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Review

Last Class:

Difference between individual and social epistemology

Why simulations are particularly useful for social epistemology
and philosophy of science

Intro. to Agent-Based Models (abms)

Today’s Class

Today: Two theories of what is rational for an individual to believe

Bayesianism

Logical Reliability

Question: Why discuss individual epistemology given that the focus
of this course is social epistemology and philosophy of science?

Answer: To

Model how group members do or ought to change their
beliefs.

Develop criteria of group rationality.
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Bayesianism

Bayesianism is the conjunction of two theses:

Beliefs = Probabilities

Beliefs updated by conditionalization

The Sample Space

In probability, there is a set Ω called the sample space that
represents all the possible outcomes of an experiment.

For instance:

Experiment 1: Roll a die.

Ω = {1, 2, 3, 4, 5, 6}.

Experiment 2: Flip a coin twice.

Ω = {〈H,H〉, 〈T ,T 〉, 〈H,T 〉, 〈T ,H〉}

Events

Subsets of the sample space are called events.



Events

Experiment 1: Roll a die

Example Event: The event the die lands on an odd number is
A = {1, 3, 5}.

Events

Experiment 2: Flip a coin twice

Example Event: The event the coin lands heads exactly once is:

A = {〈H,T 〉, 〈T ,H〉}

Impossible Event

In both experiments, ∅ represents the “impossible” event:

Experiment 1: The die does not land on any face.

Experiment 2: The coin lands on neither heads nor tails.

Probability Axioms

A probability measure is a function that assigns every event A
some number P(A) between 0 and 1 (inclusive) such that

P(Ω) = 1, where Ω is the entire sample space, and

Finite Additivity: If A ∩ B = ∅, then
P(A ∪ B) = P(A) + P(B).



Probability Axioms

Scientists and statisticians often assume

Countable Additivity: If E1,E2, . . . is a countable sequence of
events and Ei ∩ Ej = ∅ whenever i 6= j , then

P(
⋃
n

En) =
∑
n

P(En).

Belief and Probability

The first thesis of Bayesianism is that degrees of belief are
representable by probabilities.

Properties of Probability

Probabilities are always comparable.

Numbers can be compared: either x > y , or y > x , or x = y .

Are degrees of belief always comparable? E.g., What’s more
likely: (i) aliens invade Earth before 2200 or (ii) monkeys
increase in intelligence and become our overlords within the
next 3000 years?



Properties of Probability

Probabilities are always quantitatively comparable.

For example, .642 is 32.1 times greater than .02.

Quantitative Comparisons

Tremendously Awful Really awful (but better?)

Properties of Probability

Probabilities are always quantitatively comparable.

Comparisons of numbers can be quantified. E.g. .642 is 32.1
times greater than .02.

Compare: Clearly, Nickelback is worse than Creed. Are there
32.1 times as bad?

Can assessments of degrees of belief be made so precise?

Properties of Probability

Probabilities are bounded (between 0 and 1)

Compare: The length of objects can be assigned a number,
but there is no maximum length.

Why is it that there is some maximum degree of certainty?
And some minimum degree of confidence?



Properties of Probability

Probabilities are additive.

Compare: Ice cream is delicious. So is sausage. Is the
deliciousness of sausage with a side of ice cream the sum of
the degrees to which others are delicious?

Moreover, why didn’t you multiply the two numbers? What’s
so special about addition?

Properties of Probability

To answer these questions, let’s consider how we might measure
beliefs . . .

Measuring Probability

How can degrees of belief be measured?

Idea: Betting behavior (with small sums)

Odds

On April 16th, the “football” team FC Bayern will play
Kaiserlautern.

Several bookies are offering around 3 : 2 odds on
Kaiserlautern.



Odds

That is, you pay $2 for a bet such that

You win $3 if Kaiserlautern wins.

You get nothing otherwise.

Odds

A bookie who offers you such a bet clearly thinks that FC Bayern
will likely beat Kaiserlautern.

Can we quantify how much so?

Fair Odds

Say the bookie considers her odds a : b on an event E to be fair if
she is willing to both sell and buy the bet a : b on E .

Odds and Degrees of Belief

Define the bookie’s degree of belief P(E ) in an event E to be
b

b+a where a : b are her fair betting odds for E .

Notice that her degrees of belief are numbers between 0 and 1.



Odds and Degrees of Belief

Question: Would it be prudent for the bookie’s degrees of beliefs
to satisfy the remaining probability axioms?

Dutch Book

Let E be the event that FC Bayern wins its next match

Let E c the event they don’t.

Suppose the bookie posts 2 : 1 odds on E and 2 : 1 odds on
E c .

Dutch Book

Notice the bookies degrees of belief are not probabilities as

P(E ) = P(E c) =
1

2 + 1
=

1

3

and hence,

P(Ω) = P(E ∪ E c) = P(E ) + P(E c) =
2

3
.

Dutch Book

You are very wise and decide to buy both bets from the
bookie.

So you pay $1 for a bet that pays $2 if FC Bayern wins, and

You pay $1 for a bet that pays $2 if FC Bayern does not win.

Regardless of what happens, you win $1, i.e., you are
guaranteed to take money from the bookie.



Dutch Book Theorem

Theorem (Dutch Book Theorem)

There is no series of bets against the bookie that ensures that she
loses money for sure if and only if her degrees of belief obey the
probability axioms.

Dutch Book Theorem and Bayesianism

The Dutch book theorem is one (of several) arguments for the
Bayesian’s first thesis:

Beliefs = Probabilities

Bayesianism

Bayesianism is the conjunction of two theses:

Beliefs = Probabilities

Update by conditionalization

Updating Degrees of Belief

Suppose your degree of belief at time t that my sibling is male
is Pt(M).

You learn at time t + 1 that my sibling’s name is “Evan.”

What should your degrees of belief be then?



Conditionalization

Conditionalization is the thesis that upon learning E , you ought to
revise your degrees of belief in M as follows:

Pt+1(M) = Pt(M|E ) :=
Pt(M&E )

Pt(E )

Conditionalization seems most plausible when Pt are frequencies.

Diachronic Dutch Books

There are Dutch Book theorems for conditionalization as well, but
we’ll skip them.

Normative Arguments

Together, these theorems seem to provide a normative argument
for the theses:

Your degrees of belief ought to act like probabilities, and

Your ought to update your degrees of belief by
conditionalization.

This is what Strevens [2006] calls the “a priori” justification for
Bayesianism.

Descriptive Models

Sometimes Bayesianism is also descriptive of how humans in fact
reason [Gopnik and Wellman, 2012].



Bayesianism in this Course

Question: Why will we care about Bayesianism in this course?

Answer:

Many of the models we consider will assume group members
have probabilistic beliefs.

Some assume they update those beliefs by conditionalization.
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Bayesianism and Truth

Notice the arguments for Bayesianism had the following
structure:

If you want to avoid sure loss, then

Beliefs = Probabilities
Update = Conditionalization

In particular, neither argument showed a relationship between
your beliefs and what is true.

Truth and Rationality

I argue that epistemic states and changes of such states
as well as the rationality criteria governing epistemic
dynamics can be, and should be, formulated
independently of the factual connections between the
epistemic inputs and the outer world. One consequence
of this position is that the concept of truth is irrelevant
. . .

Gaerdenfors [1988], page 9.



Bayesianism and Truth

There are theorems that connect Bayesian updating with
developing true beliefs, but they may not be as widely applicable as
many imagine [Belot, 2013].

Logical Reliability Defined

Kelly [1996] argues that the method we use to update our beliefs
ought be logically reliable, i.e., it is “guaranteed to converge in
every possible circumstance consistent with . . . background
assumptions.”

Logical Reliability Defined

The logical reliabilist conceives of inductive problems the way a
computer scientist conceives of computational problems. A
solution to a computational problem (an algorithm) is
supposed to be guaranteed by its mathematical structure to
output a correct answer on every possible input. The logical
perspective stands in sharp contrast with the received view
among inductive methodologists, who are often more
interested in whether a belief is justified by evidence . . .
Logical reliabilism simply demands of inductive methods what
is routinely required of algorithms.

Kelly [1996], page 4.

Logical Reliability in this Course

Question: Why will we care about logical reliability in this course?

Answer: Many of the models we consider will evaluate the
rationality of an organizational structure by asking whether all
group members’ beliefs tend towards the truth.



Bounded Rationality

Kelly [1996] also discusses another important issue in this course:
bounded rationality.

For Kelly, one should not prescribe methods for updating beliefs
that cannot not, in principle, be carried out by a computer.

Bounded Rationality

Traditional methodological analysis has centered on quixotic “ideal
agents” who have divine cognitive powers . . . This idealization is
harmless only so long as what is good for ideal agents is good for
their more benighted brethren. It will be seen, however, that rules
the seem harmless and inevitable for ideal agents are in fact
disastrous for computationally bounded agents. A prime example is
the simple requirement that a hypothesis be dropped as soon as it is
inconsistent with the data, a rule endorse by almost all inductive
methodologies [e.g., Bayesianism]. It turns out the there are
problems for which computable methods can be consistent in this
sense, and some computable method is a reliable solution, but no
computable, consistent method is a reliable solution.

Kelly [1996], page 6.

Logical Reliability in this Course

Question: Why will we care about bounded rationality in this
course?

Answer:

Some of the models we consider will evaluate ideal agents.
We should carefully consider whether the models apply to
non-ideal ones.

Other models consider boundedly rational agents. We should
consider whether agents’ limitations are realistic and
normatively defensible.

Structure of the Course

Upcoming Weeks:

Three Units: Disagreement, Diversity, and Testimony

Each unit has two parts:
1 An introduction to a “traditional” problem in epistemology of

philosophy of science
2 Analysis of computer models aimed at answering said question.



Structure of the Course

Course Website:

Printable slides

Sample code from class

NetLogo

Today we will discuss:

Data types in NetLogo

Declaring and modifying variables

Arithmetic, Boolean, and List Operations

Global vs. Local Variables
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