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Review

Question: Can rational individuals with the same evidence
disagree?

We’ve discussed two answers.

Review

Answer 1: Yes.

It’s rational to stick to one’s guns. “Psychological” evidence
need not outweigh non-psychological evidence [Kelly, 2011]

Individuals with different evidence might disagree [Feldman,
2011].

Review

Answer 1: No.

“Equal-weight view” = In the face of disagreement,

Suspend judgment [Feldman, 2011].
Adjust probabilistic credences appropriately (often, by
averaging)

Motivated by uniqueness thesis, which asserts

There is a unique state of belief (or agnotisicism) warranted by
one’s evidence



Review

Last Class: We began discussing formal models aimed at
answering the same question:

Question: Can rational individuals with the same evidence
disagree?

Review

Theorem

[Aumann, 1976] If two individuals have a common prior and their
posteriors are common knowledge, then their posteriors are equal.

⇒ Non-shared evidence need not undermine agreement.

Aumann’s model is a paradigm of a classical economic model.

Review

Characteristics of Aumann’s Model:

Both agents are ideal, rational Bayesian agents.

There are only two individuals considered (though the model
extends naturally to finite numbers).

Information (about the posteriors) is completely shared.

Even stronger: it’s common knowledge.

The dynamics (e.g., via announcements) leading to consensus
are not explored.



ABMs vs. Classical Economic Models

Classic Models

Rational/Bayesian agents

Homogeneous agents

Global Interaction

Equilibria

ABMs

Boundedly Rational

Heterogenous Agents

Local interactions in a network

Dynamics

And many more . . .

Today: Agent-based models (abms) for exploring the question of
peer-disagreement.

All derive from the DeGroot-Lehrer model of repeated belief
averaging.

Review

Characteristics of Models Today:

Repeated averaging need not be (but can be) Bayesian.

Agents may be heterogenous with respect to influence. how
they assign each other credibility, and how they share
information.

Averaging in a network [Golub and Jackson, 2010].
Averaging those with “close” beliefs [Douven, 2010,
Hegselmann and Krause, 2002].

The dynamics of consensus-formation are explored.

Today’s Class

Question: Can rational individuals with the same evidence
disagree?

DeGroot [1974], Lehrer and Wagner [1981] - Disagreement is
impossible among multiple individuals even when non-equal
weight is given to different peers.

Golub and Jackson [2010] - “Splitting the difference” can
make crowds “wise.”

Douven [2010] - Whether “splitting the difference” is rational
(or not) depends upon your goals and context.
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The DeGroot/Lehrer Model

Morris DeGroot Keith Lehrer

The Model:

There is a proposition about which several individuals
disagree.

Each individual i initially assigns some probability pi to the
proposition.

The DeGroot/Lehrer Model

Morris DeGroot Keith Lehrer

The Model:

Each individual i assigns every individual j (including himself!)
a non-zero weight wi ,j .

The weights represent how reliable i believes j is relative to
others in the group.

0 ≤ wi ,j ≤ 1.

For any individual, the weights sum to 1, i.e.,
∑

j wi ,j = 1.

The DeGroot/Lehrer Model

Example: Suppose I am in a meeting with Hannes and Stephan,
and we disagree.

I think Hannes and Stephan are about equally likely to be
correct, and both are far more reliable than me.

Accordingly, I set the following weights:

Hannes gets weight .45
Stephan gets weight .45
I get weight .1.



The DeGroot/Lehrer Model

The Model: In DeGroot and Lehrer’s model, the weights dictate
how individuals update their beliefs.

The DeGroot/Lehrer Model

Morris DeGroot Keith Lehrer

The Model:

Time is divided into discrete stages.

Let i ’s degree of belief on stage t be represented by pi ,t

On stage t + 1, individual i updates his belief to be a
weighted-average of everyone’s beliefs from stage t.

pi ,t+1 =
∑
j

wi ,j · pj ,t

The DeGroot/Lehrer Model

Example: Suppose I am in a meeting with Hannes and Stephan,
and we disagree about how likely it is that a particular conjecture
about Bayesian networks is true.

I assign the following weights:

Hannes gets weight .45
Stephan gets weight .45
I get weight .1.

Initially, our beliefs are as follows:

pHannes = .8
pStephan = .4
pConor = .5

The DeGroot/Lehrer Model

After 1 stage, my belief is equal to

p∗ = .45 · pHannes + .45 · pStephan + .1 · pConor
= .45 · .8 + .45 · .4 + .1 · .5
= .59



The DeGroot/Lehrer Model

Note that this process of taking a weighted-average is similar the
models of “splitting the difference” that you have seen.

Two Additional Features:

It allows individuals to treat others as reliable to different
degrees.

It works when their are multiple individuals who disagree.

The DeGroot/Lehrer Model

Morris DeGroot Keith Lehrer

Theorem

[DeGroot, 1974, Lehrer and Wagner, 1981] In the above model, all
individuals beliefs approach a common probability as the number
of stages grows larger.

The DeGroot/Lehrer Model

The model raises at least three questions:

1 Why should individuals assign non-zero weight to others?

2 Why should individuals repeat the averaging process?

3 Why should the weights remain constant?

I will just quote Lehrer.



Non-Zero Weights

First, the respect assumption, weakened as indicated, may be

taken as a condition of a community of experts. If some

members of a group respect each other, give positive weight to

the probability assignments of each other, but give no weight

to the probability assignments of others, then they form a

separate and distinct community. Only when each member of

a group communicates respect for each other member, either

directly or through a chain, does a community of inquiry exist.

Lehrer [1976], page 330.

Repeated Averaging

[R]efusing to shift from state 1 to state 2 is equivalent to

assigning a weight of 0 to other members of the group at this

stage. This amounts to the assumption that there is no chance

that one is mistaken and no chance that others in the group

with whom one disagrees are correct. In short, the only

alternative to the iterated aggregation converging toward a

consensual probability assignment is individual dogmatism at

some stage.

Lehrer [1976], page 331.

Constant Weights

The constancy condition is sustained by the assumption that

members of the community . . . acquire no new information . . .

The constancy assumption amounts to the requirement that a

person who forms an estimate of the reliability of others as

indicators of truth apply that estimate consistently until he

obtains new information.

Lehrer [1976], page 330.

The DeGroot/Lehrer Model

Morris DeGroot Keith Lehrer

Theorem

[DeGroot, 1974, Lehrer, 1976] In the above model, all individuals
beliefs approach a common probability as the number of stages
grows larger.



Normally, I won’t talk about how proofs proceed in this class.

In this case, the proof is instructive.

Markov Processes

How do students decide what to eat?

Markov Process = The current state of a system depends only
upon its recent past.

Transition Matrices

Markov processes can be described by transition matrices:

Pasta Burrito Dahl

Pasta .5 .3 .2
Burrito .25 .5 .25
Dahl .4 .4 . 2

Transition Matrices

Markov processes can be described by transition matrices:

T =

 .5 .3 .2
.25 .5 .25
.5 .25 .25





Transition Matrices

The transition matrix for two stages is obtained by squaring the
original matrix:

T 2 =

 .5 .275 .225
.5 .275 .225
.5 .275 .225



Stationary Limits

The transition matrix for n many stages is obtained by taking the
nth power of the original matrix:

T n =

 .5 .275 .225
.5 .275 .225
.5 .275 .225



Stationary Limits

Curious: The transition matrix acquired a fixed value, and its rows
are identical . . .

Stationary Limits

Theorem

Under a wide variety of conditions, the T n approaches a fixed,
limiting matrix T∞ with one row. The single row represents the
probability of where the process will be in the limit, regardless of
its starting point.



This is a mathematical fact about matrix multiplication.

So it doesn’t matter what the numbers in the matrix represent . . .

Weight Matrices

Consider the weight matrix that represents the weights individuals
assign to one another.

Agent 1 Agent 2 Agent 3

Agent 1 w1,1 w1,2 w1,3

Agent 2 w2,1 w2,2 w2,3

Agent 3 w3,1 w3,2 w3,3

“Weight” Matrices

For instance, suppose agents assign each other the following
weights:

W =

 .5 .3 .2
.25 .5 .25
.5 .25 .25



Updating and “Weight” Matrices

Let b0 be a vector representing all agents’ original beliefs.

Then after one stage their new beliefs are taken by multiplying the
matrix by the vector.

b1 = W · b0.



Consensus and “Weight” Matrices

W n =

 .5 .275 .225
.5 .275 .225
.5 .275 .225


In general, after n many stages:

bn = W n · b0.

Because W n approaches a limit, so does bn.

Consensus

W n =

 .5 .275 .225
.5 .275 .225
.5 .275 .225


Because the rows of W n are all the same, each element of the
vector bn = W n · b0 is the same.

So consensus is reached.

Influence

W n =

 .5 .275 .225
.5 .275 .225
.5 .275 .225


The elements of the rows represent how large a role each
agent’s initial opinion plays in the consensus.

Above, agent one’s opinion is weighted most heavily in the
consensus.

Truth-Seeking

Questions:

Reliability: Is the consensus closer to the truth than
individuals’ initial opinions?

Variants of this question are addressed by Golub and Jackson
[2010] and Douven [2010].

Speed: How quickly is consensus reached?

Very quickly. I will show you simulations in a moment.



Generalization to Lehrer-DeGroot Model

Both the Golub-Jackson and Hegselmann-Krause models generalize
the Lehrer-DeGroot model in one important way.

Generalization to Lehrer/DeGroot Model

Common Generalization:

Agent i ’s belief is represented by a real number ri .

E.g. A subjective probability of a proposition
E.g. A numerical estimate of some quantity (e.g. charge of an
electron).

The truth is likewise represented by a real-number T .

E.g. 0 or 1 might represent the truth-value of some
proposition.
E.g., The “real” value of some quantity (e.g. charge of an
electron).
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Golub and Jackson [2010, 2012] are interested in exploring how
network structure influences the consensus reached and the
reliability of learning.



High School Social Networks

Goodreau et al. [2008]

Academic Social Networks

Structure of Real Scientific Networks

What types of structural properties do academic co-authorship
networks and other social networks share?

Here are four.

Small Diameters



Finding the Diameter Finding the Diameter

Diameter

Diameter: The longest-shortest path between any two nodes in the
network.

Empirical Size of Connected Components

biology physics mathematics
number of authors 1,520,251 52,909 253,339
diameter 24 20 27

Newman [2001]



Highly Clustered

Clustering Coefficient

Not clustered

Clustering Coefficient

More Clustered

Clustering Coefficient

Highly Clustered



High Homophily

Homophily

Left: A Non-Homophilous Network
Right: A Homophilous Network

High School Social Networks

Goodreau et al. [2008]

Academic Social Networks



Power Law Degree Distribution

Neighborhoods

g4

g0

g1

g2
g3

g0’s neighborhood

Degree

The degree of an agent is the number of her neighbors.

Power Law Degree Distribution

# Coauthors

# Scientists



Question: What is the relationship between networks and “weight
matrices” above?

Answer: Each undirected (or directed) network can be associated
with a unique weight matrix, under the assumption each neighbor
is treated equally.

Networks
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Networks as Matrices

Moral: The “weight matrices” are a generalization of networks.

Matrices more easily represent networks in which influence is

Asymmetric
Weighted

So Golub and Jackson talk about properties of the matrix
instead of the network.

Random Networks and Convergence

Question: How quickly do random networks reach consensus?

Answer: Quickly. Let me show you.



Influence

W n =

 .5 .275 .225
.5 .275 .225
.5 .275 .225


bn = W n · b0

Recall: The rows of the limiting matrix W∞ = limn→∞W n

are identical.

Elements of the row indicate how much influence each agent
has in the consensus.

Influence and Network Structure

7

1 2 6

3

5

4

Fact: The influence of an agent is directly proportional to her
degree (i.e. number of neighbors).

But there are other ways that agents might indirectly acquire
influence.

Definition: Say a network is wise if the consensus it reaches is the
true value of the unknown quantity.

E.g., When repeated belief-averaging leads them to conjecture
the true value of the charge of an electron.

Question: Under what conditions is the network wise? Theorem

[Golub and Jackson, 2010] Under one (major) assumption,
networks are “wise” precisely when no group has too much
influence, and every group takes each other seriously.

Here is their idea in a nutshell:



The Argument

Main Assumption: Each agent’s initial belief is drawn
randomly from some probability distribution with a mean
equal to the truth T , and some finite variance.

As the network gets bigger, it follows from the large of law
numbers that the average belief of the group is T .

If agents have equal influence, then the consensus reached will
be the average belief of the group.

So if agents have equal influence, then the consensus will be
the true value.

The Main Assumption

Question: How plausible is the main assumption?

The Main Assumption

The main assumption is essentially impossible to satisfy if the
quantity is the truth value of a proposition.

Given r1, r2, . . . rn < 1, the average of the ri ’s is less than one.

It is strictly stronger than the assumption that individuals’
estimates of a quantity are unbiased.

E.g., Americans systematically overestimate that proportion of
the budget dedicated to foreign aid. Only 4% correctly identify
that it is less than 1%.

Nonetheless, there are cases in which it seems to be
reasonable (e.g., Galton’s experiment).
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Golub and Jackson [2010] assume that the network is static.

Bounded Confidence Models

Hegselmann and Krause [2002] propose a model in which
one’s peers change over time.

However, in the model, an individual considers only those
whose opinions are sufficiently similar to his or her own.

Justification: Anecdotal evidence suggests that we use
similarity with our own opinions to gauge the reliability of
others.
E.g., Political affiliation causes choice of newspaper.
Since our opinions change, our peer groups can change.

Hegselmann and Krause wanted to explain why groups might
become polarized and not reach a consensus.

Bounded Confidence Models

Hegselmann and Krause [2002]’s model is the motivation for
[Douven, 2010]’s model.

So let me briefly review Hegselmann and Krause [2002]’s model

The Hegselmann-Krause Model

Agent i ’s belief is represented by a real number ri .

E.g. A subjective probability of a proposition
E.g. A numerical estimate of some quantity (e.g. charge of an
electron).

The truth is likewise represented by a real-number T .

E.g. 0 or 1 might represent the truth-value of some
proposition.
E.g., The “real” value of some quantity (e.g. charge of an
electron).



The Hegselmann-Krause Model

There is some number ρ (for all agents) that represents how
“close” others opinions must be to one’s own in order for one
to take them seriously.

If ρ is close to zero, then one only considers the opinions of
those who are similar to oneself.

Agent i is assigned some number τi between 0 and 1 that
represents how strongly she is “attracted” to the truth.

τi = 0 will represent an agent who only listens to her peers.
τi = 1 will represent an agent who has immediate access to the
truth.

The Hegselmann-Krause Model

Time is divided into discrete stages 1, 2, 3 . . .

On stage t + 1, agent i averages

The beliefs of her peers whose opinions are within distance ρ
of her own.
The truth T .

The truth is given weight τi .

The remaining weight 1− τi is divided evenly among peers.

Bounded Confidence Models

Formally:

Let bi ,t be agent i ’s belief at time t.

Let Nρ(i , t) be those peers whose opinions differ from i ’s by
no more than ρ at stage t.

Let N be the number of peers in Nρ(i , t). Then:

bi ,t+1 = τi · T +
∑

j∈Nρ(i ,t)

1

N
· bj ,t .

How to Model “Splitting the Difference”

τ

ρ

0 1

0 1

Only Peers Only Observation

Very Similar Peers Diverse Peer Group



ρ = .01 ρ = .15 ρ = .25

Doven’s Model

How does Douven [2010] use the Hegselmann-Krause model?

Compares two types of communities:

Feldman communities: Individuals assign high weights to
their peers and less to truth.
Kelly communities: Individuals assign high weight to truth
and less to peers.

He evaluates these communities in two respects:

Accuracy: How close their beliefs get to the truth.
Speed: How fast they get there.

Douven’s Model

You tell me! What does Douven find?

Accuracy: Feldman > Kelly

Speed: Kelly > Feldman

Douven’s Model

Explanation: These results can be explained in one or two
sentences if you know the central limit theorem (or any
probabilistic inequality like Chebyshev’s), but I’ll leave that for you
to work out.



A Tradeoff

General Trend: In many future models, we’ll see a tradeoff between
speed and accuracy. Watch out for it.

Preview

Next Week: We’ll start studying a different, but related question:
is diversity good for science?

NetLogo

Today we will discuss:

Agents Commands:

Turtles
Links
Patches

Agent sets
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