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Reaching a Consensus 
MORRIS H. DeGROOT* 

Consider a group of individuals who must act together as a team or 
committee, and suppose that each individual in the group has his own 
subjective probability distribution for the unknown value of some 
parameter. A model is presented which describes how the group might 
reach agreement on a common subjective probability distribution 
for the parameter by pooling their individual opinions. The process 
leading to the consensus is explicitly described and the common dis- 
tribution that is reached is explicitly determined. The model can also 
be applied to problems of reaching a consensus when the opinion of 
each member of the group is represented simply as a point estimate of 
the parameter rather than as a probability distribution. 

1. INTRODUCTION 

Consider a group of k individuals who must act 
together as a team or committee, and suppose that each 
of these k individuals can specify his own subjective 
probability distribution for the unknown value of some 
parameter 6. In this article we shall present a model 
which describes how the group might reach a consensus 
and form a common subjective probability distribution 
for 0 simply by revealing their individual distributions to 
each other and pooling their opinions. 

The problem of attaining agreement about subjective 
probability distributions has been discussed by many 
writers, including Eisenberg and Gale [4], Stone [13], 
Madansky [7], Norvig [9], Winkler [14], Mlorris [8], 
and Savage [11]. Good surveys of much of this previous 
work are given by Winkler [14], Stael von Holstein 
[12], and Bacharach [1]. 

For i = 1, , k, we shall let Fi denote the subjective 
probability distribution which individual i assigns to the 
parameter 0. In the present work it is not necessary that 
0 be a real-valued parameter. Indeed, 0 may be regarded 
as any arbitrary variable whose value is not completely 
known to the k individuals. The value of 0 is assumed to 
lie in an abstract parameter space Q that is endowed 
with a o-field of measurable subsets for which proba- 
bilities can be specified. Thus, F1, *, Fk are subjective 
probability distributions over Q which represent the 
prior beliefs about 6 of the k individuals. In other words, 
for any measurable set A in the parameter space Q, 
Fi(A) is the prior probability of individual i that the 
value of 0 will lie in A. 

If pli, ..., Pk are nonnegative constants such that 
=1 pi-1, then k piFi will denote the probability 
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distribution over Q for which the probability of any 
measurable set A is 1k=, piFi(A). Some of the writers 
previously mentioned have suggested representing the 
overall opinion of the group by a probability distribution 
of the form EZ=, PiFi. Stone [13] has called such a 
linear combination an "opinion pool." The difficulty in 
using an opinion pool to represent the consensus of 
the group lies, of course, in choosing suitable weights 
Pl, ... IPk In the model that will be presented in this 
article, the consensus that is reached by the group will 
have the form of an opinion pool. However, the model is 
new. It explicitly describes the process which leads to 
the consensus and explicitly specifies the weights that 
are to be used in the opinion pool. 

In summary, this model is believed to have three 
important advantages: 

1. The process that it describes is intuitively appealing. 
2. It presents simple conditions for determining whether it is 

possible for the group to reach a consensus. 
3. When a consensus can be reached, the weights to be used in 

this consensus can be explicitly and simply calculated. 

2. WEIGHTING THE OPINIONS OF OTHERS 

We shall now consider one of the individuals in the 
group and discuss how this individual might change his 
subjective distribution of 0 when he is apprised of the 
subjective distributions of the others in the group. 
Because of the different backgrounds of the different 
members of the group, their subjective distributions 
F1, , Fk will typically have been developed from 
different types of information about 0 and will typically 
reflect different levels of expertise among the members. 
Therefore, if individual i is apprised of the distribution 
Fj(j # i) of each of the other members of the group, it 
will be natural for him to revise his own subjective 
distribution Fi to accommodate the information and 
expertise, the opinions and judgments, of the rest of the 
group. 

It is assumed that when individual i revises his 
subjective distribution in this way, his revised distri- 
bution will be a linear combination of the distributions 
F1, , Fk of the members of the group. For i = 1, , k 
and j = 1, k k, we shall let pij denote the weight that 
individual i assigns to the distribution of individual j 
when he carries out this revision. It is assumed that 
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pij > 0 for every value of i and j, and that Ek p = 1 
for every value of i. Thus, if individual i could learn the 
subjective distributions F1, **-, Fk of the other members 
of the group, then it is assumed that he would be willing 
to revise his own distribution from Fi to 

=k Fil = Ej=1 pijFj. (2.1) 

The weights pi,, , Pik should be chosen by individual 
i, before he is informed of the distributions of the other 
members of the group, on the basis of the relative im- 
portance that he assigns to the opinions of the various 
members of the group, including himself. For example, 
if individual i feels that individual j is a leading expert 
with regard to predicting the value of the parameter 0 or 
if he thinks that individual j has had access to a large 
amount of information about the value of 0, then in- 
dividual i will choose a large value for pij. Alternatively, 
individual i may wish to assign a large weight pii to his 
own distribution Fi and small total weight to the distri- 
butions of the others. In this case, his revised subjective 
distribution Fi1 will probably differ very little from Fi. 

Next, we shall let P denote the k X k matrix comprising 
the elements pij(i = 1, , k;j = 1, , k). It should 
be noted that P is a stochastic matrix since each element 
pij is nonnegative and the sum of the elements in any 
given row is 1. Furthermore, if we let F and F(1) denote 
the column vectors whose transposes are 

F' = (F1, *, Fk) and FM)' - (F1l, .. Fk1), (2.2) 

then it follows from (2.1) that 

F(1) = PF. (2.3) 

3. ITERATING THE PROCESS 

We have seen that after each member of the group 
has been apprised of the distributions of the other 
members, the distributions of the k members will change 
from F1, ..., Fk to F1l, ..., Fk'l. We now come to the 
critical step of the process. 

Individual i knows that his own subjective distribution 
has changed from Fi to Fil. Suppose now that he is also 
informed that the other k - 1 members of the group 
have also changed their subjective distributions. If he 
still wishes to form his subjective distribution by assign- 
ing the weight pij to the distribution of individual 
j-and there does not seem to be any basis for his 
changing these weights at this time-then in order to 
remain consistent with this principle he must again 
revise his subjective distribution by forming the linear 
combination 

Fi2 = Ej=1 pijFjl. (3.1) 

In other words, the opinion of individual j has changed 
from F, to F,1(j = 1, . , k). Therefore, if individual i is 
going to revise his own subjective distribution by assign- 
ing the weight pij to that distribution, then his revised 
distribution Fi2 will be given by (3.1). 

The process continues in this way. Each revision by 
the members of their own distributions leads in turn to 
yet another revision as each member tries to update the 
linear combination he is using in order to take into 
account the latest changes of opinion of himself and of 
the others. Let Fin denote the distribution of individual 
i after n revisions (i =, , k; n = 1, 2, *. . ), and let 
Fin) denote the k X 1 column vector whose transpose is 

F ()' = (F,n. 2 Fkn). (3.2) 

Then it follows from (3.1) and (2.3) that F(2) = PF 
-P2F, and in general, that 

Fin)= =PFn-1) PnF, n = 2, 3, -. (3.-3) 

It is assumed that the members of the group continue 
to make these revisions indefinitely or until F(n+l) = F n) 
for some value of n, so that further revision does not 
actually change any member's subjective distribution. 

4. CONVERGENCE TO A CONSENSUS 
The subjective distributions of the k members of the 

group will converge to each other if and only if there is a 
distribution F* such that 

limFin = F* i=, = ,k. (4.1) n-oo 

In other words we shall say that a consensus is reached 
if and only if all k components of Fin) converge to the 
same limit as n - -co. 

Now let p(^7) denote the element in row i and column j 
of the matrix p(n). Then it follows from (3.3) that a 
consensus is reached if and only if there exists a vector 
= (7r1, ,7rk) such that, for i= 1, , k and 

j= 1, *,k, 

lim pn = lrj. (4.2) 
n-*oo 

If (4.2) is satisfied for every value of i and j, then 
7rl, ,rk are necessarily nonnegative and r = 1. 
Thus, when a consensus is reached, the common subjec- 
tive distribution of each of the k members of the group 
will be k iriFi. 

5. CONDITIONS FOR CONVERGENCE 

Since the matrix P is a k X k stochastic matrix, it can 
be regarded as the one-step transition probability matrix 
of a Markov chain with k states and stationary transition 
probabilities. Because of this interpretation, the standard 
limit theorems of the theory of Markov chains can be 
applied here. The following theorem, which is adapted 
from a result given by Doob [3, p. 173], provides a simple 
condition for (4.2) to hold and, hence, for a consensus to 
be reached. 

Theorem 1: If there exists a positive integer n such that 
every elemzent in at least one column of the matrix pn is 
positive, then a consensus is reached. 
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An analogous result can be stated as follows: 

Theorem 2: If all the recurrent states of the Markov 
chain communicate with each other and are aperiodic, 
then a consensus is reached. 

On the other hand, if the states of the chain form at 
least two disjoint closed sets of communicating states 
or if the communicating states in a single closed set are 
periodic, then a consensus is not reached. These results 
are discussed in texts such as Feller [5], Karlin [6], or 
Parzen [10]. 

6. CALCULATION OF THE CONSENSUS 
If in fact a consensus is reached, then the next result, 

which is also well known in the theory of Markov chains, 
indicates how the common limiting distribution which 
forms the consensus can be explicitly calculated. It 
should be recalled that a vector = = (7r1, *- , 7rk) is said 
to be a stationary probability vector if =P = = and the 
components of X are nonnegative numbers whose sum is 1. 

Theorem 3: Suppose that a consensus is reached and let 
Ek=, 7iFi denote the common subjective distribution 
that is reached in the consensus. Then 1 = .. W7rk) 

is the unique statioilary probability vector. 

Thus, the values of wr, , ark used in the consensus 
are calculated by solving the linear equations P =P 
together with the equation Ei> = 1. 

It is worthwhile noting that if some state i is a transient 
state and if a consensus is reached, then the value of 7ri 
in the consensus will be 7ri = 0. In other words, no weight 
will be assigned in the consensus to the prior distribution 
Fi of individual i. 

6.1 Examples 
1. Suppose first that there are just two individuals in 

the group, so that k = 2, and suppose that 

p=r: :i. -4 4- 

In other words, individual 1 assigns equal weight to his 
own distribution and the distribution of individual 2, 
and individual 2 assigns three times as much weight to 
his own distribution as he does to the distribution of 
individual 1. It follows from Theorem 1 that a consensus 
is reached and it is easily found that the unique stationary 
probability vector is (3, 2). Therefore, by Theorem 3, 
the distribution of both individuals in the consensus will 
be (1)F1 + (2)F2. 

2. Suppose now that a third individual is added to 
the group and that the matrix P is now expanded as 
follows: 

It again follows from Theorem 1 that a consensus is 

reached, and the stationary probability vector is now 
found to be (3, 3, 0). Therefore, by Theorem 3, the 
common distribution of the three individuals in the 
consensus is again (4)F1 + (2)F2. Since state 3 is 
transient in this Markov chain, the prior distribution F3 
of individual 3 receives no weight in the consensus. 

3. Suppose that in a group with just two individuals, 
we have 

-1 o- 

Here, the two states do not communicate with each other 
and a consensus is not reached. More generally, suppose 
that in a group of four individuals, we have 0 01 p_ = 2 ?i 1 . 

- 0? 2 21 

?2 2_J 

Now states 1 and 2 communicate with each other and 
individuals 1 and 2 will therefore reach a consensus 
between themselves. Their consensus will be (2)Fl 
+ (2)F2, and it will be reached after only a single 
revision. Similarly, individuals 3 and 4 will reach a con- 
sensus between themselves, namely (2)F3 + (-)F4. But 
the entire group of four individuals will not reach a 
consensus. 

In general any individuals for whom the corresponding 
states of the Markov chain form a closed communicating, 
aperiodic class will reach a consensus among themselves. 

7. APPLICATION TO ARBITRARY LINEAR SPACES 

The theory developed in this article can be applied not 
only to problems in which the opinions of the individuals 
are represented as subjective probability distributions. 
It can be applied, more generally, to problems in which 
the opinion Fi of each individual (i 1, * -, k) can be 
represented as a point in some fixed convex set in an 
arbitrary linear space, so that every convex linear 
combination of the form EnL wiFi belongs to the set. 

For example, Fi might represent a real-valued point 
estimate made by individual i of some parameter 0. If 
each individual then revises his estimate in accordance 
with (2.1), (3.1), and (3.3), this theory describes the 
process by which the group might reach agreement on a 
single point estimate of 0. More generally, Fi might be 
an rn-dimensional vector representing the estimate made 
by individual i of an rn-dimensional parametric vector 0. 

8. CONCLUDING REMARKS 
In the model that has been presented here, it is 

assumed that there is no possibility of learning whether 
the opinion of one individual is closer to the truth than 
that of another. In other words, it is assumed that no 
outside data, observations, or information about the 
value of 0 is available. The only information available 
to an individual in the group at the beginning of the 
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process is the identity of the other members of the group. 
It is assumed that at the beginning, each individual i 
chooses the weights pij that he is going to use and he 
then continues to use these weights throughout the 
process. In practice, individual i might wish to change 
the weights that he assigns to the other individuals after 
he has learned their initial opinions, or after he has 
observed how much they change their opinions from 
stage to stage. This possibility has not, however, been 
studied here. 

The theory presented here bears a resemblance to, but 
is quite distinct from, the Delphi technique for trying 
to reach agreement among a panel of experts (see, e.g., 
[2]). The Delphi technique is essentially an empirical 
procedure and is not based on any underlying mathe- 
matical model. However, it is typically applied iteratively 
in a sequence of stages. After each stage, the individuals 
are informed of the opinions of the others in the group 
and allowed to reassess their own opinions. 

Because of the empirical nature of the Delphi tech- 
nique, it differs from the theory presented here in that 
it provides no conditions under which the experts can be 
expected to reach agreement or for terminating the 
iterative process. Furthermore, in the most common 
version of the Delphi technique, although the individuals 
are informed of the totality of opinions of all the other 
individuals in the group after each stage, they are not 
told which person in the group holds each specific 
opinion. Indeed, they may not even be told the identities 
of the other members of the group. 

Nevertheless, the theory presented in this article can 
be applied to this version of the Delphi technique, if 
each individual i assigns weight pii(O < pii < 1) to his 
own opinion and equal weight pij = (1 - pij)/ (k- 1) 
to the opinions of each of the other k - 1 individuals 
in the group. Furthermore, it follows immediately from 
Theorem 1 that this choice of weights leads to a consensus. 

In this sense, the methods given here can be regarded as a 
formalization of the Delphi technique, a formalization 
in which a consensus is reached. 

[Received October 1972. Revised July 1973.] 
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