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Abstract

In this paper, we introduce a doxastic logic with expressions that are intended to

represent definite descriptions for propositions. Using these definite descriptions, we

can formalize sentences such as:

• Ann believes that the strangest proposition that Bob believes is that neutrinos

travel at twice the speed of light.

• Ann believes that the strangest proposition that Bob believes is false.

The first sentence is represented as Ba(γ is ϕ), where γ stands for “the strangest

proposition that Bob believes” and ϕ stands for “that neutrinos travel at twice the

speed of light”. The second sentence has both de re and de dicto readings, which are

distinguished in our logic. We motivate our logical system with a novel analysis of the

Brandenburger-Keisler paradox. Our analysis of this paradox uncovers an interesting

connection between it and the Kaplan-Montague Knower paradox.
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1 Introduction

An important feature of the formal models of belief found in the philosophical logic and game

theory literature is that agents can think about each others’ beliefs. The modus operandi

is to assume that each agent thinks about the others’ beliefs in terms of their propositional

contents. For example, consider two agents, Ann and Bob, thinking about each other’s

beliefs. The standard approach is to assume that “Ann believes that Bob believes that

it is raining” means that Ann believes that the proposition expressed by ‘it is raining’ is

believed by Bob. There are, of course, other ways of attributing higher-order beliefs. For

example, we can use propositional quantification, as in “Ann believes that there is some

false proposition that Bob believes.” In this paper, we are interested in higher-order belief

attributions involving definite descriptions for propositions. For instance, propositions can

be described in terms of their status within an agent’s web of beliefs:

Ann believes that the strongest proposition that Bob believes is false. (1)

Alternatively, propositions can be described in evaluative terms:

Ann believes that the strangest proposition that Bob believes is false. (2)

Finally, propositions can be described by referencing a time and place:

Ann believes that what Bob was thinking yesterday in class is false. (3)

In each of (1)–(3), a definite description is used to describe the proposition that Ann

believes. For example, in (1), the proposition that Ann believes is described in terms of its

relationship to all of the other propositions that Bob believes. That is, the definite description

‘the strongest proposition that Bob believes’ is intended to denote the proposition that (i)

is believed by Bob and (ii) entails each of the propositions believed by Bob.1

1Below we will discuss what happens if such a definite description fails to denote.
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Due to the presence of the definite descriptions, the belief attributions in (1)–(3) admit

both de re and de dicto readings. Suppose the strangest proposition that Bob believes is

that the universe has 63 spatial dimensions. Further suppose that Ann believes that it is

false that the universe has 63 spatial dimension—but she does not think of this in terms of

Bob’s beliefs. Then (2) has a true de re reading, but not a true de dicto reading. We might

suggest the intended de re reading by saying “Ann believes of the strangest proposition that

Bob believes that it is false.” On the other hand, suppose a trusted source tells Ann, “The

strangest proposition that Bob believes is false,” and Ann accepts this, despite not having

any idea of what that proposition is. Then (2) has a true de dicto reading. This may be

so even if the strangest proposition that Bob believes is that the universe has 63 spatial

dimensions, and Ann herself believes this proposition.

In addition to Ann having beliefs about the truth values of described propositions, she

may have beliefs about what the described propositions are. For example, she might believe

that the strangest proposition that Bob believes is that neutrinos travel at twice the speed of

light. This will be rendered in our formal language by a formula of the form Ba(γ is ϕ) where

Ba stands for ‘Ann believes that’, γ stands for ‘the strangest proposition that Bob believes’,

and ϕ stands for ‘that neutrinos travel at twice the speed of light’. In general, ϕ may itself

contain belief operators and definite descriptions. For instance, γ is ϕ may stand for “The

strangest proposition that Bob believes is that Ann believes that the strongest proposition

that Bob believes is false.” This opens the door to self-reference and, in turn, threatens to

lead to paradoxes. For example, our language can express the following:

The strangest proposition that Ann believes is that she does not believe

that the strangest proposition that she believes is true. (4)

Given certain assumptions about Ann’s beliefs (see §2), which are standardly made in the
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game theory literature, the proposition expressed by (4) is a blindspot for Ann in the sense of

Sorensen 1988.2 That is, if the assumptions hold, then Ann cannot believe the proposition

expressed by (4). The argument for this parallels the proof that the Buridan-Burge sentence

is paradoxical [Burge, 1978, 1984, Caie, 2012, Conee, 1987, Sorensen, 1988]:

Ann does not believe this sentence is true.

In this paper, we will introduce a modal logic that can capture the reasoning about (4)

that leads to inconsistency. We will argue that this inference pattern also underlies the

reasoning in two other semantic paradoxes. It is not hard to see this for a version of Kaplan

and Montague’s Knower Paradox [1960] involving beliefs [Thomason, 1980]. It is less obvious

that this reasoning plays a key role in the Brandenburger-Keisler paradox [Brandenburger

and Keisler, 2006], a two-person version of Russell’s paradox that plays an important role in

the epistemic foundations of game theory [Pacuit and Roy, 2015]. Like the Buridan-Burge

paradox and Kaplan and Montague’s Knower paradox, the BK paradox shows how aspects

of the semantic paradoxes can infect reasoning about knowledge or belief.

The paper is organized as follows. In §2, we discuss the Brandenburger-Keisler paradox.

With this motivating example, in §3 we introduce our modal logic for reasonings about

beliefs with definite descriptions for propositions. In §4, we show that this modal logic can

formalize both the Knower and the Brandenburger-Keisler paradoxes, and we give a semantic

perspective on the logic in §5. Finally, we conclude with a discussion of related work in §6.

2 The Brandenburger-Keisler Paradox

Brandenburger and Keisler [2006] identified a fascinating two-person variant of Russell’s

paradox. They used this paradox to prove a result about formal models in epistemic game

2We will carefully distinguish between de re and de dicto readings of (4) in §4.
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theory, namely that so-called assumption-complete belief models may not exist,3 a result

which has important consequences for the epistemic characterizations of some game-theoretic

solution concepts [Brandenburger et al., 2008, Battigalli and Siniscalchi, 2002]. Given the

technical nature of this result, it may seem as if the Brandenburger-Keisler (BK) paradox

lacks a broader significance outside of game theory. We will argue, to the contrary, that the

essential idea of the BK paradox is more general and does not depend on certain features of

Brandenburger and Keisler’s original presentation.

The BK paradox arises for agents whose beliefs satisfy the following constraints:

(B1) The set of propositions believed by an agent is consistent and deductively closed.

(B2) Everyone is correct about their own beliefs. This means, for instances, that Ann cannot

believe that she believes p while at the same time not believing p; and Ann cannot

believe that she does not believe p while at the same time believing p.

(B3) Everyone is perfectly introspective about their own beliefs. This means, for instance,

that if Ann believes p, then she believes that she believes p; and if Ann does not believe

p, then she believes that she does not believe p.

Interpreted as postulates for rational beliefs, each of the above has been the subject of much

philosophical discussion. Our general position is that even if none of the postulates hold for

“normal” believers, or even “rational” believers, it should not be impossible to reason about

believers who satisfy all of the above constraints.

The BK paradox involves two agents, Ann (a) and Bob (b), thinking about each other’s

beliefs. The main component of the paradox is statement (1) from §1:

Ann believes that the strongest proposition that Bob believes is false. (1)

3See Brandenburger and Keisler [2006], Brandenburger et al. [2008], Halpern and Pass [2009], Mariotti

et al. [2005] for discussions.
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Brandenburger and Keisler use the phrase ‘Ann believes that Bob’s assumption is false’

rather than what is stated in (1). According to their semantics [Brandenburger and Keisler,

2006], ‘Bob’s assumption’ refers to the strongest proposition that Bob believes (cf. §6).

A proper interpretation of (1) depends on the assumption that the definite description ‘the

strongest proposition that Bob believes’ (γ) denotes a proposition. This, in turn, depends on

assumptions in the underlying theory of belief content. Notably, both Stalnaker [1984] and

Lewis’s [1986] theories of belief content entail that there is a strongest proposition believed

by an agent. Furthermore, the standard interpretation of a propositional modal language of

multiagent beliefs in Kripke models presupposes the existence of such a proposition for each

agent at each world. At least under these influential views, γ does denote a proposition.

Assuming that γ denotes a proposition, then (1) also expresses a proposition, which may

very well be the strongest proposition that Bob believes:

The strongest proposition that Bob believes is that

Ann believes that the strongest proposition that Bob believes is false. (5)

There is nothing paradoxical about (5). One can imagine that Ann is a contrarian with

respect to Bob’s beliefs. She does not believe any proposition that Bob believes (except,

of course, any tautologies or universal truths). If Bob believes this about Ann, then the

strongest proposition that Bob believes may well be expressed by (1).4

The BK paradox arises when we imagine situations in which Ann believes the proposition

4More plausibly, this may well be the strongest proposition that Bob believes about Ann. Arguably, this

reading is implicit in the framework from [Brandenburger and Keisler, 2006]. They work in a two-sorted

first-order logic that distinguishes “Ann states” from “Bob states”. Let us suppose that we are restricting

attention to Bob’s beliefs about Ann and vice versa.
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expressed by (5):

Ann believes that

the strongest proposition that Bob believes is that

Ann believes that the strongest proposition that Bob believes is false. (6)

Prima facie there does not seem to be anything paradoxical about (6). Indeed, Ann may

believe the story above about Bob, i.e., that Bob believes that Ann is a contrarian with

respect to his beliefs. The difficulty arises when we try to evaluate (1), which appears as the

third line of (6). Suppose that (1) is true, so Ann believes that the strongest proposition that

Bob believes is false. By (6), Ann believes that the strongest proposition that Bob believes

is expressed by (1). Thus, Ann believes that it is false that Ann believes that the strongest

proposition that Bob believes is false. Assuming that Ann is correct about her own beliefs

(postulate B2), this means that it is false that Ann believes that the strongest proposition

that Bob believes is false. This contradicts the assumption that (1) is true. So, (1) is false.

Assuming that Ann believes that the strongest proposition that Bob believes is either true

or false, it follows that Ann believes that this proposition is true. Again by (6), Ann believes

that the strongest proposition that Bob believes is expressed by (1). Thus, Ann believes

that she believes that the strongest proposition that Bob believes is false. Assuming Ann

is correct about her beliefs (postulate B2), this means that Ann believes that the strongest

proposition that Bob believes is false. This contradicts the assumption that (1) is false.

Whether we assume that (1) is true or false, we deduce a contradiction.

The first observation to make is that there are variants of the BK paradox that do not

make any reference to the strongest proposition that Bob believes. Indeed, other definite de-

scriptions of propositions that Bob believes can be used in place of ‘the strongest proposition
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that Bob believes’. For instance, consider the following variant of (6):

Ann believes that

the strangest proposition that Bob believes is that

Ann believes that the stranges proposition that Bob believes is false. (7)

The above argument can obviously be adapted to show that ‘Ann believes that the strangest

proposition that Bob believes is false’ cannot be assigned a truth value. There are further

variants that employ other definite descriptions of propositions that Bob believes. For in-

stance, ‘the boldest proposition that Bob believes’, ‘the most fundamental proposition that

Bob believes’, and ‘the most interesting proposition that Bob believes’ are additional exam-

ples. These variants are noteworthy because they show that the BK paradox does not rely

on particular substantive (and possibly controversial) assumptions about the structure of

Bob’s beliefs. It may be tempting to dismiss the BK paradox on the grounds that there is no

proposition that Bob believes that qualifies as the logically strongest, so the definite descrip-

tion fails to denote. Yet the BK paradox does not depend on the choice of this particular

definite description—other definite descriptions would suffice for generating the paradox.

3 A Logical Framework

In this section, we define a propositional modal logic that captures reasoning about multia-

gent beliefs with definite descriptions for propositions.

Let At be a countably infinite set of atomic sentences and Agt a finite set of agents.

Similar to the atomic sentences that are intended to express propositions, the language will

include a set Des of definite descriptions that are intended to denote propositions. The
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language L is the smallest set of formulas generated by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Bdicto
i T(γ) | Bdicto

i F(γ) | Bre
i T(γ) | Bre

i F(γ) | γ is ϕ | Biϕ

where p ∈ At, i ∈ Agt, and γ ∈ Des. The additional propositional connectives (∨,→,↔)

are defined as usual. The intended meaning of Biϕ is that “agent i believes that ϕ”. We

use γ to denote an arbitrary element of Des. The intended meaning of γ is ϕ is “the

definite description γ denotes the proposition expressed by ϕ”. We will also say that “the

γ-proposition is ϕ”. The remaining formulas are intended to represent the different ways

that i believes that the proposition denoted by γ is true/false. We will discuss this below.

A few remarks about the language are in order. First of all, the T(·) and F(·) notation is

reminiscent of truth predicates. Indeed, one may be tempted to add the following as axiom

schemes: T(γ) ↔ γ and F(γ) ↔ ¬γ. However, these are not well-formed formulas in L for

two reasons. First, by itself a definite description γ does not make a declarative statement

and hence cannot be operated on by connectives. Second, both for simplicity and to avoid

the issue of what the truth value of T(γ) and F(γ) should be when γ does not denote, we do

not allow T(γ) and F(γ) to occur outside of belief contexts.

This explains the syntactic restriction that T(γ) and F(γ) are always preceeded by ex-

pressions Bre
i or Bdicto

i . These formulas are intended to express the following notions:

• de re belief: Bre
i T(γ) (Bre

i F(γ)). The intended interpretation is that “i believes of the

proposition actually denoted by γ that it is true (false).”

• de dicto belief: Bdicto
i T(γ) (Bdicto

i F(γ)). The intended interpretation is that “i believes

that γ denotes a true (false) proposition.”

The final remark is that the syntax allows the is operator to be nested. For instance,

γ is (γ is p) means that, for instance, “The strangest proposition that i believes is that
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the strangest proposition that i believes is p.” Although liar-sentences (e.g., γ is ¬γ) are

not well-formed, our syntax does allow for some self-reference. For instance, consider the

following formulas:

F1. γ is ¬Bre
i T(γ): the γ-proposition is that i does not believe of the γ-proposition that it

is true;

F2. γ is Bre
i F(γ): the γ-proposition is that i believes of the γ-proposition that it is false.

Note that γ need not be a definite description of a proposition that i believes (it may be

referring to some proposition that another agent believes). Formula F2 is used in the BK

paradox, so we discuss it in §4. Formula F1 is a formalization of (4) from §1 (let γ be the

definite description “the strangest proposition that Ann believes”). As we shall see, both

formulas lead to a contradiction, given standard assumptions about the logic of belief.

Remark 3.1 (The Buridan-Burge Sentence) The Buridan-Burge sentence,

Ann does not believe this sentence is true. (8)

is not directly expressible in our language. If p represents (8), then the most direct formaliza-

tion is T(p)↔ ¬BaT(p). However, this is not a well-formed formula since the T(·) and F(·)

predicates can only be applied to elements of Des. However, note that T(γ) ↔ ¬Ba(T(γ))

is also not well-formed (even if we replace Ba with Bre
a or Bdicto

a ). The problem is that T(γ)

must be directly preceded by either Bre
a or Bdicto

a . Thus, our translation of (8) is essentially

the same as the translation of (4): γ is ¬Bre
a T(γ) (or γ is ¬Bdicto

a T(γ)).

We can now be more precise about the postulates governing the agents’ beliefs mentioned

in §2. Each group of postulates is listed below.

(B1) The set of propositions believed by an agent is consistent and deductively closed.
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(D) Biϕ→ ¬Bi¬ϕ

(K) Bi(ϕ→ ψ)→ (Biϕ→ Biψ)

(Nec) if ϕ is a theorem, so is Biϕ

(B2) Everyone is correct about their own beliefs.

(CorP) BiBiϕ→ Biϕ

(CorN) Bi¬Biϕ→ ¬Biϕ

(B3) Everyone is perfectly introspective about their own beliefs.

(PI) Biϕ→ BiBiϕ

(NI) ¬Biϕ→ Bi¬Biϕ

We need to include special axioms to deal with the formulas expressing beliefs about

γ-propositions. Note that these formulas (Bre
i T(γ), Bre

i F(γ), Bdicto
i T(γ), and Bdicto

i F(γ)) de-

scribe beliefs of an agent i, so they should satisfy the correctness and introspection axioms.

However, note that, for example, BiB
re
i T(γ)→ Bre

i T(γ) is not an instance of (CorP). Simi-

larly, Bre
i T(γ) → BiB

re
i T(γ) is not an instance of (PI). The problem is that Bre

i T(γ) is not

a formula of the form Biϕ, which is needed to instantiate (CorP) and (PI). This means that

we need to include special axioms to deal with these formulas:

(CorP ) Biχ→ χ

(CorN) Bi¬χ→ ¬χ

for each χ ∈ {Bdicto
i T(γ), Bdicto

i F(γ), Bre
i T(γ), Bre

i F(γ)}
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(IP ) χ→ Biχ

(IN) ¬χ→ Bi¬χ

for each χ ∈ {Bdicto
i T(γ), Bdicto

i F(γ), Bre
i T(γ), Bre

i F(γ)}

Finally, we include axiom schemes that govern the interaction between is-expressions and

formulas in the scope of belief operators. Suppose that γ ∈ Des. If γ in fact denotes a

proposition that is expressed by ϕ, then believing of the proposition denoted by γ that it is

true should be equivalent to believing that ϕ. Similarly, believing of the proposition denoted

by γ that it is false should be equivalent to believing that ¬ϕ. This is the analogue of the

usual replacement of equivalents rule that is valid in all propositional modal logics. In the

de dicto case, if the agent believes that γ denotes a proposition that is expressed by ϕ, then

believing that γ denotes a true (resp. false) proposition should be equivalent to believing

that ϕ (resp. ¬ϕ). Thus, we include the following axioms schemes for each γ ∈ Des:

(S1re) (γ is ϕ)→ (Bre
i T(γ)↔ Biϕ)

(S2re) (γ is ϕ)→ (Bre
i F(γ)↔ Bi¬ϕ)

(S1dicto) Bi(γ is ϕ)→ (Bdicto
i T(γ)↔ Biϕ)

(S2dicto) Bi(γ is ϕ)→ (Bdicto
i F(γ)↔ Bi¬ϕ)

4 Formalizing the Paradoxes

In this section, we demonstrate the formalizing power of the framework just introduced. Our

first proposition is that the formula F1 from the previous section is inconsistent given the

axioms listed above. In the derivations below, ‘Prop Reasoning’ means that the formula

follows by propositional reasoning. This proposition is similar to a version of the Knower

Paradox using beliefs (cf. Thomason, 1980; Koons, 2009; and Egré, 2005, Theorem 2.9).
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Proposition 4.1 The formula γ is ¬Bre
i T(γ) is inconsistent in any propositional modal

logic containing S1re, CorN , and IN .

Proof.

1. γ is ¬Bre
i T(γ) (assumption)

2. γ is ¬Bre
i T(γ)→ ((Bre

i T(γ)↔ Bi¬Bre
i T(γ)) (S1re)

3. Bre
i T(γ)↔ Bi(¬Bre

i T(γ)) (Prop Reasoning, 1, 2)

4. Bi¬Bre
i T(γ)→ ¬Bre

i T(γ) (CorN )

5. Bre
i T(γ)→ ¬Bre

i T(γ) (Prop Reasoning, 3, 4)

6. ¬Bre
i T(γ) (Prop Reasoning, 5)

7. ¬Bre
i T(γ)→ Bi¬Bre

i T(γ) (IN )

8. Bi¬Bre
i T(γ) (Prop Reasoning, 6, 7)

9. Bre
i T(γ) (Prop Reasoning, 8, 3)

10. Contradiction (6, 9)

qed

Remark 4.2 It is instructive to compare the derivation in the proof of Proposition 4.1

with the derivation provided for the proof of Theorem 2.9 in Egré 2005. In that proof,

necessitation (Nec) is used instead of negative introspection (NI). However, (Nec) cannot be

used here since γ is ¬Biγ is an assumption, not a theorem of the logic. For versions of the

Knower paradox, the celebrated Carnap-Gödel Fixed-Point Lemma guarantees the existence

of a sentence ϕ such that ϕ↔ ¬Biϕ is derivable (the trade-off is that the logic must contain

a formal arithmetic strong enough to capture all primitive recursive functions).

As should be expected, essentially the same derivation shows that γ is Bre
i F(γ) is incon-

sistent. We give the derivation here to facilitate a comparison with the BK paradox.
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Proposition 4.3 The formula γ is Bre
i F(γ) is inconsistent in any propositional modal logic

containing S2re, CorN , and IN .

Proof.

1. γ is Bre
i F(γ) (assumption)

2. (γ is Bre
i F(γ))→ (Bre

i F(γ)↔ Bi(¬Bre
i F(γ))) (S2re)

3. Bre
i F(γ)↔ Bi(¬Bre

i F(γ)) (Prop Reasoning, 1, 2)

4. Bi(¬Bre
i F(γ))→ ¬Bre

i F(γ) (CorN )

5. Bre
i F(γ)→ ¬Bre

i F(γ) (Prop Reasoning, 3, 4)

6. ¬Bre
i F(γ) (Prop Reasoning, 5)

7. ¬Bre
i F(γ)→ Bi¬Bre

i F(γ) (IN )

8. Bi¬Bre
i F(γ) (Prop Reasoning, 6, 7)

9. Bre
i F(γ) (Prop Reasoning, 2, 7)

10. Contradiction (6, 9)

qed

The BK paradox is related to Proposition 4.3. Suppose that γ ∈ Des is a definite

description for Ann of a proposition that Bob believes. The starting point of the BK paradox

is a statement of the following form: Ann believes that the γ-proposition is that Ann believes

that the γ-proposition is false. This can be expressed in two ways in our language:

Ba(γ is Bdicto
a F(γ)) or Ba(γ is Bre

a F(γ)).

The BK paradox does not follow from Proposition 4.3. The reason is that the formulas

Bdicto
a (γ is Bdicto

a F(γ)) and γ is Bdicto
a F(γ) are logically independent (neither implies the

other) in logics of belief that do not satisfy factivity, i.e., Biϕ → ϕ, and similarly for

the de re formulas. Nonetheless, we can show that both formulas Bi(γ is Bdicto
i F(γ)) and

Bi(γ is Bre
i F(γ)) are inconsistent with the axioms given above.
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Proposition 4.4 The formula Bi(γ is Bdicto
i F(γ)) is inconsistent in any propositional modal

logic containing S2dicto, CorN , and IN .

Proof.

1. Bi(γ is Bdicto
i F(γ)) (assumption)

2. Bi(γ is Bdicto
i F(γ))→ (Bdicto

i F(γ)↔ Bi(¬Bdicto
i F(γ))) (S2dicto)

3. Bdicto
i F(γ)↔ Bi(¬Bdicto

i F(γ)) (MP, 1, 2)

4. Bdicto
i F(γ)→ Bi(¬Bdicto

i F(γ)) (Prop Reasoning, 3)

5. Bi(¬Bdicto
i F(γ))→ Bdicto

i F(γ) (Prop Reasoning, 3)

6. Bi(¬Bdicto
i F(γ))→ ¬Bdicto

i F(γ) (CorN )

7. Bdicto
i F(γ)→ ¬Bdicto

i F(γ) (Prop Reasoning, 4, 6)

8. ¬Bdicto
i F(γ) (Prop Reasoning, 7)

9. ¬Bdicto
i F(γ)→ Bi¬Bdicto

i F(γ) (IN )

10. Bi¬Bdicto
i F(γ) (MP, 8, 9)

11. Bdicto
i F(γ) (MP, 5, 10)

12. Contradiction (8, 11)

qed

In the informal explanation of the BK paradox in §2, we did not carefully distinguish

between de dicto and de re readings of the relevant belief attributions. We can now do so.

For the following derivation in the de re case, recall that the monotonicity rule (Mon) states

that if ϕ→ ψ is a theorem, so is Biϕ→ Biψ. This rule is admissible given (Nec) and (K).

Proposition 4.5 The formula Bi(γ is Bre
i F(γ)) is inconsistent in any propositional modal

logic closed under Nec and containing K, S2dicto, CorP, PI, CorP , CorN , IP , and IN .
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Proof.

1. Bi(γ is Bre
i F(γ)) (assumption)

2. (γ is Bre
i F(γ))→ (Bre

i F(γ)↔ Bi(¬Bre
i F(γ))) (S2re)

3. Bi(γ is Bre
i F(γ))→ Bi(B

re
i F(γ)↔ Bi(¬Bre

i F(γ))) (Mon, 2)

4. Bi(B
re
i F(γ)↔ Bi(¬Bre

i F(γ))) (MP, 1, 3)

5. Bi(B
re
i F(γ)→ Bi(¬Bre

i F(γ))) (K, Nec, Prop Reasoning, 4)

6. Bi(Bi(¬Bre
i F(γ))→ Bre

i F(γ)) (K, Nec, Prop Reasoning, 4)

7. BiB
re
i F(γ)→ BiBi(¬Bre

i F(γ))) (K, Prop Reasoning, 5)

8. BiBi(¬Bre
i F(γ)))→ Bi¬Bre

i F(γ) (CorP)

9. Bi¬Bre
i F(γ)→ ¬Bre

i F(γ) (CorN )

10. BiB
re
i F(γ)→ ¬Bre

i F(γ) (Prop Reas, 7, 8, 9)

11. BiB
re
i F(γ)→ Bre

i F(γ) (CorP )

12. ¬BiB
re
i F(γ) (Prop Reasoning 10, 11)

13. BiBi¬Bre
i F(γ)→ BiB

re
i F(γ) (K, Prop Reasoning, 6)

14. Bi¬Bre
i F(γ)→ BiBi¬Bre

i F(γ) (PI)

15. Bi¬Bre
i F(γ)→ BiB

re
i F(γ) (Prop Reasoning 13, 14)

16. ¬Bre
i F(γ)→ Bi¬Bre

i F(γ) (IN )

17. ¬Bre
i F(γ)→ BiB

re
i F(γ) (Prop Reasoning 15, 16)

18. ¬BiB
re
i F(γ)→ Bre

i F(γ) (Prop Reasoning, 17)

19. Bre
i F(γ) (MP, 12, 18)

20. Bre
i F(γ)→ BiB

re
i F(γ) (IP )

21. BiB
re
i F(γ) (MP, 19, 20)

22. Contradiction (12, 21)
qed
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5 A Semantic Perspective

In this section, we present a semantic perspective on the language L from §3 and on the

formalization of the BK paradox in §4. To do so, we define a Kripke-style semantics for L.

Definition 5.1 A frame for L is a tuple F = 〈W, {Ri}i∈Agt, {Dγ}γ∈Des〉, where:

1. W is a nonempty set (the set of worlds);

2. for each i ∈ Agt, Ri is a binary relation on W (the accessibility relation for agent i);

3. for each γ ∈ Des, Dγ : W 7→ ℘(W ) is a partial function (the denotation function).

A model based on F is a tuple 〈F , V 〉 where V : At → ℘(W ) is a valuation function. A

frame (model) is called a quasi-partition when for each i ∈ Agt, Ri is serial, transitive and

Euclidean. For convenient notation, given w ∈ W , let Ri(w) = {v ∈ W | wRiv}.

The truth of a formula ϕ ∈ L at a world w in a model M = 〈W, {Ri}i∈Agt, {Dγ}γ∈Des, V 〉,

written M, w |= ϕ, is defined by recursion. In what follows, let [[ϕ]]M = {w | M, w |= ϕ}.

The definition of truth for the Boolean connectives and the belief modality is as usual:

• M, w |= p iff w ∈ V (p), for p ∈ At;

• M, w |= ¬ϕ iff M, w 6|= ϕ;

• M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ;

• M, w |= Biϕ iff Ri(w) ⊆ [[ϕ]]M.

For each w ∈ W and γ ∈ Des, when Dγ(w) is defined, Dγ(w) is the proposition denoted

by γ. Thus, the definition of truth for formulas of the form γ is ϕ is:

• M, w |= γ is ϕ iff Dγ(w) is defined and Dγ(w) = [[ϕ]]M.
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This means that γ is ϕ is false a state w when either γ does not denote a proposition at w

or the proposition denoted by γ at w is not expressed by ϕ. Finally, the truth definition for

de re and de dicto belief formulas makes precise their distinction precise:

• M, w |= Bre
i T(γ) iff Dγ(w) is defined and Ri(w) ⊆ Dγ(w);

• M, w |= Bre
i F(γ) iff Dγ(w) is defined and Ri(w) ⊆ W \Dγ(w);

• M, w |= Bdicto
i T(γ) iff for all v ∈ Ri(w), Dγ(v) is defined and Ri(w) ⊆ Dγ(v);

• M, w |= Bdicto
i F(γ) iff for all v ∈ Ri(w), Dγ(v) is defined and Ri(w) ⊆ W \Dγ(v).

We will illustrate the above definitions by showing that the formulas from Propositions

4.4 and 4.5 are not satisfiable in quasi-partition models. That is, there is no state in a quasi-

partition model that makes the formulas from Propositions 4.4 and 4.5 true. This provides

a complementary semantic explanation on the BK paradox.

Proposition 5.2 If M is a quasi-partition model, then for all w ∈ W ,

M, w 6|= Bi(γ is Bdicto
i F(γ)).

Proof. Suppose that M is a quasi-partition model and that for some w ∈ W , we have

M, w |= Bi(γ is Bdicto
i F(γ)). Thus, for all v ∈ W , if wRiv, then M, v |= γ is Bdicto

i F(γ). It

follows that for all v ∈ W ,

if wRiv, then Dγ(v) is defined and Dγ(v) = [[Bdicto
i F(γ)]]M. (∗)

There are two cases to consider.

1. M, w |= Bdicto
i F(γ). Then for all v ∈ W , if wRiv, then Dγ(v) is defined and Ri(w) ⊆

W −Dγ(v). Since Ri is serial, there is a v0 such that wRiv0. Since Ri is transitive, we
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have Ri(v0) ⊆ Ri(w). Suppose that v ∈ W with v0Riv. Then since wRiv, by (∗) we

have that Dγ(v) is defined with Dγ(v) = [[Bdicto
i F(γ)]]M. Furthermore, we have

Ri(v0) ⊆ Ri(w) ⊆ W − [[Bdicto
i F(γ)]]M = W −Dγ(v).

Thus, M, v0 |= Bdicto
i F(γ), i.e., v0 ∈ [[BdictoF(γ)]]M. Since v0 ∈ Ri(w) and Ri(w) ⊆

W−Dγ(v0) = W−[[Bdicto
i F(γ)]]M, we have v0 6∈ [[Bdicto

i F(γ)]]M, which is a contradiction.

2. M, w 6|= Bdicto
i F(γ). Then there is a v0 such that wRiv0 such that either Dγ(v0) is

not defined or Ri(w) 6⊆ W − Dγ(v0). By (∗), we have that Dγ(v0) is defined and

Dγ(v0) = [[Bdicto
i F(γ)]]M. Thus,

Ri(w) 6⊆ W − [[Bdicto
i F(γ)]]M,

so there is a v1 ∈ Ri(w) such that v1 6∈ W−[[Bdicto
i F(γ)]]M. That is, v1 ∈ [[Bdicto

i F(γ)]]M.

Suppose that v ∈ Ri(w). Then by (∗), Dγ(v) is defined and Dγ(v) = [[Bdicto
i F(γ)]]M.

Since Ri is transitive and v1 ∈ Ri(w), we have that Ri(v1) ⊆ Ri(w); and so, by (∗),

for all v∗ ∈ Ri(v1), Dγ(v
∗) = [[Bdicto

i F(γ)]]M. Therefore, since M, v1 |= Bdicto
i F(γ), we

have that Ri(v1) ⊆ W − [[Bdicto
i F(γ)]]M. Now, since Ri is Euclidean and wRiv1, we

have v1Riv. Hence v ∈ W − [[Bdicto
i F(γ)]]M. Since v is an arbitrary element of Ri(w),

we have Ri(w) ⊆ W − [[Bdicto
i F(γ)]]M, which is a contradiction. qed

Proposition 5.3 If M is a quasi-partition model, then for all w ∈ W ,

M, w 6|= Bi(γ is Bre
i F(γ)).

Proof. Suppose that M is a quasi-partition model and that for some w ∈ W , we have

M, w |= Bi(γ is Bre
i F(γ)). Then for all v ∈ W , if w Ri v, then M, v |= γ is Bre

i F(γ). Thus,

for all v ∈ W ,
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if wRiv, then Dγ(v) is defined and Dγ(v) = [[Bre
i F(γ)]]M (∗)

There are two cases to consider.

1. M, w |= BiB
re
i F(γ). Then Ri(w) ⊆ [[Bre

i F(γ)]]M. Since Ri is serial, there is a v0

such that wRiv0, so M, v0 |= Bre
i F(γ). Let v ∈ W with v0Riv (such a state exists

since Ri is serial). Then M, v0 |= Bre
i F(γ) implies v 6∈ Dγ(v0). By (∗), we have

Dγ(v0) = [[Bre
i F(γ)]]M. Thus, M, v 6|= Bre

i F(γ). This implies that either Dγ(v) is not

defined or there is a v′ ∈ W such that v′ ∈ Dγ(v). Since Ri is transitive, we have wRiv.

By (∗), this implies that Dγ(v) is defined. Thus, v′ ∈ Dγ(v) = [[Bre
i F(γ)]]M. Since Ri

is transitive, v0Riv, and vRiv
′, we have v0Riv

′ with v′ ∈ [[Bre
i F(γ)]]M = Dγ(v0). This

contradicts the fact that M, v0 |= Bre
i F(γ).

2. M, w 6|= BiB
re
i F(γ). Then there is a v0 ∈ W such that wRiv0 and M, v0 6|= Bre

i F(γ).

Thus, either Dγ(v0) is not defined or there is a v1 ∈ W with v0Riv1 and v1 ∈ Dγ(v0).

By (∗), Dγ(v0) is defined with Dγ(v0) = [[Bre
i F(γ)]]M. Thus, M, v1 |= Bre

i F(γ). Since

Ri is transitive with wRiv0 and v0Riv1, we have wRiv1. By (∗), Dγ(v1) is defined

with Dγ(v1) = [[Bre
i F(γ)]]M. Since Ri is Euclidean and wRiv1, we have v1Riv1. Since

M, v1 |= Bre
i F(γ), we have v1 6∈ Dγ(v1). Thus, v1 6∈ [[Bre

i F(γ)]]M, a contradiction. qed

Standard results about our logical system (e.g., completeness and decidability) will be

discussed in the full version of the paper. We conclude this section by highlighting some

interesting features of the system.

The first observation is that the axiom schemes from §3 are all valid on any quasi-partition

frame. Recall that a formula is valid over a frame F = 〈W, {Ri}i∈Agt, {Dγ}γ∈Des〉 provided

that for every model M = 〈F , V 〉 and w ∈ W , M, w |= ϕ. To simplify our notation, let

B̂iϕ be shorthand for ¬Bi¬ϕ. Then in any model M = 〈W, {Ri}i∈Agt, {Dγ, V }γ∈Des〉, we
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have that M, w |= B̂iϕ iff Ri(w) ∩ [[ϕ]]M 6= ∅. Our second observation is that the following

formulas are valid on any quasi-partition frame:

F3. B̂i(γ is p)→ (Bdicto
i T(γ)→ Bip);

F4. B̂i(γ is p)→ (Bdicto
i F(γ)→ Bi¬p).

We sketch the proof that F3 is valid (the proof for F4 is similar). Suppose that M is a

quasi-partition models and that M, w |= B̂i(γ is p). Then there is a v ∈ Ri(w) such that

Dγ(v) is defined and Dγ(v) = [[p]]M. If M, w |= Bdicto
i T(γ), then for all v ∈ Ri(w), Dγ(v)

is defined and Ri(w) ⊆ Dγ(v). Thus, since v ∈ Ri(w), we have Ri(w) ⊆ [[p]]M. It is also

instructive to note that the following formulas are not valid:

F5. (γ is p)→ (Bdicto
i T(γ)↔ Bip);

F6. (γ is p)→ (Bdicto
i F(γ)↔ Bi¬p).

To see that F5 is not valid (the proof that F6 is not valid is similar), let M be a model

where W = {w, v1, v2}; Ri = {(w, v1), (w, v2), (v1, v2)}; Dγ(w) = {v1}, Dγ(v1) = {v1, v2},

and Dγ(v2) = {w, v1, v2}; and V (p) = {v1}. We have (i) M, w |= γ is p since Dγ(w) =

{v1} = [[p]]M; (ii) M, w 6|= Bip since Ri(w) = {v1, v2} 6⊆ [[p]]M; and (iii) M, w |= Bdicto
i T(γ)

since Ri(w) ⊆ Dγ(v1) = {v1, v2} and Ri(w) ⊆ Dγ(v2).

These observations illustrate some of the relationships between the belief operator, the

de dicto belief operators and the is-operator. These and other relationships add interest to

the question of axiomatization discussed in the full version of this paper.
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6 Related Literature

The original formulation of the BK paradox from Brandenburger and Keisler [2006] is:

Ann believes that Bob assumes that

Ann believes that Bob’s assumption is false. (9)

To formalize (9), they add a modality to a multi-agent propositional modal language that is

intended to represent “Bob assumes that...”. Formally, the language, LBK , is the smallest

set of formulas generated by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Biϕ | �i ϕ.

Formulas from LBK are interpreted in quasi-partition Kripke models 〈W, {Ri}i∈Agt, V 〉. Truth

for the atomic propositions, Boolean connectives, and belief modalities are defined as in §5.

Truth for the assumption modality is defined as follows:

• M, w |= �iϕ iff Ri(w) = [[ϕ]]M.

Thus, �iϕ is true at w if ϕ defines the set of states Ri(w).5 Note that in a multi-agent

Kripke model, Ri(w) is the strongest proposition that i believes at w.

Suppose thatM = 〈W, {Ra, Rb}, V 〉 is a quasi-partition Kripke model for the two agents,

Ann (a) and Bob (b). Let d be an atomic proposition with

V (d) = {x | Ra(x) ⊆ {y | x 6∈ Rb(y)}}.
5This modality has been investigated by a number of different authors. Most notably, Humberstone [1987]

provides an axiomatization and Passy and Passy [1991] discuss this modality as part of a larger discussion

of Boolean Modal Logic [cf. Blackburn et al., 2001, Section 7.1]. See also Halpern and Lakemeyer [2001] on

the “all I know” operator.
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The intended meaning of d is that “Ann believes that Bob’s assumption is false.” Then,

Ba �b d expresses (9). The main result from Brandenburger and Keisler [2006] is that it is

impossible satisfy both (9) and that Ann’s beliefs are not inconsistent, i.e., ¬Ba⊥ is true.

More formally, it is shown that in any quasi-partition model M:

If M, w |= Ba �b d ∧ ¬Ba⊥, then M, w |= d↔ ¬d.

The other studies of this paradox [Mariotti et al., 2005, Pacuit, 2007, Abramsky and Zvesper,

2015, Baskent, 2015] build on the above formalization. The take-home message from this

literature is that the difficulty stems from the interaction between Ann’s belief (the Ba

modality) and Bob’s assumption (the �b modality). Our analysis of the paradox is different.

We argue that the central issue raised by the BK paradox is the use of a definite descrip-

tion to denote the proposition that Ann believes. Indeed, our formalization of the paradox

only involves Ann’s beliefs (see the formulas in Propositions 4.4 and 4.5). In the original

formulation of the paradox, the definite description γ does denote a proposition that is be-

lieved by Bob; however, nothing changes if we assume that γ denotes a proposition believed

by Ann. Thus, our analysis de-emphasizes the multi-agent aspect of the paradox.

Our approach to formalizing the BK paradox raises a number of issues that are also

discussed in Caie 2012. The most relevant to this paper is the normative paradox from

Section 2 in Caie 2012. This paradox is derived from the assumption that there is a sentence

β that names the sentence ¬BaT(β), where T is a truth predicate (i.e., β names “Ann does

not believe that this sentence is true”).6 Then an instance of the truth-schema is:7

(∗) T(β)↔ ¬BaT(β).

6Caie stipulates that there exists such a sentence (following Kripke [1975]), but notes that one can con-

struct such a sentence using Gödel numbering. See Gaifman [2006] for a nice perspective on this.
7As we mentioned in Remark 3.1, this formula is not well-formed in the logic defined in §3.
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Suppose that Ann believes (∗). This means that the following two statements about Ann’s

beliefs are true:

• Ba(BaT(β) → ¬T(β)): Ann believes that if she believes that β is true, then β is not

true.

• Ba(¬BaT(β)→ T(β)): Ann believes that if she does not believe that β is true, then β

is true.

Now suppose that Ann believes that β is true (BaT(β)). Assuming that she is perfectly

introspective and correct about her own beliefs (see §2) and that she has no other evidence

that bears on the truth of β, then Ann is in a position in which her evidence makes her

certain that β is not true. Similarly, we can argue that if Ann does not believe that β is

true (¬BaT(β)), then she is in a position in which her evidence makes her certain that β is

true. Caie is led to a paradox by assuming that Ann’s beliefs are consistent and assuming

the following postulate about the relationship between evidence and beliefs:

EVIDENCE: For any proposition X, if an agent’s evidence makes X certain, then the

agent is rationally required to believe X [Caie, 2012, p. 5].

Our analysis in this paper is related to a version of this paradox using the following

propositional analogue of the sentence β [Caie, 2012, Section 2.2]:

X Ann does not believe the proposition expressed by X.

Caie derives a contradiction as follows. Let ρ(X) be the proposition expressed by X.8 Now,

X and ‘¬Baρ(X)’ name the same sentence. So we must have

(∗∗) ρ(X) = ρ‘¬Baρ(X)’.

8We use [[ϕ]]M to denote the set of worlds in M that make ϕ true (i.e., the truth-set of ϕ in M). So for

a formula ϕ and model M, “the proposition expressed by ϕ”, written as ρ(ϕ), is [[ϕ]]M.
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Adapting the assumptions that Ann is perfectly introspective and correct about her own

beliefs gives us the following:

P1. Baρ(X)↔ Baρ(‘Baρ(X)’); and

P2. ¬Baρ(X)↔ Baρ(‘¬Baρ(X)’).

It is not hard to derive a contradiction from (∗∗), P1 and P2. For instance, suppose that

¬Baρ(X) is true. By P2, this is equivalent to Baρ(‘¬Baρ(X)’) being true. By (∗∗) and

replacement of equals, this means that Baρ(X) is true, a contradiction. Note that this con-

tradiction is derived without appeal to EVIDENCE. However, Caie argues that “[c]hanging

a conditional linking the truth-values of propositions to an identity between propositions has

the same effect as assuming conformity to EVIDENCE” [Caie, 2012, p. 12].

We work at an intermediate level between assuming the existence of a sentence that

names another sentence as in (∗) and reasoning directly about propositions as in (∗∗). An

interesting question for future work is whether Caie’s solution to the above paradox can

handle our version of the BK paradox.9

We conclude by briefly mentioning a logical system touching on issues raised in this

paper. Halpern and Kets [2014] introduce an epistemic logic in which agents may disagree

about their interpretation of atomic propositions. We also have the resources to represent

disagreement about the interpretation of an atomic formula. In our logic, we can represent

this type of disagreement using elements of Des. For instance, suppose that γa denotes “the

proposition expressed by p, according to Ann” (i.e., “Ann’s interpretation of p”) and γb

9Caie’s solution to the above paradox is to “restrict the law of excluded-middle for certain claims about

whether or not [an agent] believes certain propositions.” However, there still remains a quesiton about the

relevance of Caie’s solution to the original game-theoretic motivation for the BK paradox. We do not discuss

applications to the epistemic foundations of game theory in this paper.
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denotes “the proposition expressed by p, according to Bob” (i.e., “Bob’s interpretation of

p”). It is an interesting question for future research to compare Halpern and Kets’s [2014]

epistemic logic with ambiguity to our doxastic logic with definition descriptions.
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