strategy vector:


s2 = 〈1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1〉,

which equals 
s1 in all respects except for the strategy assigned to player 7.
According to this vector, the payoffs to the five groups are 4S/5, 4S/5, S,
3S/5, and 3S/5, respectively. This gives s a total payoff of 19S/5. If all
we know is that S > 5

4 H ≥ 0, we cannot say, with certainty, that the adja-
cent hare hunter will switch to hunting stag. Some values of S and H do
facilitate this (like S = 26

19 and H = 1), but others do not (like S = 195
152 and

H = 1).
As the relative difference between S and H increases – that is, as the rewards

for trusting behavior become greater – the number of strategy assignments
which cause h to imitate s’s strategy increases. For example, if S > 3

2 H ≥ 0,
then 394 of the 2048 possible assignments lead to the certain adoption of Hunt
Stag by h; if S > 7

4 H ≥ 0, then 884 assignments lead to the certain adoption
of Hunt Stag; and if S > 2H ≥ 0, then the number of vectors which cause h

to switch rises to 1430. This makes sense: increasing the relative difference
between S and H reduces the risk involved in choosing to hunt stag. Once
S > 2H ≥ 0, the corresponding two-player Stag Hunt would count Hunt Stag
as the risk-dominant strategy!

Although the strategy of Hunt Stag does rather poorly in a world contain-
ing 50 percent or fewer stag hunters, once the percentage of stag hunters is
increased to 60 percent, All Hunt Stag emerges much more easily. Although no
simulations based upon the von Neumann network converged to the All Hunt
Stag state when only 50 percent of the population initially hunted stag, 850
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Figure 7.14 The multiplayer Stag Hunt, with a proximity model. Edges indicate
transient group structure.

out of 1000 simulations converged to All Hunt Stag when the initial conditions
were that 60 percent of the players were stag hunters.13

Turning our attention to the proximity model of the multiplayer Stag Hunt,
let us begin by considering the case in which we have a population of 250 players
spread out uniformly over a 40× 40 world. We assume that the interaction (and
update) radius for each player is 4.25, which means that each player interacts
with roughly eight other players each generation. The typical group size, then,
is approximately nine.

Simulations show that, from an initial state containing roughly equal num-
bers of stag hunters and hare hunters, with strategies distributed at random,
and payoff parameters of S = 4 and H = 3, Hunt Stag is typically driven to
extinction. Out of 1000 simulations, only 40 converged to All Hunt Stag; the
remaining 960 converged to All Hunt Hare. However, if the update radius is
larger than the interaction radius,14 then, from uniform initial conditions All
Hunt Stag evolves 32 percent of the time. However, if under the initial condi-
tions 60 percent of players are stag hunters, then All Hunt Stag evolves just
over 70 percent of the time.

13 The lattice used was 50× 50, with payoff parameters of S = 4 and H = 3.
14 In this case, the interaction radius was 4 and the update radius was 8.
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7.4 Fairness

The standard story behind two-player divide-the-cake refers to an entity other
than the players: both players submit their requests to a referee who doles
out the cake, provided that the requests are compatible. There are, then, two
different versions of multiplayer divide-the-cake: one that does not explicitly
include the referee among the players, and one that does.

In the form which leaves the referee implicit, each of the N players belonging
to group j has a strategy si that represents the amount of the resource they would
like.15 Their requests are submitted to a referee (who is not a member of the
group), and the referee awards si to player i, provided that s1 + · · · + sN ≤ C,
where C is the total amount of cake available. If the sum of all the requests
exceeds C, no player receives anything.

In the form which explicitly includes the referee, one player from the group
takes on the role of referee and collects the requests from the remaining individ-
uals. If the sum of the requests is less than or equal to C, the referee gives each
player the amount requested and keeps the remainder of the cake (if any) for
himself ; if the sum of the requests exceeds the amount of cake available, then
no one, including the referee, gets anything. Which player is taken to be the
referee? For multiplayer local-interaction models, the referee is the player upon
which the group is centered; for proximity models, the player is the individual
whose interaction radius defines the group.

In a group of size N , the egalitarian norm of fairness dictates that all group
members ought to receive C/N . In the case of goods that cannot be infinitely
subdivided, the egalitarian norm dictates that all group members ought to
receive �C/N�, the greatest integral amount less than or equal to C/N . In a
three-person group with a cake size of 10, this means that each person should
receive three slices of cake.

I mention the expected outcome under the egalitarian norm for the three-
person group because, for a population whose interaction group structure is
determined by a simple cycle, each player has three interactions every round
and each group contains three persons. Figure 7.15 illustrates the evolution of
one such population under Imitate-the-Best from random initial conditions, with
a cake size of 10, and no referee.16 With the exception of one small “blinker”
of Demand 4 located at the center, the rest of the population has adopted the
strategy of Demand 3 – the behavior which accords with the egalitarian norm!

15 The strategy used by a player is the same across all groups. In some cases it might make sense
for a player to condition their strategy on the group they are interacting with. I do not consider
that possibility here.

16 The group structure was determined by a simple cycle, as was the update neighborhood.
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Figure 7.15 Multiplayer divide-the-dollar, in one dimension, with a cake size of
10. Each player interacts with his immediate neighbors on the left and right, and
learns from the same individuals.

Strategies: · · · 3 3 3 5 5 2 2 · · · 2 2 5 5 3 3 3 · · ·
Payoffs: · · · 9 6 3 0 5 4 6 · · · 6 4 5 0 3 6 9 · · ·

Figure 7.16 How two strategies can block the spread of the egalitarian solution.

The egalitarian norm proves surprisingly robust and generally tends to drive
other strategies to extinction. However, as figure 7.16 shows, in the absence of
mutation this does not always happen. The phenomenon illustrated is similar
to those discussed in chapter 5, where two strategies, through fortutious posi-
tioning, manage to prevent a region from adopting fair behavior even though
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all individuals within that region are receiving less than they would if they
switched to fair division.

In figure 7.16, almost all players who follow the egalitarian strategy of
Demand 3 receive a payoff of 9. Individuals in the center of the non-egalitarian
region follow the strategy Demand 2 and generally receive a payoff of 6.
(The exception to the “generally” occurs at the boundary, which we’ll discuss
shortly.) The two individuals bounding the region on the left and right each
follow the strategy Demand 5. The outermost person who asks for five slices
receives nothing: one of his interaction groups contains two Demand 3 and one
Demand 5, another group contains one Demand 3 and two Demand 5, and the
third contains two Demand 5 and one Demand 2. All of these groups have jointly
incompatible demands. Yet the reason why this boundary player doesn’t switch
strategies is that his update neighborhood includes another person who follows
Demand 5, and that player receives a sufficiently high score to prevent him
from switching. The table at the bottom of figure 7.16 shows how the particular
arrangement of strategies serves to block the spread of egalitarianism.

If individuals experiment with new strategies, the population tends towards
the egalitarian solution. It doesn’t uniformly adopt the egalitarian solution
because, in a group of size three with a cake of size 10, if one person switches
from Demand 3 to Demand 4, everyone continues to receive a payoff (the
requests in the set of demands {3, 3, 4} are mutually compatible). However,
this creates a temporally unstable arrangement: the person who switched to
Demand 4 now receives a higher total payoff than do his peers. As a result, his
peers will switch to asking for four slices of cake in the following round. In
that round, the new followers of the strategy Demand 4 will find that switching
strategies wasn’t such a good idea: the conflict generated when everyone in a
group asks for four slices means that they will earn a lower payoff than will
be received by their neighbors who ask for three slices. As a result, they will
switch back to the strategy of Demand 3, and the cycle will begin all over again.

There thus exists a tension between egalitarianism and optimality when they
are not simultaneously satisfiable. The evolutionary dynamics under Imitate-
the-Best drives the population towards states in which a compromise between
the two competing aims is struck. Yet, if the cake size permits distributions that
simultaneously satisfy egalitarianism and optimality, then the evolutionary dy-
namics on the simple cycle, with mutation, will arrive at that state. For example,
figure 7.17 illustrates how, when groups have three members each, a cake size
of 12 yields a Pareto-optimal outcome when all members ask for four slices.

Introducing the referee into the game structure modifies the dynamics con-
siderably. Whereas the non-referee case, with mutation, tends to evolve to a
state as close to the egalitarian split as possible, rather different behavior occurs
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Figure 7.17 The simultaneous satisfiability of egalitarianism and optimality with
a cake size of 12 and a mutation rate of 1 percent.

when a referee is present. Figure 7.18 illustrates several hundred generations of
one simulation beginning from random initial condititions with a cake size of
10. As before, the group structure for interactions was determined by a simple
cycle, as was the update neighborhood.

The greatest change concerns the patterns of mutual invasion between re-
gions of Demand 5 and a polymorphic region containing both Demand 4 and
Demand 6. Figure 7.19 provides magnified views of two such sections. In
figure 7.19(a), the region on the left is occupied solely by Demand 5 and the
region on the right by individuals following Demand 4 or Demand 6 (the two
individuals on the border follow Demand 6).

Consider the payoffs received by the players following Demand 5. Players
f3 and f4 both earn a total score of 10 because they appear – not in the role of
referee – in two groups where their partner also asks for five pieces of cake. Both
f3 and f4 receive a payoff of 5 from these interactions. When f3 takes on the
role of referee, the group for which he acts as referee contains f4 and f2; since
these two players both ask for five pieces of cake, there is nothing left over, and
hence f3 doesn’t receive anything. The same holds true when f4 acts as referee.

Player f2 receives a payoff of 5 from his interaction with f4 when f3 acts
as referee. When f2 acts as referee, it is for an interaction between f3 and
f1, and he receives nothing because all of the cake is distributed. Lastly, f2

interacts with g1 with f1 acting as referee. Since the demands of f2 and g1 are
incompatible, f2, f1, and g1 all receive nothing from this interaction. Thus f2

earns a total score of 5.
Player f1 receives a payoff of 5 from his interaction with f3 where f2 acted

as referee. He also doesn’t receive anything from refereeing the interaction
between f2 and g1. When f1 interacts with g2, with g1 as referee, f1 again
receives nothing because the strategies of f1 and g2 are incompatible. Thus f1

earns a total score of 5.
By similar reasoning, player g1 earns a total score of 6, and g2 also a total

score of 6. The modest player m1 earns a total score of 8, and m2 a total score
of 10. The reason why m2 earns a higher score than m1 is that m2 referees an
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Figure 7.18 Multiplayer divide-the-dollar, with a cake size of 10 and an explicit
referee. Group structure and update neighborhoods are determined by a simple
cycle.

interaction between two modest players. Since not all of the cake is distributed,
m2 keeps the leftovers.

From this, it follows that f1 will adopt the strategy Demand 6 in the next
generation and g2 will adopt the strategy Demand 4. All other players will
continue to employ the same strategies as before. The 4–6 polymorphism thus
advances one place into the region occupied by Demand 5.
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(a) How mutation can stop the advance
of the 4–6 polymorphism.
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(b) A diagram for a frontier analysis of (a).
Strategies are indicated in the box, with names

assigned to the player listed below.

(c) How mutation can trigger the advance of
the 4–6 polymorphism.

Figure 7.19 A close-up of expanding regions for multiplayer divide-the-dollar.

The reason why the dynamics of figure 7.18 is so complicated is that mutation
can both serve to stop the advancement of the 4–6 polymorphism and create
the conditions that allow it to occur. In figure 7.19(a), the outermost Demand 6
mutates to Demand 4. Yet, because the advancement of the 4–6 polymorphic
region depends upon there being two players asking for Demand 6 on the
boundary, this tips the dynamics in favor of Demand 5, which then proceeds
to invade the region occupied solely by Demand 4. Likewise, if a player in
the middle of a Demand 4 region mutates into one who asks for 5, this, too,
initiates an invasion of the Demand 4 region by Demand 5.

How can mutation trigger the advance of the 4–6 polymorphism? If a player
in the middle of a Demand 4 region mutates into one who asks for six slices of
cake, this will create, in the next generation, a stable island of three individuals,
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all of whom ask for six slices of cake. This island of three individuals can lead to
a standoff between the 4–6 polymorphic region and the region of Demand 5, as
seen in the top part of figure 7.19(c). Chance mutations, though, can transform
the stable island of three players following Demand 6 into the formation of
strategies required for an invasion of the Demand 5 region. This happens in the
bottom half of figure 7.19(c).

In two dimensions, similar behavior obtains. When the game does not explic-
itly include the referee, the population evolves to a state as close as possible to
the egalitarian solution. If the group structure is determined using a von Neu-
mann graph that wraps at the edges, then each interaction group contains
five players. The egalitarian solution (which, in this case, is also efficient) is
Demand 2, and that is exactly what evolves in figure 7.20(a).

If the game does explicitly include the referee, a slightly different outcome
emerges. Although each group officially has five players, the effective size of
the group is four because one of the players acts as the referee. With a cake of
size 10, and a group of size four, it is no longer possible to distribute the good
in an egalitarian fashion to all four players without some cake being left over. If
all four players in a group follow Demand 2, it is in the interest of at least one of
the players to switch to Demand 3 or Demand 4. Given this, we would expect a
polymorphic population consisting primarily of Demand 2, with some players
following Demand 3 and Demand 4 as well. As figure 7.20(b) illustrates, this
outcome is exactly what we find.

Lastly, let us consider the proximity model of divide-the-cake. We keep
the cake size fixed at 10 and consider, for simplicity, the version which does
not explicitly include the referee. However, instead of positioning individuals
uniformly along an N ×N world, as in previous proximity models, we use
the following method for initially positioning players: player i will initially
be located at (ri, θi), in polar coordinates, where ri ∈ [0, 40] and θi ∈ [0, 2π ),
both drawn from a uniform distribution.

The reason for considering this distribution is the following question: when
group sizes differ, is it possible for individuals who use Imitate-the-Best to
adjust their demands so that they take into account group size? Positioning
players according to the above rule causes the local population density around
the origin to be higher than that at the periphery. If Imitate-the-Best is capable
of providing local adaptations to context, we would expect individuals towards
the center of the model to ask for fewer slices of cake than individuals at the
periphery.

Previous proximity models treated the world as a torus, so that during the
random walk players who walked off one “edge” appeared on the other side.
If we implemented the random walk in the same way, in this model, any initial
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(a) Cake size of 10. The egalitarian strategy of Demand 2 drives all other strategies to extinction.

(b) Cake size of 10, with referee. The darkest color represents the strategy Demand 3 and the
lightest patches are Demand 4.

Figure 7.20 Multiplayer divide-the-dollar in two dimensions, with group structure
and update neighborhoods determined by the von Neumann graph.
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(a)

(b)

Figure 7.21 A proximity model of multiplayer divide-the-cake.

difference in the population density would eventually disappear via diffusion.
Consequently, for these simulations we treat the world as an unbounded infinite
plane.

In figure 7.21, we see that Imitate-the-Best is capable of providing local
adaptations to context. In figures 7.21(a) and (b), individuals towards the cen-
ter adopt more modest strategies than those followed by individuals at the
periphery. In both cases, we see that evolution tends imperfectly towards the
egalitarian solution. In figure 7.21(a), players towards the center ask for one
slice of cake, and individuals on the periphery ask for four slices of cake. In
figure 7.21(b), players towards the center ask for two slices of cake, and indi-
viduals on the periphery ask for five slices of cake. Among strategically myopic
players, naı̈ve, selfish maximization of payoffs can produce behavior close to
the egalitarian ideal.

7.5 Conclusion

In this chapter, I have taken a small first step towards generalizing three of
the games considered in previous chapters to more realistic – and interesting –
multiplayer forms. Given the limitations on what I’ve been able to discuss, it
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would be imprudent to attempt to draw any sweeping conclusions. Yet some
apparent trends can be tentatively identified.

First, cooperation is much harder to obtain in the multiplayer case. Although
the strategy of Cooperate can survive and, indeed, come to be followed by the
majority of the population, the attractiveness of Defect cannot be too high. If
the attractiveness of Defect is not too high, then the same mechanisms which
facilitate the spread of cooperation in the ordinary two-player case, namely
unequal interaction and update neighborhoods, work in the multiplayer case as
well.

Second, although trusting behavior is also harder to obtain in the multiplayer
case, it is slightly easier to obtain than cooperation. Once the frequency of Hunt
Stag in the population exceeds 60 percent, the evolutionary dynamics leads the
population to the All Hunt Stag state roughly 85 percent of the time.

Third, fair behavior obtains about as readily in the multiplayer case as in
the ordinary two-player case. It is true that including the referee as an explicit
player in the game complicates the emergence of fairness. In a way, this is
to be expected: identifying one player as the referee breaks the symmetry
condition that holds both in two-player divide-the-cake and in the version of
multiplayer divide-the-cake without the referee. We should not be surprised
that slightly different outcomes will be generated once players are no longer
perfectly symmetric. Nevertheless, what is surprising is that, even here, we do
not move too far away from the egalitarian outcome.
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Philosophical reflections

8.1 The problem

In the last five chapters we have seen multiple examples of how structured
interactions in a population of self-interested, boundedly rational agents tend
to promote moral behavior. Although this does not hold universally for all
structures and all games,1 it does seem that it holds often enough for it to
be more than a mere coincidence. The central philosophical question, then, is
what, if anything, does this imply for our understanding of morality and moral
theories?

It is not immediately clear that the results discussed in chapters 3–7 affect
our understanding of morality at all. Perhaps the best encapsulation of the
general problem evolutionary explanations of morality face – and why they
might not illuminate our understanding of morality – can be found in the
following observation:

. . . it’s important to demonstrate that the forms of behaviour that accord with our
sense of justice and morality can originate and be maintained under natural
selection. Yet we should also be aware that the demonstration doesn’t necessarily
account for the superstructure of concepts and principles in terms of which we
appraise those forms of behaviour.

(Kitcher, 1999)

As moral agents, we care about the superstructure of concepts and principles
that we use to describe and evaluate our behavior and the behavior of others.
We want, for example, to understand the difference between guilt and shame,

1 See, in particular, the discussion in chapter 6 on the ultimatum game, where the effect of local
interactions tends to promote behavior more akin to that of homo economicus.

267
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and between regret and remorse, and we want to know the circumstances
under which feeling one or the other is warranted. We want to know what
actions are praiseworthy, what actions are blameworthy, and what actions are
morally neutral. If there are extenuating circumstances that can transform in
our assessment a normally blameworthy act into one that is praiseworthy (or at
least morally neutral), we want to know what those circumstances are and why
they have this transformational capacity. It is this superstructure of concepts
and principles which requires both illumination and explanation. Yet, Kitcher
alleges, it is exactly this superstructure which is unaccounted for in typical
evolutionary models.

Let us introduce some terminology to express the concern in a slightly
different form. Say that an individual “thinly” conforms with a principle of
morality if, while behaving in the manner required, the individual fails to hold
sufficiently many of the beliefs, intentions, preferences, and desires to warrant
application of the term “moral” to his or her action. (We may also need to
require that the rest of society, or a suitable proportion of society, also shares
sufficiently many of the right beliefs, intentions, preferences, and so on.) For
example, when someone acts morally we typically require that she intended to
act morally, that she preferred to act morally over acting immorally, that she
was in the “right state of mind,” that she possessed “the appropriate feelings,”
and so on. Furthermore, let us say that an individual “thickly” conforms with a
principle of morality if she holds sufficiently many of the beliefs, desires, and
so forth to warrant describing her action as a “moral action.” (As before, we
may also need to impose a requirement on the beliefs, intentions, preferences,
and so on held by the rest of society.)

In introducing these terms, I am explicitly borrowing (and mildly corrupting)
the language of Clifford Geertz, who himself took the term “thick description”
from an earlier work by Gilbert Ryle (1971). Ryle’s point was simply that,
without context, we cannot ascribe meaning to certain kinds of communicative
signals accurately. The classic example is that, when a person winks at us, we
cannot be sure whether the person is attempting to flirt, to signal agreement,
to indicate approval, or so on, without knowing the full context behind the
gesture. Geertz (1973) adopted the term “thick description” from Ryle because,
in Geertz’s view, all of human behavior was subject to the same interpretive
problem. Part of the task of an anthropologist, for Geertz, was to seek out and
provide thick descriptions of human behavior.

In my usage, a thick description of behavior that conforms to a moral princi-
ple is, minimally, a description that attributes to a person the right combination
of intentional and emotional states in order for the behavior to be considered a
moral action. In addition, the person has to perform the behavior for the right
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reasons.2 The description is “thick” in one sense because it provides a rich,
robust account of the current mental state of the individual agent. However,
the description is also thick in Geertz’s sense, insofar as thick descriptions of
behavior conforming to a moral principle will often need to reference the social
context, since moral beliefs and theories refer to social norms, intersubjective
beliefs, or common knowledge that such-and-such is the case.

Note that the problem of providing thick (versus thin) descriptions of be-
havior is different from the problem of distinguishing between moral action
and moral behavior. Moral behavior is simply behavior that produces the brute
outcomes mandated by some moral principle, such as fair division in perfectly
symmetric situations, or cooperation instead of defection under certain circum-
stances; similarly, moral action is action that conforms to moral principles.
Does mere moral behavior exist? There is good reason to think so, at least
under a sufficiently broad conception of morality. Consider lex talionis, the
rule of “eye for an eye, tooth for a tooth,” which states that you should do unto
others as they have done unto you. If lex talionis embodies a moral principle,
then TIT-FOR-TAT produces behavior that conforms to it. According to results
from experiments done by Milinski (1987), stickleback fish use TIT-FOR-TAT as
a rule governing predator-inspection visits. Since stickleback fish lack much
of the higher-order cognitive machinery required for the intentional states un-
derlying action, this is an example of arguably moral behavior but not moral
action. However, even if it were a moral action (suppose that stickleback fish
possess the appropriate intentional states for us to legitimately speak of them
performing actions), there would still be something missing. The “something
missing” is, of course, the rich set of concepts, emotions, and principles which
underlies moral reasoning and, more importantly, motivates moral agents to
act the way they do. The distinction between thick and thin descriptions draws
attention to the fact that one can behave, and act, in ways that comply with the
demands of moral principles, yet still fall short in important ways.

One of the difficulties of the analysis provided in chapters 3–7 is that it
shows only how an evolutionary process can produce a social state in which in-
dividuals thinly conform with moral principles. Under the cultural-evolutionary
interpretation of the replicator dynamics, and cultural-evolutionary interpreta-
tions of the local-interaction models, the repeated choices of individuals lead,
in many cases, to arguably moral action. Why moral action? Since the agents
in these models are making explicit choices, what they do admits an intentional
explanation, so what they do is an action. Nevertheless, we are not given an

2 To eliminate the problem of deviant causal chains, we may also need to require that the reasons
cause the action in the right way.
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account of the rich content of our moral life. For example, the evolution of the
behavior called “fair division” in chapter 5 shows only that demanding half
dominates because3

. . . demanding half realizes a higher average return than the alternatives . . . Hence
there is no clear analogue for, and no apparent need for, the kinds of righteous
indignation and punishment that moral agents visit upon those who violate
morality’s constraints. Nor is there any need for a propensity for feelings of guilt
when we ‘unfairly’ demand more than half — recognition of the lost returns should
suffice to bring us back on track.

(D’Arms, 2000, p. 298)

In summary, the problem is this: can game-theoretic analyses (either evolu-
tionary or traditional) explain how and why individuals thickly conform with
moral principles? Then, if we assume that we have shown (or that it can be
shown) that natural selection favors moral behavior, wherefrom does our moral
psychology derive?

8.2 Gestures towards a solution

Ultimately, I must admit skepticism as to whether evolutionary game theory
on its own is capable of providing thick descriptions of moral behavior. The
reason behind this scepticism is simply that fine-grained accounts of individ-
ual psychology are not the sort of thing which falls within the domain of the
theory. In the original biological setting, evolutionary game theory analyzed
problems in which frequency-dependent fitness introduced a strategic element
into evolution. In the cultural setting, evolutionary game theory examines re-
peated interdependent decision problems played in populations of boundedly
rational individuals. In both settings, the theory tracks only changes in the
frequencies and distributions of strategies and, perhaps, other relevant proper-
ties. Under either interpretation, evolutionary game theory addresses only the
strategic aspect of the superstructure, not the psychological aspect.

There are two natural approaches to the problem, which build upon previous
work. Both of these approaches aim at providing thick, or, at least, thicker,
descriptions of behavior conforming to moral principles. The first approach
proceeds by expanding the class of games to include ones with richer strategy

3 Do note that I am somewhat distorting the intended interpretation of this quote by including it
here, since D’Arms was, strictly speaking, only criticising Skyrms’ replicator-dynamics model
of divide-the-cake. However, I feel that no harm is done in the distortion because D’Arms’s
point applies equally well to my discussion of fairness.
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Figure 8.1 Axelrod’s norms game.

sets. That is, one considers games whose strategies include the adoption of
certain attitudes by the agent. Axelrod (1986) provided a canonical example of
this approach.

Axelrod introduced the “norms game,” illustrated in figure 8.1. The game
consists of several different stages. To begin, each individual agent in the popu-
lation has the opportunity to defect in an ordinary N -player prisoner’s dilemma.
If an individual defects, he receives a reward T , imposes a small cost H on all
other players, and incurs a small chance of being seen. If the defector is spotted,
then the person who spotted the defector may choose to punish the defector. If
punishment occurs, the punisher incurs a small “enforcement cost” E and the
defector incurs a sizable cost P as punishment.

An individual strategy in the norms game is an ordered pair (b, v), with
0 ≤ b, v ≤ 1, where b and v denote the boldness and vengefulness of a player,
respectively. Bold players are more likely to defect when given the opportunity,
and vengeful players are more likely to punish. The two values b and v are most
naturally interpreted as probabilities of defecting and punishing, respectively,
given the opportunity to do either.

The results of Axelrod’s simulation are shown in figure 8.1. A point on the
graph represents the average boldness and vengefulness of the entire population.
Arrows indicate the direction in which the evolutionary dynamics pushes the
population at a given point. The large black dots indicate points at which
one of Axelrod’s simulations terminated. From the diagram, one can see that
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“vengeful” strategies, that is, ones willing to punish observed defections, can
grow to dominate the population under certain conditions while, at the same
time, boldness falls almost to nothing. This would seem to provide the evolution
of a norm against defecting: people’s willingess to defect drops (that is, the
mean boldness falls) and their willingness to punish grows (that is, the mean
vengefulness climbs).

However, that is not the only evolutionary outcome. Inspection of the dia-
gram reveals that another possibility produced by evolution is the state in which
vengefulness increases almost to unity, and boldness falls nearly to zero. This
state corresponds to the Hobbesian state of nature: hardly anyone is willing
to punish defectors, and virtually everyone is willing to defect if given the
opportunity. The evolutionary story appears inadequate given how sensitive the
evolution of norms is to the initial conditions of the population.

Part of the problem with this evolutionary story, according to Axelrod, is that
it fails to include a very common social occurrence: the punishment of people
who fail to enforce a norm. Consequently, he introduced a “metanorms” game,
in which people who witness defection, yet fail to punish, can themselves be
punished. Figure 8.2 illustrates the metanorms game, with the results of the
simulation. The result here is that, when one allows people to be punished for
failing to enforce a norm, the norm for punishing can very quickly become
pervasive, as the diagram shows.4

4 However, Galan and Izquierdo (2005) argue that the results of Axelrod’s simulations are
unreliable: running simulations for longer times and modifying key parameters allow some of
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Suggestive as Axelrod’s results are, they, and the entire approach they il-
lustrate, nevertheless suffer from the same failing as has been attributed to
evolutionary explanations by D’Arms and Kitcher. It doesn’t matter that the
strategy labels are “punish” and “enforce a norm,” for the model still admits a
purely behavioral interpretation. All the model shows is that strategies requir-
ing players to be willing to incur an expense to impose costs on defectors, in
certain circumstances, will be favored in certain evolutionary contexts. Insofar
as the psychological makeup of the agents is concerned, there could be a variety
of reasons and motivating factors for why they choose to incur an expense to
impose costs on defectors. We don’t want an account of evolutionary pressures
that shows how people will come to act as if they are punishing defectors; we
want an account of why people really punish. We want an account of why peo-
ple care about justice, and an explanation for the feelings of moral outrage that
drive people to engage in retribution. Since the first approach to the problem
cannot provide this, it is time to set it aside and look elsewhere.

The second approach to the problem proceeds by enriching the conception
of boundedly rational agents to include nonstrategic, psychological elements.
It involves making explicit connections between evolutionary game theory and
psychology, and hence means that one no longer attempts to explain the origins
and nature of morality using just evolutionary game theory.5 One promising
example of work in this direction is that of Gerd Gigerenzer, Reinhard Selten,
and the researchers at the Center for Adaptive Behavior and Cognition in
Berlin. “Bounded rationality,” as understood by Gigerenzer, refers to the use
of “fast and frugal heuristics,” which are used by agents of limited cognitive
ability to make decisions. One can think of such heuristics as relatively reliable
algorithms, where the reliability of the algorithm stems from its exploitation of
structural features of the decision problem. In chapter 1, I referred to the use of
such heuristics as one motivation for considering the use of learning rules such
as Imitate-the-Best. We now have reason to revisit the topic.

Gigerenzer provides a useful example of such heuristics in action. Consider
the task of catching a fly ball in baseball. The standard computational approach
associated with “perfect rationality” requires the individual to (a) estimate the
relative velocity of the fly ball and the position from which it was launched, (b)
solve the complex differential equation describing its trajectory, (c) run toward

the claims to be overturned. This does not affect my central claim, though, which is that
Axelrod’s approach to providing thick descriptions of conformity with moral principles cannot
work, in principle.

5 This explains my scepticism on page 270. It is not that I am suddenly repudiating all of the
work done in previous chapters. Rather, I am explicitly acknowledging the explanatory limits of
what may be done using those tools alone.
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the location where the fly ball is predicted to land, and (d) revise continuously
en route the prediction of where the ball is going to land because factors such
as the ball’s spin may affect its trajectory, yet will be difficult for the outfielder
to estimate from his position on the ground. Clearly, this procedure requires an
incredible amount of computational power. A simpler approach – the fast and
frugal approach – consists of the following rule: estimate where the ball will
land, then begin to run toward that position keeping the angle between one’s
eye and the ball constant. Doing so will result in the outfielder catching the
ball. The desired effect, catching the ball, is achieved with less computational
overhead.

Recall D’Arms’s criticism about evolutionary explanations for the moral
principle of the equal split: when we don’t ask for half of the cake, “recognition
of the lost returns should suffice to bring us back on track.” Yes, such recognition
should suffice, but such recognition need not occur, at least not explicitly, nor as
often as required for agents to link poor performance with particular strategies.
We may recognize that we aren’t doing “as well as we’d like,” but yet be unable
to pin our failure to any particular act in any particular context. In the real
world, our interactions rarely come with specified payoff matrices that we are
shown ahead of time, and we rarely have the rules of the game explained to
us in detail. Our inability to correlate poor performance with the following of
certain strategies becomes more plausible once we recognize that the game
of life is significantly more complex and involves many more people than the
simple games typically studied.

Nonetheless, it is a fact that we are capable of identifying general rule-
governed relations and patterns, even when we cannot articulate the rule which
governs them. In One for All, Russell Hardin (1997) relates an experiment in
which people were subjected to electric shocks while listening to a sequence of
nonsense syllables. When the shock was correlated with the presence of a cer-
tain syllable, people would develop an anticipatory response to the impending
shock, although they were unable to articulate exactly why they were anticipat-
ing it. Given that we can recognize such relations and patterns, yet not be able to
identify the true underlying rule or process generating those relations, it makes
sense that boundedly rational agents will, in interdependent decision contexts,
set out rules for themselves to follow, if the strategic choice recommended by
the rule is sufficiently well correlated with successful payoffs.

Thus, I wish to suggest, the solution to the main problem is as follows:
evolutionary game theory, together with experimental psychology and recent
work in the theory of bounded rationality, can explain some of the structure
and content of our moral theories by working in tandem. Evolutionary game
theory allows us to identify certain types of behavior in interdependent decision
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problems that maximize the long-run expected utility of individuals. Given
this, there is then a further question as to what motivational structures exist for
actually producing this behavior in boundedly rational individuals. As I see it,
morality, broadly construed, plays two parts in the production of this utility-
maximizing behavior. First, the moral sentiments – the “morally relevant”
emotions, moods, interpersonal affective stances, and attitudes – motivate us to
act. Second, the content of moral theories instructs us how to act once we have
been motivated to do so. The outcomes produced by acting in accordance with
moral theory are such that they tend to maximize our expected utility over the
lifetime of the individual.6

This is not to say that acting in accordance with moral theory always maxi-
mizes one’s expected utility in the long run. Life is complicated and, because
the moral sentiments and the content of moral theories are only heuristics, there
is a lot that can go wrong. However, given that the kinds of interdependent de-
cision problems people face in society are ones that often preclude full rational
deliberation – because people lack information about the game, the exact payoff
structure of the other person, people’s past behavior, the likelihood that they
(or I) can get away with certain sorts of behavior, and so on – it is the best that
we can do. It is precisely because we cannot engage in full rational deliberation
about what to do, and because we face choices of this kind all the time, that it is
useful to rely on the heuristics governing social behavior which are embedded
in morality.

The above conception of boundedly rational agents using morality as a
heuristic in strategic contexts can be thought of in the following way: moral
heuristics govern the search for effective strategies (i.e., behaviors) in the
game of life. This invokes a conception of heuristics as composed of three
parts:

There are at least three important types of building blocks of which simple
heuristics are composed . . . (a) there are building blocks to guide information
search; (b) different heuristic building blocks determine how to stop search;
(c) other building blocks are used to make a decision based on the information
gathered. All of these building blocks can be influenced (or implemented) by
processes involving emotions . . . individual learning . . . and social learning.

(Sadrieh et al., 2001, pp. 93–94)

6 One might be inclined, I suppose, to view this as providing a kind of evolutionary foundation
for a variant of rule utilitarianism. However, there is one extremely important difference
between the view espoused here and that held by classical rule utilitarians: namely, there is no
guarantee that the rules obtained generate the greatest good for the greatest number (whatever
that means). At best, what I am assured of is that I will probably obtain the “greatest good” for
myself subject to the constraints placed by other people.



276 Philosophical reflections

An example of how moral principles function as heuristics governing a
search is indirectly provided by Braithwaite’s solution to the core problem in
Theory of Games as a Tool for the Moral Philosopher:

Suppose that Luke and Matthew are both bachelors, and occupy flats in a house
which has been converted into two flats by an architect who had ignored all
considerations of acoustics. Suppose that Luke can hear everything louder than a
conversation that takes place in Matthew’s flat, and vice versa . . . Suppose further
that each of them has only the hour from 9 to 10 in the evening for recreation, and
that it is impossible for either to change to another time. Suppose that Luke’s form
of recreation is to play classical music . . . and that Matthew’s amusement is to
improvise jazz on the trumpet . . . Suppose that the satisfaction each derives from
playing his instrument for the hour is affected, one way or the other, by whether the
other is playing . . . Suppose they put to me the problem: Can any plausible
principle be devised stating how they should divide the proportion of days . . . [that
they play] . . . so as to obtain maximum production of satisfaction . . . ?

(Braithwaite, 1954, p. 8)

Braithwaite, after discussing some additional assumptions, eventually recom-
mends that Luke and Matthew divide their playing times in the ratio of 17 to
26. But consider this solution for a minute. Why does not Braithwaite simply
recommend that Luke kill Matthew, thereby removing his noisy neighbor en-
tirely and enabling himself to enjoy his classical music whenever he wishes?
Or, if Braithwaite is Matthew’s friend, why not recommend the reverse?

The point is that, for Braithwaite, recommending that Luke kill Matthew
so that Luke may obtain increased enjoyment of classical music is not even
considered an option. Yet there is no a priori reason why this possibility should
be excluded, given the nature of the fundamental conflict of interest underlying
this decision problem. Luke’s killing Matthew is a real option and it does,
at least in principle, belong to the feasible set. However, we would consider
there to be something very deeply wrong with an individual who treated that
outcome as actually belonging to the feasible set. The reason why, for Braith-
waite, the theory of games is merely a tool for the moral philosopher – not
a wholesale replacement for moral theory – is that Braithwaite assumes that
the shape of the feasible set is already determined by a moral perspective.
That is, one first takes the set of physically possible outcomes and passes them
through the filter of a moral theory to obtain the feasible set. As Gigerenzer
and Selten (2001, p. 5) note, “a key process in bounded rationality is limited
search.” Moral theories facilitate limitation of the search for solutions to inter-
personal decision problems by virtue of the shape they impose on the feasible
set.

Moral theories also include heuristics that guide information searches. If I
am told that Jones killed Sam, my moral training compels me to ask, before
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passing judgment, whether certain standard exculpating conditions obtain. Did
Sam attack Jones with murderous intent? This is nothing more than a guided
information search. Moral theories also include heuristics that tell us when to
terminate an information search. If I find out that Sam attacked Jones without
provocation and with murderous intent (and suitable means to carry out the
assault), and that Jones defended himself without using excessive force, our
moral theories tell us that, ceteris paribus, we need not continue collecting
information before making a judgment as to the moral worth of Jones’s action.
Sam’s death might be a regrettable outcome, but Jones did no wrong. Lastly,
moral theories include general heuristics that lead us to make a decision on the
information gathered. If A killed B under such-and-such (roughly specified)
conditions, then A acted out of self-defense and is not morally culpable.

The thought that morality might best be understood as evolved heuristics
is not entirely new. Allan Gibbard hints at such a view in Wise Choices, Apt
Feelings:

We avoid cheating and fraud, more or less. On the whole we probably gain more
from these plain scruples than we would from close, egoistic calculations that
probed the limits of what we could do with impunity.

(Gibbard, 1990, p. 258)

Gibbard and I are in agreement here. However, I think we can be a bit more
explicit than just saying “we probably gain more” in explaining how it is that
the heuristics help us. To reiterate the mantra, following heuristics to avoid
cheating and fraud tends to maximize my expected utility in the long run,
given my preferences (and the preferences of other people) and the way social
interactions are structured.

On a number of points, though, Gibbard and I part company. First, Gibbard
suggests that many of the heuristics which operate were fixed by natural se-
lection at the biological level. Regarding the psychological mechanisms which
motivate individual action, he writes (italics mine) that

We should not imagine a sly, unconscious general-purpose calculator, assessing
advantage and then producing the most advantageous feelings for a person’s
circumstance. The picture should rather be one of specific psychic mechanisms,
some of them emotional. Each mechanism responds to special sorts of cues in
special ways. Natural selection itself is the prime general-purpose calculator, but it
calculated long ago, blind to current novelties. It produced a set of heuristics, a set
of useful rules for reproducing as a hunter–gatherer.

(Gibbard, 1990, p. 259)

The extent to which one agrees with the above quote depends considerably on
the extent to which one agrees with the general research program of evolutionary
psychology. I do not doubt that much of our psychological life has been shaped
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considerably by evolutionary pressures; the question is simply whether the
evolutionary pressures which shaped our moral life are primarily biological or
cultural pressures. Gibbard plumps for biological evolution as the source of the
heuristics, whereas I favor cultural evolution.

That said, Gibbard does circumscribe the role of biological evolution. Even
if our capacity to make judgments of fairness has evolved,

[n]o unique standard of fairness is wired into our brains, if my story is right.
Judgments of fairness are shaped in part by complex workings of normative
discussion.

(Gibbard, 1990, p. 262)

Here, though, I suspect that normative discussion plays a less significant role in
our judgments of fairness. I think our sense of fairness is fairly well calibrated
to track behaviors and outcomes that satisfy our preferences to the greatest
extent possible subject to constraints. The theories and principles which we
use to explain why an outcome is fair might very well be shaped by normative
discussion (theories have to come from somewhere), but the reason why those
theories have the form that they do is not due to discussion. Moral theories
have the form they do because it is a fact that social beings such as us, who
have preferences of a certain kind, maximize our long-run expected utility by
behaving in ways that conform to certain moral principles.

There are two other points of divergence between my view and Gibbard’s,
which I would like to discuss briefly. The first concerns the type of adaptive
problem for which evolution has developed an solution, and the second concerns
the notion of stability which underlies the view. Let us consider each of these
in turn.

What is the core adaptive problem our moral nature addresses? According
to Gibbard, the “key to our moral nature . . . lies in coordination broadly con-
ceived” (Gibbard, 1990, p. 26). More generally, “[s]ystems of normative control
in human beings . . . are adapted to achieve interpersonal coordination” (Gib-
bard, 1990, p. 64). Problems of interpersonal coordination are certainly impor-
tant for understanding human nature, but not all interpersonal decision problems
are problems of coordination, even under the broad conception of coordination
urged by Gibbard.7 The key to our moral nature, rather, lies in the fact that we
all face repeated interpersonal decision problems – of many types – in socially
structured environments.

7 Consider the simplest case: two-player, two-strategy symmetric games. One can show that
every one of these games (without payoff ties) falls into one of three different categories: those
which are like the prisoner’s dilemma, those which are like coordination games, and those
which are like the Hawk–Dove game discussed in chapter 2 (see Weibull, 1995, p. 30).
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Now let us turn to the notion of stability. For Gibbard, judgments of fairness
are shaped by normative discussion. Certainly other aspects of moral theory
will be shaped by normative discussion as well. How are we to understand the
process of normative discussion?

Normative discussion must tend toward all accepting the same norms, and
acceptance of norms must tend to guide action. Selection pressures could develop
and maintain these tendencies only if, in the context of others’ having them, having
these tendencies oneself enhanced one’s fitness. The tendencies, in other words,
would have to constitute an evolutionarily stable strategy.

(Gibbard, 1990, p. 76)

Our moral nature, by virtue of being shaped by normative discussion, will thus
tend towards behaviors that constitute evolutionarily stable strategies.

Although I have discussed evolutionarily stable strategies at various points
in this book, the primary notion of stability has been a kind of dynamic stability.
This was deliberate, for I think that formal game-theoretic notions of stability
are of little use for helping to explain and understand our evolved moral nature.
This is a heretical view, admittedly, but one I think capable of being supported
by argument.

Gibbard, as indicated above, disagrees. So does Ken Binmore, who states
that “[s]tability tells us that social contracts need to be equilibria in the game
of life” (Binmore, 2005, p. 14). (The notion of “equilibria” Binmore refers to
is that of a Nash equilibrium.) There is a straightforward relationship between
evolutionarily stable strategies and the set of Nash equilibria: the set of evo-
lutionarily stable strategies is a subset of those strategies which are in Nash
equilibrium with themselves (see Weibull, 1995, pp. 27 and 37). Consequently,
the argument will proceed in two parts: first, an argument for why we should
not use the concept of a Nash equilibrium as the primary analytical tool for
explaining and understanding our moral nature; and second, an argument for
why we should try to explain our moral nature by invoking a general notion of
dynamic stability.

Let us assume that our moral nature is an evolved response to handling
interpersonal decision problems. Why should the concept of a Nash equilibrium
not be the primary analytical tool for understanding our moral nature? While a
great many of the decision problems we face in society involve two people, other
decision problems involve many more, and the notion of a Nash equilibrium
is less useful in these cases. Suppose that we are all faced with an N -player
decision problem, and that some assignment of strategies to players is a Nash
equilibrium. The defining feature of a Nash equilibrium is that each person’s
strategy is a best response to the strategies held by the others. That is, so long
as no one else deviates, it is not in my interest to change what I do. But why
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should we consider only the prospects of isolated individual deviations from
equilibrium play? Both Bonnie and Clyde might decide to renege on their part
to play in society. Once society reaches any considerable size, the possibility
of regular coordinated deviations from equilibrium play is a fact of life we will
have to face.

A second reason is that we have no guarantee that a Nash equilibrium in
the game of life even exists. It is well known that games with infinitely many
strategies can have no Nash equilibrium. How many strategies does the game
of life have?

A third reason is that, even if a Nash equilibrium exists for the game of
life, we have no guarantee that we would be able to find it. Prasad (1991,
1997) shows, in a series of extremely clever arguments, that there are games in
which it is possible for us to know that a Nash equilibrium exists while, at the
same time, the problem of determining the Nash equilibrium is noncomputable!
Thus, even if we set aside the question of whether we humans are boundedly
rational or not,8 it is possible that even a perfectly rational agent would be
unable to figure out what the Nash equilibrium is in the game of life.9

Let us now turn to the second argument: why a general notion of dynamic
stability is more useful for explaining and understanding our evolved moral
nature. This amounts to a shift away from the search for evolutionarily stable
strategies. Because the set of evolutionarily stable strategies is a subset of
strategies that are in Nash equilibrium with themselves, all of the arguments
mentioned above apply here, as well.

Yet there is an important pragmatic reason why we should be more concerned
with dynamic stability: in practice, nothing is evolutionarily stable. One proves
the existence of evolutionarily stable strategies by fixing, once and for all, the
space of possible strategies for an artificial game. In the real world, though,
evolution is open-ended and strategy spaces are unbounded. There will always
be something better coming along in the future. Or, as the joke says, to a first
approximation all species are extinct.

But that’s perfectly fine. On the view I have sketched here, a notion of
dynamic stability – or even a notion of being “relatively stable” such as “unlikely
to be driven out within a reasonably long time frame” – suffices for explaining
how our moral sentiments and moral theories could have evolved.10 Lest one

8 We are.
9 Provided that the computational abilities of a rational agent are restricted to the realm of

recursive functions of positive integers (i.e., to the realm of things traditionally viewed as
computable under the Church–Turing thesis).

10 I am deliberately avoiding a discussion of what I take to be the right formal stability concept,
since it would take us too far afield. For an informal sense of what I mean, think back to how
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think that we need something more substantive than a weak notion of stability
on which to base morality, keep in mind that there is nothing “weak” about
being relatively stable. As so many geopolitical conflicts serve to illustrate,
stability in heterogeneous populations where there are many competing ends
can be notoriously difficult to achieve. The costs of failing to achieve it can be
extremely high, as evidenced by so many recent examples of genocide.

8.3 Artificial virtue

One may find it difficult to see how the view which treats moral principles as
heuristics that maximize our long-run expected utility can account for all of
morality. Indeed, one may feel inclined to argue that many of our moral prin-
ciples have little, if anything, to do with maximizing our long-term expected
utility. There is much to say about this. To begin, one must appreciate the flex-
ibility of the contemporary notion of expected utility maximization. Provided
that people have a consistent and coherent set of preferences governing their
choice of behavior, it is always possible to define a utility function f over
outcomes such that, if people choose in a manner consistent with their prefer-
ences, we can say that they are acting as if they were maximizing their expected
utility. Since these preferences may range over anything, including the benefits
obtained by other people and their overall well-being, the notion of long-term
expected utility maximization can encompass purely altruistic behavior as well
as purely selfish behavior. This objection thus rests on nothing more than a very
serious misunderstanding of the standard theory of expected utility.

A more important concern involves the transition from the kinds of simplistic
models considered in previous chapters – and the kinds of simplistic moral
principles to which they give rise – to the rich and subtly nuanced intuitions
embodied in contemporary moral theory. The game of divide-the-cake is a
very simple game, and the moral principle it gives rise to is a very simple
principle. Our contemporary moral life, though, contains a vast array of complex
interrelating intuitions. Even assuming that the story told so far does account
for the origins of moral principles like “share equally in perfectly symmetric
situations,” how did we get here from there?

The science of morality is only in its infancy, so any attempt at gesturing
towards an answer will always leave itself open to the criticism of figure 8.3.

many of the results discussed in chapters 3 through 7 amounted to essentially showing that a
behavior did well enough to tend to dominate in the population, while resisting being driven
out.
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“I think you should be more explicit here in step two.”

Figure 8.3 A standard criticism of theories about the evolution of morality (Harris,
1981).

Even so, there is no reason why we should not make the attempt. No matter
how complete a story one puts forward, there will always be some questions
that remain unanswered.

In this section, I wish to sketch how the view of morality defended previously
can, in principle, be extended to account for much of the rich content of our
current moral life. I shall do so by invoking Hume’s distinction between the
natural and artificial virtues. It should be noted that my concern here is not to
make sense of what Hume meant by these terms, but rather to show how the
framework developed enables us to speak of natural and artificial virtues in a
way that, although not Hume’s, is certainly Humean. Much of what I say here
shall be speculative but the general spirit is, I think, correct – at least in broad
outline.

Recall Hume’s distinction between the natural virtues and the artificial
virtues from the Treatise:

. . . our sense of every kind of virtue is not natural; but . . . there are some virtues,
that produce pleasure and approbation by means of an artifice or contrivance, which
arises from the circumstances and necessities of mankind.

(Treatise, Book III, Part II, Section I, p. 477)

The natural virtues, for Hume, are those which “produce pleasure and approba-
tion” from means other than the “circumstances and necessities of mankind.”
That is, the source of approbation for natural virtues derives from natural affec-
tion, or other sentiments, which we possess simply as a result of being human,
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and is not culturally or socially constructed. Why do we blame a father when
he neglects his child? According to Hume, it is because it “shews a want of
natural affection.”

Artificial virtues, on the other hand, do not derive from such natural affec-
tions. Consider, for example, the virtue of honesty with respect to property,
which Hume includes among the artificial virtues. The reason why we feel
approbation for this virtue is simply because we know that respect for personal
property is necessary, given the circumstances of mankind. Human societies
of any significant size and scale would not be possible without honesty with
respect to property.

Hume was writing without the benefit of having Darwin’s theory of evolution
ready to hand. Yet, given that we have this advantage, we might seek to ground
the distinction between natural and artificial virtues somewhat differently. To do
so, let us return to one of the central themes underlying this book: interdependent
decision problems.

It is a basic fact of humanity that all of us, each day, face a variety of
interdependent decision problems. This was a basic fact of existence even before
there were homo sapiens. We evolved from social primates who themselves
faced interdependent decision problems. One of the lessons of evolutionary
game theory is that the animal kingdom is rife with interdependent decision
problems, even if the animals which face these problems lack the cognitive
machinery to conceptualize and represent these problems to themselves as
such.

However, and this seems to me to be the crucial point, some of the interde-
pendent decision problems we must contend with are ones inherited from our
evolutionary history, whereas other problems are ones we have created for our-
selves. Call these decision problems of the first and second type, respectively.
This presents one important departure from Hume’s view. In distinguishing
between the natural and artificial virtues, Hume based this distinction upon
whether the approbation we feel when contemplating those virtues arose “from
the circumstances and necessities of mankind” or not. Yet this fails to distin-
guish between types of virtues, for all interdependent decision problems derive
from the circumstances and necessities of mankind; we are social beings, after
all. What we can do, though, is differentiate interdependent decision problems
thrust upon us by our evolutionary heritage from those which were not. From
this, we can then recover a distinction between natural and artificial virtues,
which, albeit not Hume’s, is most certainly Humean in spirit.

Recall that, for Hume, character traits are the objects of moral evaluation.
Certain positive traits are considered virtuous, and certain negative traits are
considered vices. What is a character trait? Roughly, a character trait is a
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psychological disposition that tends to cause people to act in certain ways.
Actions consist, in part, of behavior, and some behaviors are responses to inter-
dependent decision problems. Possessing certain character traits, then, can be
interpreted as adopting (or holding) certain strategies for use in interdependent
decision problems.

Character traits that generate behavior for interdependent decision problems
can then be divided, roughly, into two categories on the basis of the kind of
interdependent decision problem they are most commonly invoked to solve.
This presents a second revision of Hume’s view. Whereas, for Hume, the
distinction between natural and artificial virtues concerned the origin of the
character traits themselves, in my view the distinction between natural and
artificial virtues derives from the source of the problem in which they are most
commonly invoked.

It is the case that my distinction between natural and artificial virtues be-
comes somewhat blurred, for some virtues may be invoked in more than one
class of decision problem. This should not be seen as problematic, though,
because reasonably clear cases of both types do exist. Consider the virtue of
paternal beneficence. This character trait is most typically invoked in decision
problems of the first type, and hence classified as a natural virtue (in my sense
of the term), which is in agreement with Hume. The virtue of honesty with
respect to property is exclusively invoked in decision problems of the second
type, and hence classified as an artificial virtue (in my sense of the term), also
in agreement with Hume.

We now have all the tools we need to sketch a story about the evolution of
morality. Back when homo sapiens was emerging as a species, our evolutionary
heritage had saddled us with a variety of interdependent decision problems
each of us had to solve. Evolution had already crafted solutions, of one form
or another, to these problems. These solutions were embodied in emotions and
other cognitive machinery,11 and generated adaptively beneficial behavior.

As we evolved, and our cognitive abilities increased, this changed the nature
of the interdependent decision problems we faced. Consider the notion of
personal property. Before we had the ability to make use of found objects as
tools or clothing, there was no need for the concept of personal property: the
notion of a particular object belonging to someone had no role to play in our
cognitive space.12 However, once we became tool users, and possession of

11 Perhaps even in the form of the evolved psychological mechanisms that evolutionary
psychologists speak of, although one need not be committed to this.

12 Notice that there is an important difference between property rights, in the sense of objects that
belong to a person, and property rights, in the sense of space or territory that a person has
claim to. Many animals that are not tool users exhibit territoriality.
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effective tools conferred corresponding fitness benefits on a person, a new class
of interdependent decision problems was suddenly created. How was one to
determine which person had a claim to use which tool? This problem forced
itself upon our ancestors, even before they could articulate it or recognize it as
a problem.

The growth of our cognitive capacity – and the creation of new interdepen-
dent decision problems – was accompanied by the growth and development of
language. We became capable of describing the world around us, as well as our
own mental life. We became able to attribute beliefs, desires, dispositions, and
so on, to ourselves and other people. We could then express what we wanted
and communicate our desires to others. Negotiation became possible, as well
as misleading, misrepresenting, and a host of deceptive practices.

At some point, our language became sufficiently expressive to describe
in a rudimentary fashion the small societies humans lived in, and the kinds
of behavior people performed in these societies. People, acting as pattern-
recognition machines, already knew, in some form or another, what forms of
behavior were conducive to stable, mutually beneficial societies. At this point,
if not earlier, key elements of the language of morality entered, including the
concept of punishment, shame, threats to the common good, social roles, as
well as the notions of duty and obligation.

Earlier, I said that the distinction between natural and artificial virtues was
best viewed as deriving from the distinction between interdependent decision
problems inherited from our evolutionary history, versus problems created by
ourselves. As the short, purely fictional, discussion above makes clear, even
this dividing line is not so clear. Is the interdependent decision problem which
the virtue of honesty with respect to property solves a problem inherited from
our evolutionary history, or one created by ourselves? Can it be said to be both?

Regardless, the following seems clear: once we have acquired the ability to
theorize about morality, about what we value, and to articulate why we value
what we value, we have arrived at the crucial dividing point between natural
and artificial virtues. The natural virtues are seen by us as virtues due to our
evolutionary heritage. We do not choose to value parental beneficence, we
simply do. We are, so to speak, hard-wired for it. But when I identify myself as
a British citizen, or as a member of the European Union, or of the human race in
toto, rather than with exclusively local allegiances, I am making a choice about
what I value. Artificial virtues, like nationalism, are of use in realizing desired
outcomes we have chosen, either explicitly or implicitly. Are these virtues seen
by us as virtues due to their usefulness in realizing some ulterior motive? Or are
these ulterior motives realized because we first long to possess the associated
virtue? Both may be true.
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Recall E. O. Wilson’s famous observation from On Human Nature (1988)
that “genes hold culture on a leash.” We might make a similar observation
regarding the relationship between natural and artificial virtues. Consider the
view that there is nothing like an essential human nature; rather, who we are is
entirely a product of choices we make. This view of humanity is intoxicating,
for it suggests that all aspects of life, including who we are, and what we
value, may be re-shaped. Yet how does this re-shaping occur? As the product
of individual choices.

Therein lies the rub. All choice relies upon preexisting preferences. Where do
these preferences come from? Some are acquired, some are not. Likewise, some
of the things we view as virtues are learned – these are the artificial virtues – and
some are not – these are the natural virtues. Given that we cannot change the
natural virtues, for they are hard-wired into us, the extent to which the artificial
virtues may be shaped by choice is constrained by the natural virtues. Do we
know the extent to which the natural virtues constrain the artificial virtues?
No, we do not. But, like all empirical questions, this admission of ignorance is
nothing more than a call to action.

8.4 Evidential support

So much for just-so stories and what might be viewed by some as philosoph-
ical flights of fancy. Let us return to the hard facts. Do we have evidence
that peoples’ moral beliefs have been shaped by evolutionary considerations?
Do we have evidence that moral principles can be understood as heuristics
in the way articulated above? The evidence is still far from certain, but in
closing I want to discuss the results of two experiments, which are highly
suggestive.13

Experiments have found that people favor following different moral rules
in different contextually specified distribution problems. In their classic 1984
paper “On dividing justly,” Yaari and Bar-Hillel presented subjects with distri-
bution problems phrased according to one of the following categories:

(1) differences in needs,
(2) differences in tastes,
(3) differences in beliefs.

13 These two experiments barely scratch the surface of a vast topic. However, even to attempt a
decent discussion of the empirical evidence for the evolution of morality would require an
entire second volume on its own. For a start, see de Waal (1996, 1998, 2005), Shermer (2004),
and Ridley (1996).
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In the first category, subjects tended to favor Rawls’s maximin principle, which
divides goods so as to make the position of the worst-off individual as good as
possible. When faced with a choice in category (2), subjects increased their use
of the utilitarian distribution principle and decreased their use of the maximin
principle. This occurred even though the problems presented in categories (1)
and (2) had the same mathematical representation.

The connection between maximin rules and need-based distribution prob-
lems makes good evolutionary sense. If someone will die unless they obtain a
minimum amount of a good, and you don’t know ahead of time that you won’t
receive the short end of the stick, then, from the point of view of survival, you
should favor distributing that good according to a maximin rule. (This may also
be viewed as an application of the decision principle of Disaster Avoidance.) In
cases of distributing goods solely according to the pleasure conferred, it makes
more sense to adopt a distribution rule like the utilitarian one, since you will
then experience as much pleasure as possible compatible with the constraints
imposed by the presence of other people. Different moral principles can thus
serve as heuristics that provide solutions to distribution problems according to
various contextual cues.

What about people’s conception of fairness? Do we have evidence suggest-
ing that this may be shaped by an evolutionary process? In a 1993 paper, “Focal
points and bargaining games,” Ken Binmore and others ran a series of experi-
ments examining this question. Subjects were randomly assigned to one of four
groups and put through an initial “training phase” during which they played
a repeated asymmetric Nash demand game against a computer opponent (see
figure 8.4). Although subjects were told that the purpose of the training was
merely to familiarize them with the operation of the computer interface, the
computer opponent was actually programmed to try to condition the subject to
play one of four equilibrium outcomes selected by a bargaining theory.

People were trained to play one of four equilibrium outcomes: the Equal
Increments solution, the Kalai–Smorodinsky solution, the Nash bargaining
solution, and the Utilitarian solution. The Equal Increments solution is obtained
by following the line y = x up to the point where it intersects the Pareto frontier.
(It also corresponds to Rawls’s maximin criterion in the case in which the
players are treated symmetrically.)

The Kalai–Smorodinsky solution is obtained via the following procedure.

1. Identify the “utopia point” (m1, m2), where m1 is the maximum possible
payoff for player 1, and m2 is the maximum possible payoff for player 2.
The utopia point thus corresponds to the ideal distribution ignoring all
considerations imposed by the shape of the feasible set.
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Figure 8.4 Outcomes from the bargaining experiment of Binmore et al. (1993).

2. Draw the line > connecting the disagreement point to the utopia point.
3. The point where > crosses the Pareto frontier is the Kalai–Smorodinsky

solution.

The intuition behind the Kalai–Smorodinsky solution is that each player should
proportionally scale back his or her demands from the best that they can hope
for until they reach a feasible point.

The Nash bargaining solution is slightly more difficult to describe than the
Kalai–Smorodinsky solution. To begin, let F denote the feasible set of the
bargaining problem. We’ll assume that F is bounded and convex.14 The Nash
solution is obtained via the following procedure.

1. Since the utility function for each player is unique only up to a positive
affine transformation, rescale each player’s utility function to move the
disagreement point to the origin. Call the new feasible set resulting from
the rescaling F ′.

14 A set S is convex if, given any two points p1, p2 ∈ S, the line connecting p1 and p2 lies
entirely within S. There is no real loss of generality in assuming that F is convex because, if it
isn’t, but we allow randomization when assigning outcomes, then the set of expected utilities,
taking into account randomization, is convex.
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2. The Nash solution is that point (n′1, n′2) ∈ F ′ such that the product n′1n′2 is
the greatest of all products n1n2, where (n1, n2) ∈ F ′.

The reason why the Nash solution warrants consideration is that it is the
provably unique solution satisfying several very natural desiderata.15

Lastly, the Utilitarian solution simply chooses that point from the feasible
set which maximizes the sum of the payoffs to both players. The primary reason
for considering the Utilitarian solution is that it has, together with the Equal
Increments solution, the greatest aura of legitimacy among philosophers.

It need not be the case that all four points recommend different solutions
to a bargaining problem. Indeed, in the symmetric game of divide-the-cake
considered in chapter 5, all four solutions agree on their recommendation.
Binmore et al. studied the particular asymmetric game shown in figure 8.4
because that game has the property that the above-mentioned four solution
points disagree.

After subjects had completed the training period, they played against each
other for real money. Figure 8.4 shows aggregate statistics and paths for groups
of subjects. On each path, three points are shown: the initial point that a
particular group of subjects had been conditioned to play by the training period,
the point subjects had arrived at midway through the experiment, and the final
point arrived at when the experiment was terminated. Note the following.

1. It was possible to condition subjects to conform, more or less, to any one of
the four equilibria.

2. After conditioning, subjects initially continued to play (for a short while)
as they had been conditioned to play.

3. The two equilibrium points with the greatest amount of support in the
philosophical literature – the Equal Increments point and the Utilitarian
point – are extremely unstable. That is, subjects rapidly deviate from them
when given the opportunity.

4. The final outcome subjects arrive at depends upon their initial conditioning.

At the end of the experiment, Binmore asked subjects to say whether they
thought that the outcome of the bargaining game was fair (see figure 8.5).
Subjects exhibited a strong tendency to identify as fair whatever outcome was
arrived at by their group at the end of the experiment. The moral of the story,
then, is this: people’s conception of fairness (which I take to be reflected in
the strategies they play) is flexible and can be made to conform to salient

15 Namely, that the solution to the bargaining problem should be invariant under choice of utility
function, on the Pareto frontier, and independent of irrelevant alternatives, and should satisfy a
symmetry condition.
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Figure 8.5 Comparison of the medians of the last claims made by player 1 in
each experiment with the medians of the claims said to be “fair” for player 1 (from
Binmore et al., 1993).

“focal points.”16 Moreover, perceptions of fairness are connected to the general
behavior followed by the group to which they belong.

8.5 Conclusion

In this book, I have attempted to show how boundedly rational individuals
who face decision problems in structured environments, and who make choices
using rules like Imitate-the-Best, would learn to behave morally. I have argued
that such individuals would learn to cooperate in the prisoner’s dilemma, trust
in the Stag Hunt, share equally in resource-allocation problems, and even (in
some limited cases) behave fairly while adopting punitive behavior for unfair
offers in the ultimatum game. I have also argued that many of these tendencies
persist when we move from considering two-player games to N -player games.
The results are not conclusive, of course, but they are, I believe, better than
merely suggestive.

16 Notice that this provides some degree of support for Gibbard’s claim that “judgments of
fairness are shaped in part by complex workings of normative discussion.” Although I suspect
it’s unlikely that this experimental environment approximates anything close to what Gibbard
would consider normative discussion, it does show how judgments of fairness can be
shaped.
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In this chapter, I have attempted to show how the results discussed in the
rest of the book can be used to support a conception of morality that exists
harmoniously with the evolutionary account. In doing so, I’ve attempted to
respond to the criticism that previous evolutionary explanations of morality fell
short in several important respects.

For Braithwaite, the theory of games was a tool for the moral philosopher
because it allowed the moralist to recommend solutions to interdependent de-
cision problems in cases where no moral principle served to settle the debate
clearly. For us, I suggest, the theory of evolutionary games can be a tool for
the moral philosopher in a rather different sense. Rather than recommending
particular solutions to problems, evolutionary game theory, coupled with the
theory of bounded rationality and recent work bridging the gap between psy-
chology and economics, provides what appears to be a radical restructuring
of the foundations of moral theory. According to the view I’ve suggested, the
recommendations, constraints, and obligations imposed by moral theories are
real and binding – but also somewhat arbitrary. If we were different kinds of
creatures, and if our societies were structured differently, our lives would be
composed of very different interdependent decision problems. Consequently,
the moral theories which legislate certain actions as a means of solving those
problems would also be different.

This means that our moral beliefs are simultaneously relative to our evolu-
tionary history and our cultural background, but at the same time objectively
true. Insofar as our moral beliefs provide solutions to interdependent decision
problems, we cannot say that any one solution is better than any other – in an
abstract sense – because, detached from our preferences, there is no absolute
standard from which to judge. Given our preferences, and from our own per-
sonal point of view, there can be an objective moral theory that prescribes the
best way of satisfying those preferences.

Yet is the restructuring described here really so radical? At the end of the day,
I don’t think so. This account is, I believe, Humean. What it does show, though,
is just how much work must be undertaken in order to unpack Hume’s “certain
proposition” that “[T]is only from the selfishness and confin’d generosity of
men, along with the scanty provision nature has made for his wants, that justice
derives its origin.”17 And, as for the origin of justice, so for the rest of morality.

17 A Treatise of Human Nature, Book III, part II, section II.
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