Mathematical Methods for Philosophy: Problem Set 7

Due Date: This problem set is due January 14th, 2013 at the start of class.

Exercise 1 *Prove the following:*

- $a \preceq \mathcal{P}(a)$.
- If $b \neq \emptyset$, then $a \leq a^b$.
- If $a \approx b$, then $b \approx a$.
- If $a \approx b$, then $\mathcal{P}(a) \approx \mathcal{P}(b)$.

Exercise 2 Say that a set a is *infinite* if $\mathbb{N} \leq a$. A set a is called **Dedekind infinite** if it has a proper subset $b \subset a$ such that $a \approx b$. Show that if a is infinite, then a is Dedekind infinite.

Hint: As N ≤ a, there is an injective function f : N → a. Let x₀ = f(0), x₁ = f(1), and in general, x_n = f(n) be the values of the function f. Consider the proper subset b = a \ {x₀} consisting of all elements of a other than x₀. Find a bijection from a to b.

Exercise 3 A set a is called **countable** if $a \leq \mathbb{N}$; it is called **countably** *infinite* if $a \approx \mathbb{N}$.

- Show by induction on k that N×N×...×N is countably infinite.
 Hint: In the inductive step, you can use the proof from class that N×N≈N.
- Suppose a₀, a₁,... is a sequence of countably infinite sets that are pairwise disjoint, which means that if n ≠ m, then a_n ∩ a_m = Ø. Show that (){a_n : n ∈ N} = a₀ ∪ a₁ ∪ a₂... is countably infinite.
 - Hint: Because each a_n is countably infinite, it follows that there is a bijective function $f_n : \mathbb{N} \to a_n$ for each n. Let $x_{n,m} = f_n(m) \in$ a_n be the m^{th} element of the set a_n when it is enumerated by f. Now try to use a "picture proof" like the one we did in class.
- Suppose a formal language contains countably many sentential variables $p_1, p_2,$, and so on. Using the previous two exercises, show the set of WFF of sentential logic is countable, i.e., that WFF $\leq \mathbb{N}$. Hint: Think of the formula $((p_1 \& p_2) \rightarrow p_3)$ as an ordered tuple $\langle (, p_1, \&, p_2,), \rightarrow , p_3,) \rangle$.

Exercise 4 The axiom of choice says that for every set a, there is a function $g_a : \mathcal{P}(a) \setminus \{\emptyset\} \to a$ such that $g_a(b) \in b$ for all $b \in \mathcal{P}(a) \setminus \{\emptyset\}$. The idea is that g_a "chooses" exactly one element of every non-empty subset b of a. The following exercises use the axiom of choice.

- Show that if there is a surjective function f : b → a, then a ≤ b. Conclude that b ∠ a entails that a < b.
 - Hint: Let $h : a \to \mathcal{P}(b)$ be the function defined by $h(x) = f^{-1}(x) = \{y \in b : f(x) = y\}$. Consider $g_b \circ h$.
- Show that if a is Dedekind infinite, then a is infinite.
 - Hint: Because a is Dedekind infinite, there exists a proper subset b of a and a bijective function $f : a \rightarrow b$. Recursively, define a sequence of sets:

$$b_0 = a$$

 $b_{n+1} = f[b_n] = \{f(x) : x \in b_n\}$

Notice that $b_1 = b$. Show by induction that $b_{n+1} \subseteq b_n$ and $b_n \setminus b_{n+1}$ is non- empty for all natural numbers n. Then apply a choice function to select an element of $b_n \setminus b_{n+1}$ for all natural numbers n.