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Today

Today: Can the concepts of bounded rationality and networks help
to explain how cooperative behavior might emerge in communities?

First, let’s see why this question is sometimes thought to be
difficult from a classical perspective in economics . . .
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better in every state of the world than the corresponding ones for
going to the Biergarten.



Dominance

Sun Rain

Frisbee 5 -1

Biergarten 4 -2

Dominance: Playing Frisbee is the dominant action: its payoffs are
better in every state of the world than the corresponding ones for
going to the Biergarten.



Minimax

Sun Rain

Read 2 3

Biergarten 4 -2

Minimax: Reading is the minimax action. It’s worst-case payoff (2)
is better than the worst-case payoff of going to the Biergarten (-2).
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Expected Utility Maximization

Suppose you fully believe the weather forecast, which claims the
chance of rain is .5%.

Sun Rain
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Biergarten 4 -3

Maximized Expected Utility: The subjective expected utility of
going to the Biergarten is higher than that of reading.

seu(Biergarten) = .995 · 4− .005 · 3 = 3.965

seu(Read) = .995 · 2 + .005 ∗ 3 = 2.005
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Three Decision Rules

Here are two simple observations about dominance:

Theorem

Suppose a is a dominant action. Then a is a minimax action and
also maximizes subjective expected utility.
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Dominant actions maximize expected utility:
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seu(Biergarten) = (4 · p) + (−4 · (1− p))

Each term in the sum of Frisbee is bigger than the corresponding
term for Biergarten
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Three Decision Rules

Here are two simple observations about dominance:

1 Fact: Suppose a is a dominant action. Then a is a minimax
action and also maximizes subjective expected utility.

2 Dominance is a well-defined decision rule even if

One does not assign states of the world probabilities; in fact,
dominance does not even require qualitative comparison of the
likelihood of outcomes.
One does not assign outcomes numerical payoffs; the decision
rule makes sense even if outcomes can only be qualitatively
compared.
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Dominance in Game Theory

Cooperate Defect

Cooperate 2,2 0,3

Defect 3,0 1,1

In game theory, one player’s strategies are his opponent’s
states of the world.

So dominance says that, if the outcome of employing a1 is
better than that of a2 for each possible strategy employed by
one’s opponent, then one should not choose a2.
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A classical prisoner’s dilemma has the following structure:

Cooperate Defect

Cooperate 2,2 0,3

Defect 3,0 1,1

From the standpoint of row player, is there a dominant action?
What about column player?
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Dominance in One Shot Prisoners’ Dilemmas

In a Prisoner’s Dilemma, the dominant action is to defect.

By the first remark, it is also an seu maximizing action.

So according to the classical economic view, rational actors
will defect in a prisoner’s dilemma.

By the second remark, rational actors will defect regardless
of the

Numerical payoffs in the outcomes and
Likelihood that their opponent employs a particular strategy.
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What happens if a prisoner’s dilemma is repeated?

For concreteness, let’s assume its repeated five times, and the total
payoff to a player is the sum of his payoffs of each play.
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Repeated PDs

The strategy space is now much larger for players.

One strategy is to defect all the time; one is to cooperate
always.

But a player’s actions may also depend upon previous moves
by his opponent. E.g.,

grim: Cooperate until one’s opponent does not. Defect on
every subsequent stage.
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Defect 3,0 1,1

Always cooperate vs. grim ⇒

5 · 2 = 10
Always defect vs. grim ⇒ 3 + (4 · 1) = 7
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Repeated PDs

So always defecting is not a dominant action in some repeated
PDs!

Have we saved ourselves from a pessimistic conclusion about
rational actors in PDs?

Not so fast.
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Iterated Elimination of Dominated Strategies

Left Center Right

Top 0,2 3,1 2,3

Middle 1,4 2,2 4,1

Bottom 2,1 4,4 3,2

Is there any action that is dominated? (Hint: Look at row player
first, whose payoffs are on the left).
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won’t choose Bottom.

Suppose Column knows Row is rational. What outcomes will
Column consider?
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Are there any actions that are dominated from Column’s
perspective?

Yes. Center dominates Right. So if Column is rational, she won’t
play Right.
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Center Right

Bottom 4,4 3,2

As Bottom dominates Middle.
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Center

Bottom 4,4

As Center dominates Right.



Iterated Elimination of Dominated Strategies

Moral: In a game with rational players who knew each other to be
rational, contestants will not choose strategies that can be
eliminated by considerations of dominance in this manner.



Iterated Elimination of Dominated Strategies

Let’s apply this reasoning to a repeated PD.
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Suppose a PD is repeated five times.

Take any strategy you like (E.g. always cooperate, grim,
etc.). Call it s.

Suppose s cooperates in round five.

Define a strategy s∗ that is just like s, except that s defects
on the fifth stage, regardless of what has happened previously
in the game.

What is the relationship between s and s∗?
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Suppose your opponent plays strategy t.

Then s and s∗ earn the same payoffs up to stage five versus t.

So the difference between s and s∗ comes down to the last
stage.

Remember: defecting is dominant in a one shot game.

So regardless of the opponent’s strategy t, the strategy s∗ will
have better outcomes than s on the last stage.
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opponent, s∗ is at least as good as s on the first four stages,
and it is strictly better on the last.

So s∗ dominates s.
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Let s be any strategy that defects on the last stage.

Suppose s cooperates on the second to last stage.

Define s∗ to be just like s, except that s∗ defects on the
second to last stage.

By the same reasoning as before, s∗ dominates s against
strategies that defect on the last stage.
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Moral 1: In a repeated PD, the only strategy that survives the
repeated elimination of dominated strategies is to defect always.

Again, this argument did not depend upon agents making
judgments of probability.

It also does not depend upon payoffs being numerical, but I don’t
want to state the assumption that is necessary . . .
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Iterated Elimination of Dominated Strategies

Moral 2: If agents are rational in the classical sense, it seems hard
to explain how cooperation might emerge in prisoner’s dilemma
like games.
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Networks

Nodes = Agents
Edges = Indicate which agents “interact”
Colors = “Type” of Agent



Lattice Networks

A Lattice Network



Lattice Networks

Lattice networks

Were some of the first studied in abms, likely because they
are easy to program

Exhibit a number of formal properties (e.g. regularity) that
are uncommon in social networks.

Nonetheless, provide an easy starting point to experiment.



Common Features of Social Networks

Question: What happens when agents employ a boundedly
rational strategy - say “Imitate the Best Average” - in a PD on a
lattice network?

Answer: It depends upon the payoff structure. Let’s run some
simulations.



Common Features of Social Networks

Question: What happens in more complex networks?

Answer: It depends upon the payoff structure, the learning rule,
and the network structure. Let’s run some simulations.
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Question: What does this tell us about cooperation, especially if
the models give different results?

Answers:

How possible stories vs. How so

Provides motivation and framework for particular empirical
investigations:

Many social scientists have characterized properties of real
social networks.
Biologists can sometimes quantify the energy spent by
organisms in acting; that is, they can measure the payoff
structure.
Both biologists and social scientists study learning rules
employed by organisms.
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Topics

Topics we’ll discuss today:

Global vs. Local Variables

If-then statements

Loops
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