Mathematical Methods for Philosophy: Problem Set 3

Assignment: This problem set is due November 5th, 2013 at the beginning of class. Complete the following exercises, as well as the following exercises from *Logic and Proofs*.

Logic and Proofs: Take the quiz at the end of Chapter 7.

Exercise 1 Let n be a natural number. Show that if a formula φ contains n many different propositional variables $p_1, p_2, \ldots p_n$, then φ contains at least n-1 many occurrences of binary connectives. For example, the formula $p \lor (q \lor r)$ contains three different propositional variables and two binary connectives.

Exercise 2 Let Γ be any set of formula of propositional logic.

- A formula φ is said to be independent of Γ if Γ ∀ φ and Γ ∀ ¬φ.
 Show that p → q is independent of Γ = {p ∨ q, q ∨ r, p&s}.
- Suppose that $\Gamma \models \varphi \& \neg \varphi$ for some formula φ . Show that, for every well-formed formula ψ , there is a proof of ψ from Γ .

Exercise 3 In this exercise, you will fill in the steps of the proof of completeness theorem in the Logic and Proofs textbook. You should read the proof in the text carefully. Recall, a formula ψ is in conjunctive normal form if it is equal to a conjunction $\psi_1 \& \psi_2 \& \ldots \& \psi_n$, where each ψ_i is a disjunction of literals.

- 1. Suppose that $\psi \equiv \alpha_1 \lor \alpha_2 \lor \ldots \lor \alpha_n$ is a disjunction of literals. Prove that if ψ is valid, then there is a propositional variable p and two disjuncts α_i and α_j such that α_i is p and α_j is $\neg p$.
- Using structural induction, prove that for every valid propositional formula φ, there is a validity ψ in conjunctive normal form such that
 ⊢ φ ↔ ψ.
- 3. Conclude that propositional logic is complete.