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Abstract

Truism: You should treat the evidence as a guide—learning what it supports

should systematically affect your beliefs. But we are not omniscient about our

own evidence. Truism: Higher-order uncertainty can be rational—we can get non-

trivial higher-order evidence about what our evidence supports. The Problem:

Our truisms are, it seems, inconsistent—higher-order uncertainty threatens to de-

bunk the guiding role of evidence. The Project: Explain how evidence is (always)

guiding, even though higher-order uncertainty is (usually) rational. I first argue

that standard “Reflection” principles are too strong—they trivialize higher-order

uncertainty—while Elga’s (2013) New Reflection principle is too weak—it allows

puzzles of higher-order evidence to proliferate. But the failures of these principles

motivate a new principle, Trust, which formalizes the platitude that “What the

evidence supports is likely to be true.” I show that Trust (1) allows higher-order

uncertainty, (2) banishes our puzzles, (3) is characterized by an elegant class of

models which (4) have a natural interpretation and (5) provide a systematic way

to model cases while avoiding puzzles. But what if Trust is too strong—or too

weak? We can offer a proof, of sorts, that it’s not. The puzzles of higher-order

evidence can be unified as failures of the value of evidence in the sense made

famous by I.J. Good (1967)—failures of the platitude that evidence makes your

beliefs more accurate and your decisions more wise. I then show that Trust is an

epistemic characterization of the value of evidence.

Keywords: Higher-order evidence; epistemic akrasia; value of evidence; probab-

ilistic epistemic logic; reflection principles.

1 A Problem, a Project

On my way to the airport, I get a call: “It’s likely the plane isn’t safe.” “According to

what?” “Uncle Ron.” Click. I don’t worry about Uncle Ron—and neither should you.

Ring, ring—another call. “It’s likely the plane isn’t safe.” “According to what?” “The

evidence.” Screech! I do worry about the evidence—and so should you.
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1 A PROBLEM, A PROJECT

Truism: You should treat the evidence as a guide. Learning what it supports should

systematically affect your beliefs. Our question: How so? A simple answer is the

Certainty View: you should always be certain of what your evidence supports. Were it

true, this answer would support a “Reflection” principle that would guarantee that you

should treat the evidence as a guide.

But the Certainty View is false: we are not omniscient about what we should think;

we can be informed or misled about it. Case: disagreement. Is the plane safe? The

(peer) engineers share evidence but disagree. Lois thinks they should have Low credence

that it’s safe; Hiedi thinks they should have High credence. Mil is unsure—she thinks

maybe Lois is right; maybe Hiedi is; maybe neither—so she has Middling credence.

Two points. (1) Mil has higher-order uncertainty : she’s uncertain about what their

evidence supports—uncertain whether she should have low, middling, or high credence.

But (2) Mil may be perfectly rational. With complicated evidence and disagreeing

peers, sometimes you should be uncertain of what you should think—engineering is

hard, after all. Truism: Higher-order uncertainty can be rational; we can get nontrivial

higher-order evidence about what our evidence supports.

The Problem: Our truisms are, it seems, inconsistent. Higher-order uncertainty

threatens to debunk the guiding role of evidence. From 10,000 feet, here’s why. If

higher-order evidence is possible, misleading higher-order evidence is possible. So take

a case where you have (misleading) evidence that your evidence doesn’t support p. You

should believe as your evidence supports (let’s say), so you should believe my evidence

doesn’t support p. But since that evidence is misleading, what it supports is false: in fact

your evidence does support p—so you should believe p too. Thus, it seems, you should

be epistemically akratic: believing the conjunction p, but my evidence doesn’t support

it. That means you shouldn’t treat your evidence as a guide after all, for you should

think that conforming to it will lead you to miss out on a truth—namely, p. Upshot:

the guiding role evidence is in tension with the rationality of higher-order uncertainty.

How to respond? Here the literature divides. Bridgers1 think that although higher-

order uncertainty can be rational, there is some rational bridge between first- and higher-

order attitudes. At a first pass, Bridging seems obviously correct. But I and others have

argued elsewhere that the existing proposals don’t succeed—they are either too strong

or too weak ([XXX], Lasonen-Aarnio 2015). Two reactions to these failures. Splitters2

argue that since higher-order uncertainty is possible, there is no rational connection

between first- and higher-order attitudes. Akrasia can be rational; you can sometimes

1Feldman (2005); Gibbons (2006); Elga (2007, 2013); White (2009); Christensen (2010a,b, 2016);

Huemer (2011); Vavova (2014, 2016); Horowitz (2014); Schoenfield (2015, 2016); Sliwa and Horowitz

(2015); Littlejohn (2016); Worsnip (2016); Das (ms).
2Williamson (2000, 2014); Lasonen-Aarnio (2010, 2014, 2015); Coates (2012); Hazlett (2012); Wedg-

wood (2012); Weatherson (ms).
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2 A TRIED THEORY

expect the evidence to mislead you. In contrast, Mergers3 argue that since akrasia is

irrational, there is no rational separation between first- and higher-order attitudes. This

is the Certainty View: higher-order uncertainty is irrational.

The motivations for Splitting and Merging come from the failures of Bridging. Every-

one should agree that if Bridging succeeds—if there’s a principled center of gravity that

respects both our truisms—then that’s the way to go. I’m here to tell you that there is.

The Project: Explain how evidence is (always) guiding, even though higher-order

uncertainty is (usually) rational. The theory is simple—for that we need a slogan. Trust

the evidence. The explanation is longer—for that we need a paper. The central idea

is that evidence plays its guiding role because what the evidence supports is likely to

be true. I will show that this idea is motivated by previous proposals, permits higher-

order uncertainty, banishes puzzles of higher-order evidence, and in fact characterizes

the value of evidence in the sense made famous by I.J. Good (1967).

Plan: §2 shows that “Reflection” principles trivialize higher-order uncertainty. §3
explains how we can avoid such surprises by using models of probabilistic epistemic

logic. Models in hand, §4 endorses Elga’s (2013) diagnosis of why Reflection is too

strong—but goes on to show that his proposed New Reflection is too weak, for it allows

puzzles of higher-order evidence to proliferate. §5 presents my theory—Trust—as the

goldilocks principle. §6 unifies our puzzles as failures of the value of evidence, and

uncovers a big coincidence.

2 A Tried Theory

Suppose Mil discovers that it’s rational to have .7 credence the plane is safe, given her

evidence. Upon learning this, how confident should she be that the plane is safe? Natural

answer: .7. Generalizing: conditional on the evidence supporting p to exactly degree

t, you should be exactly t-confident of p. Formalizing (van Fraasen, 1984; Christensen,

2010b):

Reflection: P i(p
∣∣P k(p) = t) = t (k ≥ i)

Here P i and P k are evidential probabilities from bodies of evidence i and k. k must be

at least as informed as i, so they may be identical (k = i) or k may be more informed

(k > i). Reflection, then, says that upon learning that a body of evidence at least as

informed as your own supports p to exactly degree t, you should be exactly t-confident

of p. It has the ring of a truism—how could it be wrong?

Reflection is provably inconsistent with higher-order uncertainty—that’s how. This

is a consequence of a little-known theorem from Dov Samet (1997). Letting Sip be the

proposition that you should be Sure of p given evidence i (Sip iff P i(p) = 1), we have:

3Smithies (2012, 2015, ms); Greco (2014); Titelbaum (2015); Salow (2016, ms).

3



3 A GUIDE’S GUIDE

Theorem* 2.1 (Samet). A (finite) general probabilistic frame validates Reflection only

if it validates Si
(
[P i(p) = t]↔ Si[P i(p) = t]

)
.4

The biconditional [P i(p) = t] ↔ Si[P i(p) = t] says that however confident you should

be in p, you should be sure that you should be exactly that confident—higher-order

uncertainty is irrational. Adding an Si on the front says that you must be certain

of this fact. Upshot: Reflection implies that either you must always be certain of an

obvious falsehood, or higher-order uncertainty is always irrational. This is a triviality

result. Reflection cannot capture the guiding role of evidence.

We want to figure out why this happens—and in §4 we will. But first we need to learn

from our mistakes. Reflection has been widely used and discussed for decades—often in

the context of higher-order probability.5 Rarely has it been noticed that it trivializes the

subject matter.6 But there’s a principled way to avoid such triviality surprises: define

a model theory to check the satisfaction conditions of our proposed principles.

3 A Guide’s Guide

Probability is hard—our intuitions are often surprised. Higher-order probability is

nuts—our intuitions are all but useless. If we’re to build a theory of it, we need some-

thing to guide them. We need models of probabilistic epistemic logic. As I explain in

Appendix A, this formalism yields a tractable way to model the intricacies of cases like

our running example:

The Engineers. Lois, Mil, and Hiedi are engineers tasked with determining

whether the plane is safe. They share a bunch of complicated evidence, and

know that at least one of them will respond as they should—someone always

does. They form opinions by using their evidence to settle questions that

affect how likely the plane is to be safe, e.g. “How old is the engine?”

Suppose they only disagree about the answer to one such question—namely,

“Do the controls handle smoothly?” Hiedi is sure they do, so she has high (.9)

credence the plane’s safe. Lois is sure they don’t, so she has low (.5) credence

it is. Mil is on the fence: she thinks maybe Hiedi’s got their evidence right;

maybe Lois has; maybe neither—maybe their evidence doesn’t settle whether

the controls handle smoothly. On the one hand Mil is inclined to think the

4“General probabilistic frames” are the most general models needed to study higher-order probabil-

ity, defined at the end of Appendix A. “Validates” means the formula holds at all worlds for all p, t, i.

This result combines Samet’s theorems 3 and 5, noting that his conditional can be strengthened to the

biconditional above.
5Skyrms (1980, 1990); Gaifman (1988); Christensen (2010b); Sliwa and Horowitz (2015); Roush

(2016); Rasmussen et al. (ming).
6Exceptions: Williamson (2000, 2014); Elga (2013); Lasonen-Aarnio (2015).
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4 A TRUE THEORY...

controls aren’t smooth. But on the other, Hiedi’s more of an expert than

Lois is. Thus Mil averages out to middling (.7) credence the plane is safe.

Moreover, she has higher-order uncertainty, for she thinks maybe Hiedi (or

Lois) is right that she should have high (or low) credence—or maybe they’re

wrong, in which case she should have middling credence. Alas. But she’s

not too worried, for tomorrow they are going to talk to Eve the expert, who

will tell them who responded rationally.

Details in Appendix A; here’s what you need to know. A probabilistic frame mod-

els a single agent—say, Mil—in a particular epistemic scenario, and consists of four com-

ponents: 〈W,R1, R2, µ〉. W captures the relevant possibilities and propositions—say,

whether the plane is safe or not. R1 and R2 capture two different bodies of evidence—

say, Mil’s evidence today and tomorrow, respectively. µ captures background degrees

of evidential support—say, Mil’s (rational) standards of reasoning. Crucial fact: pro-

positions about the evidence can be identified within W , just like propositions about

the plane. Sip is the set of worlds where Mil should be Sure of p, given the evidence

in Ri. [P i(p) = t] is the set of worlds where evidence Ri makes it exactly t-likely that

p. Thus we can model uncertainty about evidence: just as Mil can be uncertain today

what the evidence tomorrow will support, so too can she be uncertain today what her

evidence today supports—she can have higher-order uncertainty. For instance, perhaps

she should be .4 confident that she should be .9 confident the plane is safe—or perhaps

not: [P 1(P 1(safe) = .9) = .4] is true at some worlds, false at others. Upshot: we can use

probabilistic frames to model cases, formulate puzzles, and test principles. Let’s get to

it.

4 A True Theory...

Our framework in place, recall Reflection: upon learning that evidence at least as in-

formed as your own supports p to exactly degree t, you should be exactly t-confident of

p: P i(p|P k(p) = t) = t. Why is this too strong? Consider the (higher-order) case where

i = k. As Adam Elga (2013) points out, once we allow higher-order uncertainty, the

evidence may be uncertain that it supports p to exactly degree t. In that case, learning

that [P i(p) = t] gives your evidence new information. And—quite generally—getting

new information can change what’s rational to think. Slogan: Learning what you should

think can change what you should think.

Example: the engineers. Mil is rational but has higher-order uncertainty. She has

credence .7 the plane is safe, but is unsure whether she should have .5 or .9 instead. So

initially her evidence leaves open the following possible rational credences:
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4.1 ...but Misguiding 4 A TRUE THEORY...

.5 .7 .9

M

How confident should she be upon learning that her .7 credence was supported by her

evidence, i.e. [P 1(safe) = .7]? Reflection would say ‘.7,’ but let’s think. This gives

her new information—namely, that she is rational; Lois and Hiedi are not. And recall

that she was initially inclined to think the controls weren’t smooth, but her respect for

Hiedi led her to raise her credence to .7. Now that she knows that Hiedi got this one

wrong—that she should trust her own judgment—she should lower her credence that

the plane’s safe:

.5 .7 .9

M

.6

As is easy to check, at {a, b, c, d} in Figure 7 (Appendix A) Reflection fails:

[P 1(safe|P 1(safe) = .7) = .6].

Upshot: in treating the evidence as a guide, we need to allow that it may have

higher-order uncertainty. Elga (2013) proposes that if we learn something about the

evidence, we need to make sure to give it this new information before we defer to it.

Slogan: When you learn about the evidence, respond as you know the evidence would.

Elga offers the following formalization. Conditional on some particular function π

being the rational credence function, your credence in p should equal π’s credence in p

conditional on π being rational (written [P k = π]).7 Formalizing:

New Reflection: P i(p|P k = π) = π(p|P k = π) (k ≥ i)

As is easy to check, this principle yields the verdict we wanted for Mil in Figure 7: upon

learning that she’s rational, Mil should have .6 credence the plane is safe.

4.1 ...but Misguiding

New Reflection is true. But it can’t be all that’s true, for it doesn’t guarantee that evid-

ence is a guide. We show that New Reflection permits three increasingly bizarre puzzles

of higher-order evidence. How? Probabilistic epistemic logic! We draw a probabilistic

frame that validates New Reflection but permits our puzzles.

There are a variety of cases that can be used to illustrate this; here I’ll use a par-

ticularly simple one. To be clear: I am not endorsing the following description of the

case—I’m using it as a reductio.

7As with all propositions about the rational credences, we can identify this proposition as a set of

worlds in our probabilistic frame. π is rational is simply the set of worlds where the rational credence

function equals π: [P k = π] =df {w|P k
w = π} (cf. Lasonen-Aarnio, 2015).

6



4.1 ...but Misguiding 4 A TRUE THEORY...

The Unmarked Clock. Tim owns an unmarked clock with an hour-hand

that can occupy one of twelve positions. Being a trickster, he sets it to a

random position every day—but you’re onto him. Later today you’ll walk

past his office and catch a glimpse of the clock, attempting to figure out

where it’s pointing.

The example is unproblematic. Here’s the paradoxical description (cf. Williamson,

2014). Suppose the evidence you’ll receive from your glimpse depends solely on where

the hand is pointing. If it’s at a given position, you should be sure it’s within some

“margin for error” around that position, with size determined by your reliability—say,

±1. Before your glimpse you are completely unsure of which of the 12 positions it will

occupy. If (say) it’s pointing at 2, after your glimpse you should have 1
3 credence in

each of positions 1, 2, and 3. We can model this with the probabilistic frame in Figure

1. There are 12 possibilities in W . R1 is trivial (R1 = W ×W ), so it’s not drawn.

1

2

3

4

5
6

7

8

9

10

11
12

1

3

57

9

11
1
12

1
12

1
12

1
12

1
121

12

1
12

1
12

1
12

1
12

1
12

1
12

Figure 1: The Unmarked Clock

The blue arrows represent R2: what will be consistent with your evidence in various

possibilities, after your glimpse. The faded fractions represent µ: your background 1
12

credence in each possibility.

New Reflection permits this description of the case:8

Proposition 4.1. New Reflection is validated by The Unmarked Clock.

In fact, Elga (2013) designed New Reflection to permit it. This was a mistake. The

Unmarked Clock, so described, is a paradox.

First puzzle: Improbable Knowing. Interpreting Si as knowledge, this puzzle was the

focus of Williamson’s (2014) original clock case. At each world there is a proposition p

such that you should be sure of p, but it’s unlikely I should be sure of it. Formalizing:

8See Appendix B for all proofs.
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4.1 ...but Misguiding 4 A TRUE THEORY...

Improbable Knowing: S2(p ∧ [P 2(S2p) < 1
2 ])

Example: if p = {1, 2, 3}, then S2p = {2} and [P 2(Sp) ≤ 1
3 ] = {1, 2, ..., 12}, so at 2

S2(p ∧ [P 2(S2p) ≤ 1
3 ]) is true.

Given Improbable Knowing, you shouldn’t treat your evidence as a guide. For since

you should be sure of p but confident the evidence will make you less sure of it, you

should expect that conforming to the evidence will pull you away from a truth—namely,

p. Strike one.

Second puzzle: Misguided Evidence. Recall our case of akratic beliefs: believing p

but I shouldn’t believe it. Suppose for the sake of argument that we adopt a Lockean

theory of belief, wherein you should believe something iff it’s sufficiently likely on your

evidence—above some threshold T . Then akratic beliefs amount to being at least T -

confident of p I shouldn’t be T -confident of p. That’s exactly what happens here. At

each world there’s a proposition p such that you should be confident of p but I shouldn’t

be so confident of it. Formalizing:

Misguided Evidence: P 2
(
p ∧ [P 2(p) < t]

)
≥ t

Example: if p = odd = {1, 3, 5, ..., 11}, then p ∧ [P 2(p) ≤ 1
3 ] is true at 1 and 3, so[

P 2(p ∧ [P 2(p) ≤ 1
3 ]) ≥ 2

3

]
is true at 2.

Given Misguided Evidence, you shouldn’t treat your evidence as a guide. For since

you should be confident of p but I shouldn’t be confident of it, the open possibilities where

you should become less confident in p are precisely those where it’s true. Again, you

should expect that conforming to the evidence will pull you away from a truth—namely,

p. Strike two.

Third puzzle: Self-Effacing Evidence.9 There is a single proposition p such that

at every world you should be certain—both before and after your glimpse—that the

evidence is going to mislead you with respect to p. This certainty is true, safe, sensitive,

etc.—it’s known. You know that conforming to the (total) evidence will point you in

the wrong direction with respect to p. Formalizing:

Self-Effacing Evidence: Si(p↔ [P 2(p) < 1
2 ])

Si(¬p↔ [P 2(p) > 1
2 ])

Example: let p = odd = {1, 3, ..., 11}. Every odd possibility leaves open two even pos-

sibilities, and every even possibility leaves open two odd ones. Thus the biconditionals

it’s odd iff I should be confident it’s even (p↔ [P 2(p) < 1
2 ]) and it’s even iff I should be

confident it’s odd (¬p↔ [P 2(p) > 1
2 ]) are true at every possibility. Since you’re certain

(you know) that you’re in some possibility or other, these biconditionals are certain

(known) to arbitrary iterations, both before and after you’re glimpse.

9A version of this puzzle is anticipated by (Horowitz, 2014), though she bites the bullet and accepts

it. I argue elsewhere that she shouldn’t [XXX].
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5 A TRUSTWORTHY THEORY

Given Self-Effacing Evidence, you definitely shouldn’t treat your evidence as a guide.

You know it’s an anti -guide! You know that credence .5 in odd is more accurate than

your evidence is. If you’re offered a bet in favor of odd and a bet in favor of even, then

you know that deciding as you ought to decide (using the credences warranted by the

evidence) will lead you to take the wrong bet and lose money. Upshot: whatever it takes

to treat the evidence as a guide, in a case of Self-Effacing Evidence you shouldn’t. Strike

three—New Reflection is out. It does not fully capture the guiding role of evidence.

Why? New Reflection requires that when you learn what the evidence supports,

you use it to respond to this information. But unlike Reflection, it does not constrain

what the evidence thinks about the evidence—it allows the evidence to distrust itself.

This is what happens in the clock. Whenever π(odd) is high, π(odd
∣∣P 2 = π) is low—the

evidence knows that it supports odd only if odd is false.

5 A Trustworthy Theory

Puzzles proliferate, principles fail. What are we to do? Trust the evidence. Take it as

a guide to the truth. Of course, the evidence can be misleading. But it’s not usually

misleading. It’s likely that what the evidence supports is true. How likely? That

depends on the strength of the evidence: strong evidence is almost never misleading;

weak evidence is (almost) often so. Generalizing: supposing the evidence makes it∣∣∣ fairlyquite
very

∣∣∣ likely that p, it’s
∣∣∣ fairlyquite
very

∣∣∣ likely that p. Formalizing:

Naive Trust: P i(p
∣∣P k(p) ≥ t) ≥ t (k ≥ i)

Conditional on evidence at least as informed as your own making it t-likely that p, it’s

t-likely that p. Picturesquely: most of the open possibilities that make p probable are

ones that make p true.

That’s a first pass at the theory. But Naive Trust is naive. It requires that you

trust the evidence’s actual verdicts, but not it’s conditional ones. It allows that adding

new information could lead us to distrust our (new) evidence. But we don’t trust the

evidence by happy chance—it just is the optimal handler of information. Generalizing:

conditional on any q, if the evidence (given q) supports p, it’s likely that p. Formalizing:

Trust: P iq(p
∣∣P kq (p) ≥ t) ≥ t (k ≥ i)

Conditional on evidence at least as informed as your own making it t-likely that p given

q, it’s t-likely that p given q. That’s the principle—the theory. The rest is explanation.10

10Recall that [P i
q(p) = t] is a claim about the conditional probability [P i(p|q) = t]. Fully written out,

Trust is P i(p
∣∣q ∧ [Pk(p|q) ≥ t]) ≥ t. Note: Naive Trust is the special case with q = p ∨ ¬p.
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5 A TRUSTWORTHY THEORY

Everyone’s first reaction is that Trust must be asymmetric. It’s not. Plugging in

p = ¬r and t = 1− s yields P iq(r
∣∣P kq (r) ≤ s) ≤ s. If the evidence makes it likely that p,

it’s likely that p; and if the evidence makes it unlikely that p, it’s unlikely that p. No

asymmetry here.

Everyone’s second reaction is that Trust must (therefore) entail Reflection. It

doesn’t. (Why not? See below.)

Everyone’s third reaction is that—even so—any motivation for Trust must equally

well be a motivation for Reflection, right?

Wrong. In fact, the idea behind New Reflection generalizes to motivate Trust. Recall

the New Reflection slogan: When you learn about the evidence, respond as you know the

evidence would. Now contrast two sorts of things you might learn about the evidence:

(1) The evidential support for p falls within some range: [l ≤ P k(p) ≤ h].

(2) The evidential support for p falls above some threshold: [P k(p) ≥ t].

(2) is the sort of condition that appears in Trust, while (1) is what appears in Reflection—

with the special case being l = h. There is a crucial difference between the two: you

don’t know how the evidence will respond when it learns (1), but you do know how it

will respond when it learns (2)—you know it’ll go up.

Here’s why. When you learn (1) that P k(p) falls within some range—with upper and

lower bounds—you don’t know whether learning this will raise or lower the evidence’s

estimate of the rational credence in p.11 That means you don’t know whether the

evidence will raise or lower its estimate for p. Since for all you know it could have

started on the border of the [l, h] range, upon learning what you’ve learned the evidential

support might well fall outside the [l, h] range. Example: Mil has .7 credence the plane

is safe. But upon learning that the rational credence is between .7 and .8, she can infer

that she (not Hiedi or Lois) is rational. So—as we’ve already seen—her credence drops

to .6, outside the [.7, .8] range:

.5 .7 .9

M

.6

In contrast, when you learn (2) that P k(p) falls above some threshold t, you know

that this will raise the evidence’s estimate of the rational credence in p.12 So you know

the evidential probability started at least t and that its estimate of the rational credence

went up. Question: could this cause it to lower it’s probability for p? If it did, then upon

raising its estimate of the rational credence in p, the evidence would lower it’s support

11Where Ei[Pk(p)] is the mathematical expectation of Pk(p) given P i: it could be that

Ei
[
Pk(p)

∣∣l ≤ Pk(p) ≤ h
]

is higher or lower than Ei[Pk(p)].
12Theorem: Ei

[
Pk(p)

∣∣Pk(p) ≥ t
]
≥ Ei[Pk(p)].
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5 A TRUSTWORTHY THEORY

for p. That’d mean the evidence thinks the evidential probability is not a guide to the

truth! But it can’t think that—that’s our first truism. Upshot: you can infer that upon

learning what you’ve learned (namely, P k(p) ≥ t), the evidence’s probability for p will

go up. Since you know it started at least t and went up, you know that upon learning

what you’ve learned it will wind up at least t. And now New Reflection’s slogan kicks

in: respond as you know the evidence would! Since you know the evidence will be at

least t in p upon learning [P k(p) ≥ t], you should be at least t upon learning this. Trust

holds.

Example: If Mil learns [P 1(p) ≥ .7], she’s only ruled out Lois’s low credence—so

she’ll now be split between her original judgment and Hiedi’s:

.5 .7 .9

M

And similarly with the “downward-facing” version of Trust. If she learns [P 1(p) ≤ .7],

she’s only ruled out Hiedi’s high credence—so she’ll now be split between her original

judgment and Lois’s:

.5 .7 .9

M

Moreover, we can use Mil’s case to see why Trust doesn’t entail Reflection. We know

P 1(p
∣∣P 1(p) ≥ .7) ≥ .7 and P 1(p

∣∣P 1(p) ≤ .7) ≤ .7. Why doesn’t it follow that combining

both conditions requires Mil to have credence exactly .7, as with Reflection? Take it

in stages. Suppose Mil learns the rational credence is at most .7. Following Trust, she

moves to credence P+(p) = P 1(p
∣∣P 1(p) ≤ .7) ≈ .57. Now she learns further that the

original rational credence was also at least .7, i.e. that [P 1(p) ≥ .7]. Should she now

move to exactly .7?

No. Pay attention to the superscripts. The above argument showed that if she has

credences P 1 and learns only that [P 1(p) ≥ .7], she should have at least .7. But she

doesn’t have credence P 1 any more—she has P+, since she also knows that [P 1(p) ≤ .7].

And she should respond to everything she’s learned about the evidence as she knows the

evidence would, which includes both [P 1(p) ≥ .7] and [P 1(p) ≤ .7]. As we’ve seen, upon

learning both she should move to credence .6, not .7—that was our original Reflection

failure. Thus trying to “recover” Reflection by repeatedly applying Trust would require

ignoring information you receive along the way.

Upshot: The failure of Reflection motivates New Reflection, who’s slogan and failure

in turn motivate Trust. Trust, then, is a formally elegant and philosophically well-

founded principle connecting first- and higher-order evidence.
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Perhaps, though, you’ve become skeptical of the prospects of such principles (cf.

Lasonen-Aarnio, 2015). Fear not: here come the fireworks.

5.1 Trust’s Rewards

We have subsumption results. Trust provably generalizes New Reflection:

Proposition* 5.1. Trust implies New Reflection, but not vice versa.13

We have efficacy results. Trust banishes our puzzles:

Proposition* 5.2. Trust is inconsistent with Improbable Knowing, Misguided Evid-

ence, and Self-Effacing Evidence.

This is for exactly the reason you’d expect. By forcing a connection between evidence

and truth, Trust prevents you from expecting the evidence to misguide you. But this

is only half the battle. It’s easy to rule out puzzles; much harder to do so without

trivializing higher-order uncertainty. Here Trust comes into its own.

We have tenability results. Trust allows plenty of higher-order uncertainty:

Proposition* 5.3. For any ε > 0 there are Trust-validating frames for which ∃p, w : ∀t :

P iw(P i(p) = t) < ε.

That is, Trust allows you to have no idea what your evidence supports.

So Trust yields the goods we’re after. But we want to know more: what sort of

picture of evidence and rational belief does it offer? For that, turn to the model theory.

We have characterization results. Trust axiomatizes an elegant and under-explored class

of Kripke frames composed of structures like Figure 2. Dots are worlds; circles are drawn

around worlds that see exactly the same worlds; transitive arrows are omitted. Formally,

such Ri are transitive, surely-reflexive, and surely-nested—definitions are in Appendix

B (Theorem 5.4).

What do you see? A tree! 14 Such structures are formally tractable and mathematically

elegant—if this is the structure of evidence, mathematicians will be pleased.

I claim that it is:

Theorem 5.4 (Characterization). A probabilistic frame 〈W,R1, R2, µ〉 validates Trust

iff 〈W,R1, R2〉 is transitive, surely-reflexive, surely-updating, and surely-nested.

13A ‘*’ indicates that the result holds up under any model theory—see the end of Appendix B.
14Formally, if we were to coarsen the frame by taking equivalence classes under neighborhoods and

force the accessibility relation asymmetric, the resulting structure of every neighborhood would become

a forest in the ideology of graph theory. Dubbed neighborhood forests, since every neighborhood

becomes a forest under this neighbordhood-coarsening.

12
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Figure 2: A Neighborhood Forest

Moreover, such structures admit of a natural interpretation—philosophers will be pleased

as well.

Begin with an example: I hand the engineers a file of evidence, asking whether the

plane is safe. What would be a reasonable way for them to carry out the inquiry? Settle

all the (relevant) questions they can, and then estimate the likelihood that the plane

is safe, given their answers. They should start with the easy ones: “What model is

the plane? What statistics do we have on those?...” Move to the more difficult: “How

many landings can the average wheel sustain? How much friction do these turbines

generate?...” Eventually they’ll arrive at questions they’re not in a position to answer—

as the case may be, perhaps, “Do the controls handle smoothly?” At this point the

rational thing to do is to stop settling questions and simply estimate likelihoods based

on their answers so far. Of course, whether they’re in a position to settle a given question

can itself be a difficult question—sometimes they should be unsure exactly where to

stop, as Mil is in our original case.

This picture should feel familiar—think of flow charts and decision-trees, wherein you

answer questions in stages, with your answers opening up yet new questions. With that

in mind, take a look back at Figure 2. What do you see? Inquiry as question-settling.

Think of a given inquiry as taking place within a space of relevant questions. At each

stage of information-processing (rational belief-formation) you settle a question—in the

frame, you proceed down one of the branch-points. Your answer then becomes a fixed

point in later processing, affecting the relevant questions, the available answers, and the

relative likelihoods in what follows. There are some questions you should be sure you

can’t settle—in the frame, those are the questions left unsettled in the “leaves” (top

nodes) of our tree. There are other questions you should be sure you can settle—those

are the branch-points “behind” you in the tree. But there are other questions you

should be unsure about—maybe you can settle them, maybe you can’t. These are the

branch-points “ahead” of you in the tree—questions that perhaps your evidence does

settle. Therein lies your higher-order uncertainty.

13
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This interpretation is only a sketch—I explore it elsewhere. But I think it’s a very

natural sketch of the way we do and should use available evidence. To illustrate: we

have applicability results. We can now construct a systematic, well-behaved model of

The Unmarked Clock.

Suppose that when you glimpse the clock there are two stages of information pro-

cessing. First you figure out your best guess for the hand’s position; then you figure out

what your margin for error is, given that guess. From there, you estimate likelihoods

of various positions. Formalizing, we have Figure 3:15

α

· ·

··· ···· ·

β· ··

γ

···
δ

···· ·

. . .

. . .

··

···
︷︸︸︷ best guess

︷︸︸︷ margin for error

1 2 12

±1 ±2 ±1 ±2 ±1

Figure 3: The Trustworthy Clock

This is a schematic model—we could fill in the worlds and probabilities in different

ways. α includes radical skeptical scenarios where you don’t know what your best guess

is. γ is where you should settle both that your guess is 2 and that your margin is ±1,

so you should be sure it’s pointing at 1,2, or 3—and, importantly, you should be sure

that you should be sure of this. δ is similar except you should settle that your margin

is ±2. β is where you should be sure your guess is 2, but unsure whether you can figure

out what your margin for error is—maybe you should settle that it’s ±1, maybe that

it’s ±2, maybe neither. And so on.

There is much to discuss about the details of the model, but the crucial points

are these. (1) The “branching” structure of this model is motivated from a systematic

background theory—Trust the evidence—not an ad hoc patch. (2) Such structure forces

us to remove the fiction that the hand’s actual position fully determines your epistemic

state—which is what led the probability of odd to be anti-correlated with its truth. (3)

Unlike other reconstructions of cases like The Unmarked Clock, ours allows higher-order

uncertainty by allowing you to be unsure what your margin for error (or best guess) is

(cf. Stalnaker, 2009; Hawthorne and Magidor, 2010; Cohen and Comesaña, 2013). (4)

15Dots represent worlds; arrows and circles represent R2-relations (R1 is universal—before your

glimpse you don’t know anything about the clock), with reflexive and transitive arrows omitted;

everything else is labelling.
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Finally, since Figure 3 describes a surely-updating neighborhood forest, by Theorem

5.4 it validates Trust, and so by Proposition 5.2 it invalidates Improbable Knowing,

Misguided Evidence, and Self-Effacing Evidence.

Upshot: Trust is a well-motivated, non-trivializing Bridging principle that provides a

systematic way to model cases while avoiding puzzles of higher-order evidence. Bridging

succeeds, after all.

6 The Theory

But though we have a solution, we so far have no argument that it’s the solution.

What if Trust is too weak—permitting as-yet-unnamed puzzles? What if Trust is too

strong—ruling our more than is required to solve them?

We can offer a proof, of sorts, that it’s not: no stronger theory is needed, and

no weaker theory will do. How? We’ll independently characterize what it takes for

evidence to be a guide, and then show that this characterization leads exactly to our

theory. Exactly to Trust.

Why should we treat the evidence as a guide? Because it’s valuable: we should

expect it to put us in a better position to fulfill our ends. Example: Mil is faced with

the decision of whether to send the plane to inspection. At worlds where it’s safe, this

is good; at those were it’s not, it’s bad. If she were .9 confident it’s safe, she’d send; if

she were .5, she’d hold off. Being .7, she’s on the fence—the expected value of sending

and holding off is balanced. What about the expected value of doing what she should

do—whatever that is? If she should be .9 (as perhaps she should), what she should

do is send; if she should be .5 (as perhaps she should), what she should do is hold off.

Being unsure what she should think, she’s unsure what she should do. But why care

about doing what she should do? Because she should value the evidence—expect that

doing as it recommends will lead to a better outcome than otherwise. That’s why she

should pour over the evidence to figure out what she should think and do, rather than

just going with her gut—because she should expect that if she succeeds, she’ll make a

better decision.

A version of this idea was made famous by I.J. Good (1967). Suppose you face a

decision problem 〈O,U〉 modeled by a set of options O and a real-valued utility function

U . For each option o ∈ O, U(o, w) is the value of performing option o at world w. Then

the evidence is valuable iff—were it cost free16—you should prefer to make use of it to

16Of course, there’s no such thing as a free lunch—information is never free, and it’s often not worth

the (monetary or psychological) cost. Likewise, there’s no such thing as a frictionless plane. But just

as the physicist sets aside friction to measure the true force of gravity, so the epistemologist sets aside

psychology to measure the true value of evidence.
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guide your decision: iff the expected value of doing so is higher than that of simply

choosing an option.

In formulating this question, Good and his followers have focused on the diachronic

setting: Should Mil prefer to use a more informed body of evidence to make her de-

cision?17 But once we recognize the rationality of higher-order uncertainty, there’s an

equally pressing question: Should Mil prefer to use her current evidence—whatever it

is—to make her decision? If evidence is to play the guiding role we’re after, then the

answer to both questions must be “yes.” The expected value of using a body of evidence

at least as informed as your own must be higher than simply choosing an option.

We can formalize this in probabilistic epistemic logic. [U(o) = s] is the proposition

that option o yields value s: [U(o) = s] =df {w|U(o,w) = s}. The expected value of

o is an average of the various possible values it might take, with weights determined by

how confident you should be in each. Formalizing: at w the expected value of o given

evidence i is Eiw[U(o)] =df

∑
s P

i(U(o) = s) · s.18

What about the expected value (given evidence i) of doing as you should do?—Of

using evidence k (k ≥ i) to make your decision? Since evidence k varies across worlds,

what you should do with it varies across worlds—if you’re at w, what you should do is

take an option o that maximizes expected value by the lights of P kw. So just as we have

a function P k from worlds to probabilities that captures what you should think given

evidence k, so too we’ll have a functionDk from worlds to options that captures what you

should Do given evidence k. Formalizing: Dk is a function from worlds w to options

Dk
w ∈ O such that Ekw[U(Dk

w)] = maxo∈O E
k
w[U(o)].19 This allows us to define the

proposition [U(Dk) = s] that the value of doing what you should do given evidence k is s:

[U(Dk) = s] =df {w|U(Dk
w, w) = s}. Then at w the expected value (given evidence

i) of letting evidence k guide your decision is Eiw[U(Dk)] =df

∑
s P

i
w(U(Dk) = s) · s.

We can now state our constraint. You should value a body of evidence iff you

should expect that letting it guide your decision will make you better off than any other

particular option o. Formalizing:

Value: Eiw[U(Dk)] ≥ Eiw[U(o)] (k ≥ i)
17E.g. Good (1967); Skyrms (1990); Huttegger (2014); Myrvold (2012).
18Decision theorists will notice that here I’ve used Savage (1954) rather than causal or evidential

decision theory—meaning I’ve assumed that probabilities are independent of which option is in question.

I do so because it provides the purest metric of the intrinsic value of the information, unaffected by

whether taking an option yields new information. It is a messy and difficult question whether the value

of evidence does (or should) hold when we allow which option you take to affect your evidence. But

for my purposes the point is that it’d better hold in this case.
19Since D1 and D2 encode ways of responding to bodies of evidence, we impose the constraint that

if you have the same information at worlds x and y, then what you should do with it is the same as

well: if P i
x = Pk

y then Di
x = Dk

y .
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Claim: Value is a formal statement of the value of evidence.20 Our first truism is true—

you should treat the evidence as a guide—iff the correct theory of evidence validates

Value.21

What does it take to do so? According to legend, Good (1967) proved the value of

evidence as a theorem of decision theory. But that can’t be right, for we’ve already seen

counterexamples—to wit, our puzzles of higher-order evidence.

Proposition* 6.1. Value is inconsistent with Improbable Knowing, Misguided Evid-

ence, and Self-Effacing Evidence.

So Value is no theorem of decision theory. What of Good’s proof? He implicitly assumes

that the accessibility relations Ri are partitional. That is to trivialize higher-order

uncertainty—any partitional probabilistic frame validates [P i(p) = t] ↔ Si[P i(p) = t].

Good’s proof will not avail us. For recall our question: How can evidence be a guide,

given the rationality of higher-order uncertainty?

Answer: Trust the evidence. We have coincidence results:

Theorem 6.2 (Value of Evidence Theorem). The following are equivalent:

(1) The probabilistic frame 〈W,R1, R2, µ〉 validates Trust.

(2) 〈W,R1, R2〉 is transitive, surely-reflexive, surely-updating, and surely-nested.

(3) The probabilistic frame 〈W,R1, R2, µ〉 validates Value.

You should treat the evidence as a guide if and only if you should trust the evidence.

I call this a “coincidence result,” for that is exactly what it is. The progression of

the project was not so prescient as the progression of this paper. I began with puzzles

of higher-order evidence, was led (through trial and error) to Trust, and characterized it

over the class of transitive, surely-reflexive, surely-updating, and surely-nested frames.

Only later did I notice a strikingly similar result:

Theorem 6.3 (Geanakoplos). A frame 〈W,R1, R2〉 with R1 = W ×W validates Value

under every prior µ iff 〈W,R1, R2〉 is transitive, reflexive, and nested.22

Imagine my surprise—shock, even—upon seeing this theorem. And my satisfaction

upon discovering that it could be strengthened, yielding our perfect little coincidence.

It is a significant fact that we end up at the exact same destination from two—very

20An important special case: letting O be the set of credences and U be an accuracy metric à

la epistemic utility theory (Joyce, 1998; Pettigrew, 2016), Value implies that you should expect the

evidence to make your beliefs more accurate.
21A probabilistic frame 〈W,R1, R2, µ〉 validates Value iff for every decision problem 〈O,U〉—no matter

what options and values you have—〈W,R1, R2, µ,O, U〉 validates Value.
22Geanokoplos is using a slightly different framework, so this is the closest, easily-statable version of

his theorem in our setup. Many thanks to [XXX], who pointed me to Geanakoplos (1989) long before

any of this had been worked out—his skeptical challenges have paid off in leaps and bounds.
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different, very well-motivated—starting points. Such coincidences do not happen—in

mathematics or in philosophy—unless that destination is a place worth going.

Upshot: Trust is an epistemic characterization of the value of evidence. No stronger

theory is needed, and no weaker theory will do.

7 Conclusion

We began with the problem of higher order evidence: How can evidence be a guide,

given the rationality of higher-order uncertainty? We’ve now found a—the—solution:

Trust the evidence.

Trust will no doubt face objections—to its consequences, its presuppositions, its

idealization. But theories—whether epistemological, mathematical, or scientific—are to

be judged by their fruits. Ours can claim the following. It is completely general, formally

precise, and philosophically versatile. It formalizes a compelling idea. It refines the

insights from previous promising approaches. It vindicates the rationality and import of

higher-order uncertainty, while unifying and banishing persistent puzzles of it. It has an

elegant and tractable mathematical structure. It can be given a natural and systematic

interpretation. It offers a new picture of rational belief-formation. It guarantees that

evidence is a guide to truth. And it vindicates and characterizes the value of evidence.

Finally, assume the E=K thesis that evidence is knowledge (Williamson, 2000). Then

Trust—hence the value of evidence—implies the KK principle: that if you know some-

thing, you’re in a position to know that you do. We have a grand argument for KK.
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Appendix A: Probabilistic Epistemic Logic

We’ll build a probabilistic frame 〈W,R1, R2, µ〉 to model our case of The Engineers (§3)

in stages.

Start with the possibilities. W is a (finite) set of worlds, thought of as a partition

that captures the relevant distinctions for modeling the case at hand. Our case has

three such distinctions: (1) Is the plane safe, or not? (2) Are the controls smooth, or

not? (3) Does the evidence settle whether the controls are smooth, or not? Mixing and
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safe

smooth

settled

a b

c d

e f g h

Figure 4: The Engineers 〈W 〉

matching, we have 8 possibilities: W = {a, b, c, d, e, f, g, h}. Our propositions can then

be represented in a Venn diagram as sets of worlds, as in Figure 4.

Shaded regions represent propositions, e.g. safe = {c, d, f, g}. Instead of using an official

object language, we’ll use propositional functions to handle logical operations: if p

and q are propositions (subsets of W ), ¬p is p’s complement W − p; p ∧ q is their

intersection p ∩ q, etc. p is true at a world w iff w ∈ p and p entails q just in case

every p-possibility is a q-possibility, i.e. p ⊆ q. So (e.g.) smooth ∧ settled is true at

h, since h ∈ {b, d, g, h} ∩ {e, f, g, h} = {g, h}; and smooth implies smooth∨safe, since

{b, d, g, h} ⊆ {b, c, d, f, g, h} = {b, d, g, h} ∪ {c, d, f, g}.
Next we want to model Mil’s evidence today. R1 is a (serial) binary relation on W .

xR1y means at world x Mil’s evidence today leaves open that she’s at world y—we say

“x accesses/sees y.” We can represent Mil’s evidence today by enriching our diagram

to Figure 5.

safe

smooth

settled

a b

c d

e f g h

Figure 5: The Engineers 〈W,R1〉

Here ovals are drawn around worlds that see exactly the same worlds (so a, b, c, d all see

the same possibilities); black arrows represent R1-relations, and an arrow pointing to

an oval means all worlds inside it are seen (so a, b, c, d sees g and h, but g and h don’t

see them). The (1-)neighborhood of world w is R1
w—the set of possibilities consistent

with Mil’s evidence (today) at world w: R1
w =df {x|wR1x}.
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Thus R1
h = {g, h} while R1

a = {a, b, c, d, e, f, g, h}. It varies across worlds because

Mil’s evidence does. Moreover, the fact that a sees both a and h but R1
a 6= R1

h means

that Mil has higher-order uncertainty: at a she should leave open both that he evidence

is R1
a (i.e. it can’t rule out any possibilities in W ) and that it’s R1

h (i.e. that it settles

that the controls are smooth).

Precisely: we can use R1 to define propositions about Mil’s evidence today. If p is a

proposition, S1p is the proposition that she should be Sure of p given evidence 1—that

p is Settled by this evidence. It’s true at w iff every world consistent with her evidence

at w is a p-world: S1p =df {w|R1
w ⊆ p}.23 Thus letting p = smooth = {b, d, g, h},

Si¬p = {e, f}, Sip = {g, h}, and ¬Sip∧¬Si¬p = {a, b, c, d}. In words: Lois is rational at

{e, f} (where their evidence settles that the controls are not smooth), Hiedi is rational

at {g, h} (where their evidence settles that they are smooth), and Mil is rational at

{a, b, c, d} (where their evidence doesn’t settle either way). And since {a, b, c, d} leaves

open {e, f} and {g, h}, if Mil’s rational then she can’t rule out that Lois or Hiedi is:

¬Si¬(Si¬p) and ¬Si¬(Sip) are true at {a, b, c, d}.
Next, we want to model Mil’s evidence tomorrow, after they ask Eve the expert

who responded to their evidence rationally. R2 is another (serial) binary relation, with

parallel definitions for R2
w, S2p, etc. Enriching our diagram to let blue ovals/arrows

represent R2 relations, we get Figure 6.

safe

smooth

settled

a b

c d

e f g h

Figure 6: The Engineers 〈W,R1, R2〉

The difference between R1 and R2 is that there are no blue arrows from {a, b, c, d} to

any world that sees different worlds. That is, if Mil’s rational then although today she

should be uncertain of this, tomorrow—after Eve tells her—she shouldn’t be.

So far this is standard epistemic logic. But we want to add degrees of evidential

support—probabilistic epistemic logic.24 We accomplish this by modeling Mil’s (ra-

23Since Ri is not assumed to be reflexive, Si is not assumed to be factive: Sip → p is not auto-

matically valid. That means Si needn’t be interpreted as knowledge—we needn’t be knowledge-first

epistemologists to use epistemic logic.
24My approach here is most similar to that of Williamson (2000, 2014), though he offers a slightly

different interpretation. Similar formalisms are commonly used in the literature on epistemic logic—
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tional) background standards of reasoning: µ is a (regular) probability distribution

over W . It captures how likely Mil should think each possibility is, absent the evidence

in question—ignoring R1 and R2. This gives us Figure 7:

safe

smooth

settled

a
.15

b
.01

c
.15

d
.09

e.10 f.10 g.36 h.04

Figure 7: The Engineers 〈W,R1, R2, µ〉

Here is our final probabilistic frame. The background probability of a world is the

number next to it, and that of a proposition is the sum of the probabilities of its worlds,

e.g. µ(safe) = µ({c, d, f, g}) = µ(c) + µ(d) + µ(f) + µ(g) = .7.

If the controls are smooth, it’s .9 likely the plane is safe: µ(safe|smooth) = .9.

If not, it’s .5 likely: µ(safe|¬smooth) = .5. Moreover, recall that Mil both (1) is

slightly inclined to think the controls are not smooth, but (2) thinks its more likely

that Hiedi’s right than that Lois is. Thus (1) µ(smooth|{a, b, c, d}) = .25, but (2)

µ({g, h}) = .4 > .2 = µ({e, f}). These are Mil’s background standards of reasoning.

We obtain what she should think given her total evidence (today) at a world w, writ-

ten P 1
w, by conditionalizing her standards µ on that evidence R1

w to get

P 1
w(p) =df µ(p|R1

w) =
µ(p∩R1

w)

µ(R1
w)

. Similarly for what she should think tomorrow: P 2
w

is µ conditionalized on R2
w. Since Mil’s evidence varies across worlds and times, what

she should think does too: P 1
a (safe) = .7, but P 1

h(safe) = .9, P 2
a (safe) = .6, and

P 2
h(safe) = .9. Thus today at world a Mil should be uncertain both what her evidence

now supports and what her evidence tomorrow will support.

Precisely: just as we used Riw to define propositions about what Mil should be sure

of, we can use P iw to define propositions about how confident she should be. For each

proposition p and t ∈ [0, 1], define [P 1(p) = t] to be the set of worlds where Mil’s evidence

(today) makes p exactly t-likely: [P 1(p) = t] =df {w|P 1
w(p) = t}, and similarly for

[P 2(p) = t] (and other facts about probabilities, like conditional ones: [P iq(p) = t] =

[P i(p|q) = t] =df {w| if P iw(q) > 0 then P iw(p|q) = t}.) Thus [P 1(safe) = .5] = {e, f},
[P 1(safe) = .9] = {g, h}, and [P 1(safe) = .7] = {a, b, c, d}. In words: Lois’s .5 credence

is rational at {e, f, }, Hiedi’s .9 credence is rational at {g, h}, and Mil’s .7 credence is

though usually with the (in our case, trivializing) assumption that agents are certain of their own

probabilities. See e.g. (van Ditmarsch et al., 2015, Ch. 4).
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rational at {a, b, c, d}.
More: since at {a, b, c, d} both [P 1({e, f}) = .2] and [P 1({g, h}) = .4], Mil should

have .2 credence that Lois is right and .4 credence that Hiedi is. That means that facts

about higher-order probabilities fall right out of the model. If Mil’s rational, she should

have .2 credence that she should have .5 credence the plane’s safe, and .4 credence

that she should have .9 credence it’s safe: at {a, b, c, d}. both [P 1(P 1(safe) = .5) = .2]

(since [P 1(safe) = .5] = {e, f}) and [P 1(P 1(safe) = .9) = .4] (since [P 1(safe) = .9] =

{g, h}). Moreover, if she’s rational she should also be uncertain today what her evidence

tomorrow supports: at {a, b, c, d}, [P 1(P 2(safe) = .9) = .4], for instance. In contrast,

tomorrow after they talk to Eve, Mil should have no higher-order uncertainty—for

instance, at {a, b, c, d} both [P 2(safe) = .6] and [P 2(P 2(safe) = .6) = 1].

These are the models of higher-order uncertainty that I will use to build and test our

theories, following the tradition of Hintikka (1962). We could be more general. Instead

of generating probabilities from a prior µ we could simply use a function Pi from worlds

to probability functions Piw, which could vary unconstrained. If we did, we’d be using

general probabilistic frames 〈W,P1,P2〉—the most general models needed to study

higher-order probability. Alas, their flexibility makes them much less formally tractable

than probabilistic frames. But many of our results hold up under this model theory—

they are marked with a ‘*’. I conjecture that all our results can be so generalized, but

that is a big formal project.

Appendix B: Proofs

Propositions 5.1-6.3

Proposition 4.1. New Reflection is validated by The Unmarked Clock.

Proof. Take an arbitrary world w and instance of the probability in New Reflection

P iw(p|P k = π). We show this equals π(p|P k = π). Suppose k = 1 (hence i = 1).

Since R1 is trivial, [P 1 = µ] = W so for π 6= µ this is undefined (so holds trivially)

and for π = µ, P 1
w(p|P 1 = µ) = P 1

w(p) = µ(p) = µ(p|P 1 = µ), as desired. Suppose

k = 2. Note that each world x has a unique 2-neighborhood R2
x, implying that it has

a unique probability function P 2
x . The only nontrivial instances of New Reflection are

when π = P 2
x for some such x. And, since unique, [P 2 = P 2

x ] = {y|P 2
y = P 2

x} = {x}
for each x. So consider P iw(p|P 2 = P 2

x ), and suppose its well-defined. Then it equals

(a) P iw(p|x). Since this frame is reflexive, P 2
x (p|P 2 = P 2

x ) is well-defined and equal to

(b) P 2
x (p|x). If x ∈ p, then (a) = (b) = 1; and if x /∈ p, then (a) = (b) = 0. Thus

P iw(p|P 2 = P 2
x ) = P 2

x (p|P 2 = P 2
x ), as desired.

Proposition* 5.1. Trust implies New Reflection, but not vice versa.

25



Propositions 5.1-6.3 APPENDIX B: PROOFS

Proof. By Proposition 4.1 New Reflection is consistent with Improbable Knowing, but

by Proposition 5.2 Trust is not; so New Reflection does not imply Trust.

On the other hand, suppose New Reflection is false at w: ∃π, p : P iw(p|P k = π) 6=
π(p|P k = π). Without loss of generality, suppose P iw(p|P k = π) < π(p|P k = π). We

will show that Trust fails at w. Define l, h such that l = P iw(p|P k = π) < π(p|P k =

π) = h. We first show that (α) : [P k = π] =
(
[P k = π] ∧ [P k(p|P k = π) ≥ h]

)
.

For take any y ∈ [P k = π]. Since P ky = π, P ky (p|P k = π) = π(p|P k = π) = h.

So [P k(p|P k = π) ≥ h] is true at y. y was an arbitrary member of [P k = π], so

[P k = π] ⊆ [P k(p|P k = π) ≥ h], implying that
(
[P k = π] ∧ [P k(p|P k = π) ≥

h]
)

= [P k = π], as desired. Now, we know P iw(p|P k = π) = l < h. By (α), we

can substitute to get (β) : P iw
(
p
∣∣[P k = π] ∧ [P k(p|P k = π) ≥ h]

)
< h. Yet putting p = p,

q = [P k = π], and t = h, an instance of Trust is P i[Pk=π]

(
p
∣∣P k[Pk=π](p) ≥ h]

)
≥ h,

i.e. P i
(
p
∣∣[P k = π] ∧ [P k(p|P k = π) ≥ h]

)
≥ h—which, by (β), is false at w. Thus if New

Reflection is false at w, so is Trust. Contraposing, we have our result.

Proposition* 5.2. Trust is inconsistent with Improbable Knowing, Misguided Evid-

ence, and Self-Effacing Evidence.

Proof. Note: in finite, regular frames, Sip↔ [P i(p) = 1] is valid.

Improbable Knowing: Suppose Sip∧[P i(Sip) < 1
2 ] is true at w. Since Sip is true,

P iw(p) = 1; so (α) : P iw(p|q) = 1 for any q on which it’s defined. Since P iw(Sip) < 1
2 ,

P iw(¬Sip) > 1
2 , i.e. P iw

(
P i(p) < 1

)
> 1

2 . Thus P iw
(
p
∣∣P i(p) < 1

)
is well-defined, so by (α)

P iw
(
p
∣∣P i(p) < 1

)
= 1. But an instance of Trust with t = 1− ε yields P i

(
p
∣∣P i(p) < 1

)
< 1,

so Trust fails at w.

Misguided Evidence: Suppose P iw
(
p ∧ [P i(p) < t]

)
≥ t. Since P iw

(
P i(p) < t]

)
≤ 1,

it follows that
P i

w(p∧[P i(p)<t])
P i

w(P i(p)<t) ≥ t. But an instance of Trust at t−ε yields P i
(
p
∣∣P i(p) < t

)
<

t, which by the ratio formula implies P i(p∧[P i(p)<t])
P i(P i(p)<t) < t; so Trust fails at w.

Self-Effacing Evidence: Suppose Si(p↔ [P i(p) < 1
2 ]) is true at w. So for any

x ∈ [P i(p) < 1
2 ], if P iw(x) > 0 then x ∈ p. If there is such an x, P iw(p

∣∣P i(p) < 1
2) =

1, contradicting Trust. If not, then (by seriality) there must be a y ∈ ¬[P i(p) <
1
2 ] = [P i(¬p) ≥ 1

2 ] such that P iw(y) > 0. Any such y must be a ¬p-world. Hence

P iw(p
∣∣P i(p) ≥ 1

2) = 0, contradicting Trust.

Proposition* 5.3. For any ε > 0 there are Trust-validating frames for which ∃p, w : ∀t :

P iw(P i(p) = t) < ε.

Proof. By Theorem 5.4 it will suffice to construct a surely-updating neighborhood forest

that meets the requirement. Let N be the smallest integer larger than 1
ε . Let W =

{a1, b1, a2, b2, ..., a2N , b2N}. Let R1 = W×W , making the frame surely-updating. Define

R2 so that R2
a1 = R2

b1
= W , while for each 1 < i ≤ 2N : R2

ai = R2
bi

= {ai, bi}. R2
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is a neighborhood forest: a1 and b1 see everything, while all other ai and bi see only

themselves. Let p = {a1, a2, ..., a2N}. Choose 2N different real numbers ui ∈ [0, 1] and

set µ(ai) = ui

2N and µ(bi) = 1−ui

2N for each i. Thus µ({ai, bi}) = 1
2N , meaning µ(W ) = 1

as required. Notice that for each ai, bi with i > 1, P 2
ai(p) = P 2

bi
(p) = P 2

bi
(ai) = ui. Since

the ui are unique, for ui 6= P 2
a1(p) we have [P 2(p) = ui] = {ai, bi}. Thus for ui 6= P 2

ai(p),

P 2
a1(P 2(p) = ui) = 1

2N < ε. And there is at most one other node {aj , bj}, (j > 1) such

that P 2
a1(p) = uj . Hence P 2

a1

(
P 2(p) = P 2

a1(p)
)
≤ 1

N < ε. Of course, for each other

t ∈ [0, 1], P 2
a1(P 2(p) = t) = 0 < ε. So at w = a1 we have the desired result.

Theorem 5.4: Characterizing Trust

Though the flagship result of this paper is the Value of Evidence Theorem (6.2), the

largest original technical contribution is its first half: the characterization of Trust over

(finite) probabilistic frames. Recall Trust: P iq(p
∣∣P kq (p) ≥ t]) ≥ t.

Some definitions. A frame is surely-reflexive iff every world that’s seen by anything

sees itself: wRix ⇒ xRkx.25 (“Surely” because every world is sure that the frame is

reflexive!) A frame is transitive iff whenever x sees y and y sees z, x sees z: (xRiy

and yRiz) ⇒ xRiz. Recall that the (i-)neighborhood of w is Riw = {x|wRix}—it

includes all and only the worlds w can “see” under Ri; is it the strongest proposition

you should be sure of at w given evidence i. A frame is surely-updating iff every

world seen by anything has a smaller neighborhood (more information) under R2 than

R1: wRix⇒ R2
x ⊆ R1

x. A frame is surely-nested iff whenever anything sees x and y,

if they can’t see each other then they see nothing in common: if x, y ∈ Riw, then (x6Rky
and y6Rkx)⇒ Rkx ∩Rky = ∅.

Given these definitions, we have:

Theorem 5.4 (Characterization). A probabilistic frame 〈W,R1, R2, µ〉 validates Trust

iff 〈W,R1, R2〉 is transitive, surely-reflexive, surely-updating, and surely-nested.

A frame 〈W,R1, R2〉 is transitive, surely-reflexive, surely-updating, and surely-nested iff

each of its neighborhoods Riw is transitive, reflexive, updating, and nested. Formally,

iff ∀x, y ∈ Riw we have the following. Transitive: ∀z ∈ W : (zRkx ∧ xRky) ⇒ zRky

(equivalently: x ∈ Rkz ⇒ Rkx ⊆ Rkz ); reflexive: xRkx; updating: R2
x ⊆ R1

x; nested: (x6Rky
and y 6Rkx) ⇒ Rkx ∩ Rky = ∅. (As always when indexing, k ≥ i.) With this in hand,

Theorem 5.4 breaks down into three lemmas:

Lemma 5.4.1. If 〈W,R1, R2, µ〉 validates Trust, it is transitive, surely-reflexive, surely-

updating, and surely-nested.

25Recall that we restrict indices so that k ≥ i in such contexts. Thus surely-reflexivity says three

things: wR1x⇒ wR1x, wR1x⇒ wR2x, and wR2x⇒ wR2x.
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Lemma 5.4.2. If Riw is transitive, reflexive, updating, and nested, so is any q ⊆ Riw.

Lemma 5.4.3. If Riw is transitive, reflexive, updating, and nested, then at w Naive

Trust
(
P i(p|P k(p) ≥ t) ≥ t

)
holds.

We begin with Lemma 5.4.1:

Proof. We show the contrapositive. Take arbitrary w ∈W ; we show Riw satisfies:

Transitivity: Suppose ∃x ∈ Riw such that x ∈ Rkz but 6Rkx ⊆ Rkz . By regularity,

[P k(Rkz ) < 1] is true at x. Since P kz (Rkz ) = 1 and zRkx, P kz (Rkz
∣∣P k(Rkz ) < 1]) = 1. Setting

q = W and t = 1− ε, an instance of (downward) Trust is P k(Rkz
∣∣P k(Rkz ) < 1]) < 1. Trust

fails at z.

Reflexivity: Suppose ∃x ∈ Riw such that 6xRkx. Let p = W − {x}, so [P k(p) =

1] ∧ ¬p is true at x. Since wRix, P iw(¬p
∣∣P k(p) = 1) > 0, so P iw(p

∣∣P k(p) ≥ 1) < 1; setting

q = W and t = 1, Trust fails.

Updating: We know Riw is reflexive. Suppose ∃x ∈ Riw such that R2
x 6⊆ R1

x, so there

is a y with xR2y but 6xR1y. By the latter, (α) P 1
x (y) = 0. By the former, [P 2(y) > 0]

is true at x. By reflexivity, xR1x, so P 1
x (P 2(y) > 0) > 0. Combined with (α) we have

P 1
x (y

∣∣P 2(y) > 0) = 0; setting q = W , t = 1− ε, i = 1, and k = 2, Trust fails.

Nestedness: Suppose ∃x, y, z ∈ Riw with 6xRky and 6yRkx but z ∈ Rkx ∩ Rky . We

know that Riw must be transitive, reflexive, and updating; we’ll will show that Trust

fails at w for q = {x, y, z}, p = {z}, and

t = min
v∈{x,y,z}

[
P kv (p|q)

]
.

By the definition of t, [P k(p|q) ≥ t] ⊇ {x, y, z} = q ⊆ Riw, so (α) : q = q∩ [P k(p|q) ≥ t]∩
Riw. Now, x, y /∈ Rkz for otherwise zRkx or zRky, and so (by transitivity) xRky or yRkx.

Thus

P kz (p|q) = P kz (z|{x, y, z}) = 1. (β)

Moreover, 6xRkw and 6yRw, for otherwise (by reflexivity) wRkw and (by transitivity)

xRky or yRkx. Hence:

P kx (p|q) =
µ(z ∩Rkx ∩ q)
µ(Rkx ∩ q)

=
µ(z)

µ({x, z})
(γ)

P ky (p|q) =
µ(z ∩Rky ∩ q)
µ(Rky ∩ q)

=
µ(z)

µ({y, z})
(δ)
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Combining (β), (γ), and (δ), we know

t ≥ µ(z)

µ({x, z})
,

µ(z)

µ({y, z})

>
µ(z)

µ({x, y, z})
(by regularity)

= µ(p|q) = µ(p|q ∩ [P k(p|q) ≥ t] ∩Riw) (by (α))

= P iw(p
∣∣q ∩ [P k(p|q) ≥ t])

That is, P iq(p
∣∣P kq (p) ≥ t) < t at w: Trust fails.

To work further with updating forests, we first need to establish that they have the

following fractal property:

Lemma 5.4.2. If Riw is transitive, reflexive, updating, and nested, so is any q ⊆ Riw.

Proof. Take arbitrary x, y ∈ q ⊆ Riw. Transitivity: say x ∈ Rkz . Since x ∈ Riw and Riw is

transitive, Rkx ⊆ Rkz . Reflexivity: since x ∈ Riw and Riw is reflexive, x ∈ Rkx. Updating:

since x ∈ Riw and Riw is updating, R2
x ⊆ R1

x. Nested: Suppose 6xRky and 6yRkx. Since

x, y ∈ Riw and Riw is nested, Rkx ∩ Rky = ∅. Since x, y were arbitrary members of q, q is

transitive, reflexive, updating, and nested.

To prove the main step in the characterization, Lemma 5.4.3, we need some setup.

Suppose we have a probabilistic frame 〈W,R1, R2, µ〉 where each neighborhood Riw is

transitive, reflexive, updating, and nested. Take an arbitrary such Riw.

Definition 5.4.3a (k-nodes). Let the set N of k-nodes partition Riw into worlds

that see the same worlds under Rk: N =df {N ⊆ Riw|∀x, y ∈ N : Rkx = Rky}. (In our

diagrams, k-nodes were the sets of worlds with circles around them.) The k-node of a

world x is denoted Nx = {y ∈ Riw|Rky = Rkx}. We let Aw denote the k-node whose

members see all of Riw under Rk: Aw =df {x|Rkx = Riw}. (Aw may be empty.)

Fact 5.4.3b (k-node accessibility). If Riw is transitive, and reflexive and N,M ∈ N ,

then there is an n ∈ N and m ∈ M such that nRkm iff ∀n ∈ N,m ∈ M : nRkm.

(Why? ∀m′ ∈ M : (reflexivity) m′Rkm′, so mRkm′, so (transitivity) nRkm′; so ∀n′ ∈
N : n′Rkm′.) Thus within Riw we can treat Rk as a relation between k-nodes: for

N,M ∈ N : NRkM iff ∃n ∈ N,m ∈ M : nRkm iff ∀n ∈ N,m ∈ M : nRkm. Similarly

for the neighborhood RkN of node N . Note: by reflexivity, transitivity, and updating:

NRkM iff RkM ⊆ RkN ; and RkM ⊂ RkN iff NRkM and N 6= M .

Definition 5.4.3c (maximal k-nodes). Given a transitive, reflexive, and updating

neighborhood Riw, the maximal k-nodes of Riw are those who see strictly less than w

under Rk but are not seen by any other k-nodes that do so: {M ∈ N
∣∣RkM ⊂ Riw and

¬∃K ∈ N : RkM ⊂ RkK ⊂ Riw}.
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Fact 5.4.3d. If Riw is transitive, reflexive, updating, and nested and M1, ...,Mn are its

maximal k-nodes, then it is partitioned by {Aw, RkM1
, ..., RkMn

}.

Proof. Exhaustivity: Take arbitrary x ∈ Riw. By definition, x ∈ Nx. If RkNx
6⊂ Riw,

then by transitivity and updating RkNx
= Riw, so x ∈ Aw, hence included in a set in

{Aw, RkM1
, ..., RkMn

}. So suppose RkNx
⊂ Riw; we show that x ∈ RkMj

for some maximal

Mj . By reflexivity x ∈ Rkx, so NxR
kNx. Therefore there must be an node Mj that’s

maximal and MjR
kNx. For suppose not: there is no K ∈ N such that RkK ⊂ Riw,

KRkNx, and (by definition of maximal) ¬∃K ′ ∈ N : RkK ⊂ RkK′ ⊂ Riw, i.e.

∀K ∈ N : if RkK ⊂ Riw and KRkNx then ∃K ′ ∈ N : RkK ⊂ RkK′ ⊂ Riw. (α)

But this blows up the size of Riw. Since Riw is finite, suppose |Riw| = m. Setting K = Nx,

we have RkNx
⊂ Riw and NxR

kNx; therefore by (α) there is a K ′ with RkNx
⊂ RkK′ ⊂ Riw.

Since RkNx
⊂ RkK′ , K ′RkNx. But then setting K = K ′ we have RkK′ ⊂ Riw and K ′RkNx,

so by (α) again we get a K ′′ such that RkK′ ⊂ RkK′′ ⊂ Riw. By iterating this, we prove

that |Riw| > m. Contradiction. Thus there must be a maximal node Mj that accesses

Nx, and hence accesses x. Thus x ∈ RkMj
, as desired.

Exclusivity: If there is an x ∈ Aw ∩RkMj
, then MjR

kAw so by transitivity RkMj
6⊂

Riw. Contradiction. So Aw is disjoint from all the RkMl
. Next, take any Ml 6= Mj , with

ml ∈ Ml and mj ∈ Mj . If mlR
kmj or mjR

kml, then either they access each other (so

by transitivity Ml = Mj—contradiction) or only one accesses the other—WLOG, say

mlR
kmj . Since mlR

kml but 6mjR
kml, by transitivity Rkmj

⊂ Rkml
⊂ Riw, contradicting

the assumption that Mj is maximal. Thus ml and mj do not access each other, so by

nestedness Rkml
∩Rkmj

= ∅, i.e. RkMl
and RMj are disjoint.

We are now in position to prove the main lemma of Theorem 5.4

Lemma 5.4.3. If Riw is transitive, reflexive, updating, and nested, then at w Naive

Trust
(
P i(p|P k(p) ≥ t) ≥ t

)
holds.

Proof. We will show that Naive Trust holds at w by induction on the size of Riw. Note:

if P ix(p|q) is undefined, [Pik(p|q) = t] holds trivially at x; so to show that Naive Trust

holds at x it suffices to show that P ix(p
∣∣P k(p) ≥ t) ≥ t for any p, t on which it’s defined.

Base case: |Riw| = 1, say Riw = {x}. For arbitrary p, t: P iw(p|P k(p) ≥ t) is defined

iff P kx (p) ≥ t. If so, P iw(P k(p) ≥ t) = 1, thus P iw(p
∣∣P k(p) ≥ t) = P iw(p). By reflexivity,

transitivity, and updating of Riw, Rkx = {x}; so P iw(p) = µ(p|Riw) = µ(p|Rkx) = P kx (p) ≥
t, and we have desired result.

Induction step: Suppose |Riw| = l and for transitive, reflexive, updating, and nested

Rkx with |Rkx| < l, Naive Trust holds at x. (Since i is a variable, if the hypothesis of

Lemma 5.4.3 holds for |Rix| < l, it holds for both |R1
w| < l and |R2

w| < l; so we are
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allowed to assume it holds for |Rkx | < l, not merely |Rix| < l.) We show that Naive

Trust holds at w. By Fact 5.4.3d, since Riw is transitive, reflexive, updating, and nested,

it can be partitioned into Aw, R
k
M1
, ..., RkMn

for its maximal nodes M1, ...,Mn. Taking

arbitrary p, t such that P iw(p|p ≥ t) is well-defined, either (i) P iw(p) < t or (ii) P iw(p) ≥ t.
Suppose (i): P iw(p) < t. Since ∀x ∈ Aw : Rkx = Riw, it follows that P k(p)x =

P iw(p) < t. Hence Aw ∩ [P k(p) ≥ t] = ∅, so RkM1
, ..., RkMk

partitions Riw ∩ [P k(p) ≥ t]—

the set assigned positive mass by P iw(·
∣∣P k(p) ≥ t). By the law of total probability,

P iw(p
∣∣P k(p) ≥ t) =

∑
j

P iw(RkMj

∣∣P k(p) ≥ t) · P iw(p
∣∣RkMj

∩ [P k(p) ≥ t]) (α)

So P iw(p
∣∣P k(p) ≥ t) is a weighted average of the P iw(p

∣∣RkMj
∩ [P k(p) ≥ t]). And note that

since RkMj
⊆ Riw:

P iw(p
∣∣RkMj

∩ [P k(p) ≥ t]) =
µ
(
p ∩RkMj

∩ [P k(p) ≥ t] ∩Riw
)

µ
(
RkMj

∩ [P k(p) ≥ t] ∩Riw
)

=
µ
(
p ∩RkMj

∩ [P k(p) ≥ t]
)

µ
(
RkMj

∩ [P k(p) ≥ t]
)

= P kmj
(p
∣∣P k(p) ≥ t)

for mj ∈Mj . Moreover, since Rkmj
⊆ Riw, by Lemma 5.4.2, Rkmj

is transitive, reflexive,

updating, and nested. And since Rkmj
⊂ Riw, |Rkmj

| < |Riw| = l, so by the inductive

hypothesis Naive Trust holds at each mj . In particular, P kmj
(p|P k(p) ≥ t) ≥ t when it’s

defined
(
when P iw

(
RkMj

∩ [P k(p) ≥ t]
)
> 0
)
. Plugging this into (α):

P iw(p
∣∣P k(p) ≥ t) ≥ t

∑
j

P iw(RkMj

∣∣P k(p) ≥ t) = t · 1

That is, P iw(p
∣∣P k(p) ≥ t) ≥ t, as desired.

Suppose (ii): P kw(p) ≥ t. Then Aw ∩ [P k(p) < t] = ∅, so by parallel reasoning:

P iw(p
∣∣P k(p) < t) =

∑
j

P iw(RkMj

∣∣P k(p) < t) · P iw(p
∣∣RkMj

∩ [P k(p) < t]
)

(β)

And similarly P iw(p
∣∣RkMj

∩ [P k(p) < t]) = P kmj
(p
∣∣P k(p) < t) < t, since the mj satisfy Naive

Trust. Applied to (β) we get P iw(p
∣∣P k(p) < t) < t. But since [P k(p) < t] and [P k(p) ≥ t]

partition Riw and (by hypothesis) P iw(p) ≥ t, we have:

t ≤ P iw(p) = P iw(P k(p) < t) · P iw(p
∣∣P k(p) < t) + P iw(P k(p) ≥ t) · P iw(p

∣∣P k(p) ≥ t)

So P iw(p
∣∣P k(p) < t) and P iw(p

∣∣P k(p) ≥ t) must average to at least t. Since we know the

former is less than t, the latter must be greater: P iw(p
∣∣P k(p) ≥ t) ≥ t, as desired.

Since p, t were arbitrary, Naive Trust holds at w—completing the induction.
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Finally, we are in a position to prove our theorem:

Theorem 5.4 (Characterization). A probabilistic frame 〈W,R1, R2, µ〉 validates Trust

iff 〈W,R1, R2〉 is transitive, surely-reflexive, surely-updating, and surely-nested.

Proof. (⇒). Supposing 〈W,R1, R2, µ〉 validates Trust, Lemma 5.4.1 implies that it is

transitive, surely-reflexive, surely-updating, and surely-nested.

(⇐). Suppose F = 〈W,R1, R2, µ〉 is transitive, surely-reflexive, surely-updating,

and surely-nested. Taking an arbitrary world w, this means Riw is transitive, reflexive,

updating, and nested. Now take arbitrary q, p, t such that P iw
(
p
∣∣q ∩ [P k(p|q) ≥ t]

) (
=

P iw|q(p
∣∣[P kq (p) ≥ t])

)
is defined. Is this value at least t? Consider updating Ri on q to get

a new relation Ri+ such that xRi+y iff xRiy and y ∈ q; equivalently Ri+x = q ∩Rix. We

can use this to define new probability functions at worlds and propositions about them:

P i+x =df µ(·|Ri+x ), [P i+(p) = t] =df {x|P i+x (p) = t}, etc. Likewise define Rk+ such that

Rk+x = q ∩Rkx, with [P k+(p) = t] (etc.) defined in parallel. First note that if P kx (q) > 0,

then

P kx (p|q) = µ(p|q ∩Rkx) = µ(p|Rk+x ) = P k+x (p) (α)

Since Riw is reflexive, every x ∈ q∩Riw has P kx (q) > 0; so (α) implies q∩Riw∩ [P k(p|q) ≥
t] = q ∩Riw ∩ [P k+(p) ≥ t]. Therefore

P iw
(
p
∣∣q ∩ [P k(p|q) ≥ t]

)
= P iw

(
p
∣∣q ∩Riw ∩ [P k(p|q) ≥ t]

)
= P iw

(
p
∣∣q ∩Riw ∩ [P k+(p) ≥ t]

)
= P i+w

(
p
∣∣Riw ∩ [P k+(p) ≥ t]

)
= P i+w

(
p
∣∣P k+(p) ≥ t]

)
.

Finally, note that by Lemma 5.4.2, Ri+w = q ∩Riw is transitive, reflexive, updating, and

nested. Therefore by Lemma 5.4.3, Naive Trust holds for P i+w with respect to P k+:

P i+w
(
p
∣∣P k+(p) ≥ t]

)
≥ t. It follows by our above equality that P iw

(
p
∣∣q ∩ [P k(p|q) ≥ t]

)
≥ t,

as desired: P iw|q(p
∣∣P kq (p) ≥ t) ≥ t. Since w, q, p, t were arbitrary, 〈W,R1, R2, µ〉 validates

(full) Trust.

Next we move on to characterizing Value.

Remark (Expectations). As we have seen, the expectation of a random variable (func-

tion from worlds to numbers) X is defined by Eiw[X] =df

∑
s P

i
w

(
X = s

)
·s. But a more

convenient form to work with is given by the total expectation theorem: given any

A1, ..., An that partitions Riw, Eiw[X] =
∑
Ai
P iw(Ai) · Eiw[X|Ai] where Eiw[X|Ai] is the

expectation of X calculated using P iw(·|Ai). As a limiting case, we can use the max-

imally fine-grained partition to get Eiw[X] =
∑
w′∈W P iw(w′) ·X(w′). We use this and

similar facts about expectations freely in what follows.
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Proposition* 6.1. Value is inconsistent with Improbable Knowing, Misguided Evid-

ence, and Self-Effacing Evidence.

Proof. Improbable Knowing: Suppose Si(p ∧ [P i(Sip) < 1
2 ]) at w. We show that Value

fails. Let O = {n, b} and let

U(n, v) = 0 for all v ∈W U(b, v) =

1 if v ∈ p

−n if v /∈ p
for large n > 0.

Since Sip is true at w, P iw(p) = 1, so P iw(U(b) = 1) = 1, hence Eiw[U(b)] = 1. But

since P iw(Sip) < 1
2 , P iw(P i(p) < 1) > 1

2 . Take such a x seen by w with P ix(p) < 1. For

large enough n, Eix[U(b)] < 0 = Eix[U(n)], so Di
x = n. Hence P iw(U(Di) < 1) > 0 while

P iw(U(Di) ≤ 1) = 1 (since [U(Di) ≤ 1] everywhere), which implies that Eiw[U(Di)] <

1 = Eiw[U(b)]. Value fails at w.

Misguided Evidence: Suppose P iw(p ∧ [P i(p) < t]) ≥ t, so P iw(p ∧ [P i(p) ≤ t− d]) ≥
t for some d > 0. Equivalently, P iw

(
p ∧ [P i(¬p) ≥ 1− t+ d]

)
≥ t. Abbreviate X =

p ∧ [P i(¬p) ≥ 1− t+ d]. We’ll define a decision problem that’s a bet on ¬p which isn’t

worth the risk but which your evidence recommends taking throughout X—where it

won’t pay out. Let O = {n, b}. The nope option has 0 utility everywhere, while the bet

option is a bet on ¬p:

U(n, v) = 0 for all v ∈W U(b, v) =

t if v ∈ ¬p

t− 1− ε if v ∈ p
for small ε > 0.

Since Eiw[U(n)] = 0, it’ll suffice to show that Eiw[U(Di)] < 0. At each world x ∈ X,

P ix(¬p) ≥ 1− t+ d, meaning the expected utility of b is Eix[U(b)] = (1− t+ d)(t) + (t−
d)(t−1−ε) = d+dε−tε. Once ε < d

t , this value goes positive: Eix[U(b)] > 0 = Eix[U(n)].

Thus Di
x = b for every x ∈ X. Recalling that X ⊆ p so X ∩ ¬p = ∅, the bet does not

pay out there: ∀x ∈ X : U(Di, x) = U(b, x) = t− 1− ε, hence Eiw[U(Di)|X] = t− 1− ε.
This allows us to derive (2) from (1) below; (3) follows by noting that t is the largest

utility obtainable at any world; and (4) follows since P iw(X) ≥ t:

Eiw[U(Di)] = P iw(X) · Eiw[U(Di)|X] + P iw(¬X) · Eiw[U(Di)|¬X] (1)

= P iw(X)(t− 1− ε) + P iw(¬X) · Eiw[U(Di)|¬X] (2)

= P iw(X)(t− 1− ε) + P iw(¬X)t (3)

≤ t(t− 1− ε) + (1− t)t = −tε < 0 (4)

Thus Eiw[U(Di)] < 0 = Eiw[U(n)]: Value fails.

Self-Effacing Evidence: Suppose Si(p↔ [P i(p) < 1
2 ]) and Si(¬p↔ [P i(p) > 1

2 ]) at
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w. Let O = {n, b1, b2} and

U(n, v) = 0 for all v ∈W U(b1, v) =

1 if v ∈ p

−1 if v /∈ p
U(b2, v) =

−1 if v ∈ p

1 if v /∈ p

Clearly Eiw[U(n)] = 0 since P iw(U(n) = 0) = 1. So it suffices to show Eiw[U(Di)] < 0.

Take an arbitrary x ∈ Riw. Suppose x ∈ p, then P ix(p) < 1
2 meaning that Eix[U(b2)] >

0 = Eix[U(n)] > Eix[U(b1)], so Di
x = b2. Since x ∈ p, b2 doesn’t pay out, so U(Di, x) =

−1. Next suppose x /∈ p, so P ix(p) > 1
2 . By parallel reasoning, Di

x = b1 and so

U(Di, x) = −1. Since this applies to any x seen by w, P iw(U(Di) = −1) = 1. Thus

Eiw[U(Di)] = −1 < 0 = Eiw[U(n)]. Value fails at w. Even more: Di is strictly dominated

by n: Si(U(Di) < U(n)).

Theorem 6.2: The Value of Evidence Theorem

Recall that Value is validated by 〈W,R1, R2, µ〉 iff for every decision problem 〈O,U〉 it

satisfies the following inequality for all w, i, k,D, o:

Value: Eiw[U(Dk)] ≥ Eiw[U(o)] (k ≥ i)

Here o ∈ O is an option, while Dk is a function from worlds w to options that maximize

expected utility with respect to P kw—subject to the constraint that if P ix = P ky , then

Di
x = Dk

y . Here is our flagship theorem:

Theorem 6.2 (Value of Evidence Theorem). The following are equivalent:

(1) The probabilistic frame 〈W,R1, R2, µ〉 validates Trust.

(2) 〈W,R1, R2〉 is transitive, surely-reflexive, surely-updating, and surely-nested.

(3) The probabilistic frame 〈W,R1, R2, µ〉 validates Value.

Theorem 5.4 has already established that (1) and (2) are equivalent, so we must show

that (2) and (3) are. We will break it into two stages. As mentioned in §7.1, the

result that (2) implies (3) is due in its essentials to Geanakoplos (1989). Here we are

in a slightly different framework, which requires slightly different proof methods—I will

make use of the tools we developed for Theorem 5.4.

Lemma 6.2.1 (Geanakoplos). If 〈W,R1, R2〉 is transitive, surely-reflexive, surely-updating,

and surely-nested, then 〈W,R1, R2, µ〉 validates Value.

Proof. As with Theorem 5.4, it’ll suffice to show that if Riw is transitive, reflexive,

updating, and nested, then Value holds at w for an arbitrary decision problem. We do

this by induction on the size of Riw.
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Base case: |Riw| = 1, sayRiw = {x}. It’ll suffice to show that t = maxo∈O
(
Eiw[U(o)]

)
≤

Eiw[U(Dk)]. By definition, t = Eiw[U(Di
w)]. But by reflexivity, updating, and transitiv-

ity: Rkx = {x}, so P iw = P kx , so Dk
x = Di

w. Since this is the only possibility P iw assigns

positive mass to, P iw
(
[U(Dk) = U(Di

w)]
)

= 1, which implies our desired result.

Induction step: Suppose |Riw| = n and that for each transitive, reflexive, updating,

nested Rkx such that |Rkx| < n, Value holds at x. We’ll show it holds at w. Recall from

Definition 5.4.3c and Fact 5.4.3d that since Riw is transitive, reflexive, updating, and

nested, we can take it’s maximal k-nodes M1, ...,Ml and partition it by their neigh-

borhoods plus Aw (which is possibly empty, since perhaps nothing in Riw sees all of

Riw under Rk): {Aw, RkM1
, ..., RkMl

}. Thus taking an arbitrary option o, by the total

expectation theorem we have:

Eiw[U(o)] = P iw(Aw)Eiw[U(o)
∣∣Aw] +

∑
j

P iw(RkMj
)Eiw[U(o)

∣∣RkMj
]

≤ Eiw[U(Di
w)] [By definition of D]

= P iw(Aw)Eiw[U(Di
w)|Aw] +

∑
j

P iw(RkMj
)Eiw[U(Di

w)|RkMj
] (α)

So it’ll suffice to show that (α) is no greater than Eiw[U(Dk)]. Break this into:

Eiw[U(Dk)] = P iw(Aw)Eiw[U(Dk)|Aw] +
∑
j

P iw(RkMj
)Eiw[U(Dk)|RkMj

] (β)

Note that every x ∈ Aw has Rkx = Riw and therefore P kx = P iw; thus Dk
x = Di

w. Plugging

this into the left summand of (β) shows it to be equal to the left summand of (α):

P iw(Aw)Eiw[U(Di
w)|Aw] = P iw(Aw)Eiw[U(Dk)|Aw] (γ)

Now we turn to the right summands. Since the Mj are maximal k-nodes, we know each

RkMj
⊂ Riw, thus |RkMj

| < |Riw| = n. By Lemma 5.4.2, they are also transitive, reflexive,

updating, and nested; so by the inductive hypothesis Value holds at each mj ∈ Mj ;

hence for any option o′ ∈ O, Ekmj
[U(o′)] ≤ Ekmj

[U(Dk)]. In particular, we can set

o′ = Di
w to obtain:

Ekmj
[U(Di

w)] ≤ Ekmj
[U(Dk)] (δ)
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Now in general for a random variable X we have

Ekmj
[X] =

∑
s

P kmj
(X = s)s

=
∑
s

µ(X = s|RkMj
)s

=
∑
s

µ(X = s|RkMj
∩Riw)s [Since RkMj

⊆ Riw]

=
∑
s

P iw(X = s|RkMj
)s

= Eiw[X|RkMj
]

Letting X = U(Di
w) and then X = U(Dk), respectively, and combining with (δ): for

each Mj we obtain Eiw[U(Di
w)|RkMi

] = Ekmj
[U(Di

w)] ≤ Ekmj
[U(Dk)] = Eiw[U(Dk)|RkMi

].

Plugging this into the right summands of (α) and (β) yields∑
j

P iw(RkMj
)Eiw[U(Di

w)|RkMj
] =

∑
j

P iw(RkMj
)Ekmj

[U(Di
w)]

≤
∑
j

P iw(RkMj
)Ekmj

[U(Dk)] =
∑
j

P iw(RkMj
)Eiw[U(Dk)|RkMj

]
(ε)

Finally, combining (α), (β), (γ), and (ε) yields the desired result: Eiw[U(Dk)] ≥ Eiw[U(o)].

Since o and D were arbitrary, this completes the induction and establishes the result.

The final step is to show the converse. Though the details are messy, the basic idea is

that whenever a frame is not nested, any prior over it will have an “imbalance” in it—a

proposition on which it can be expected to (slightly) mislead. By carefully choosing

options and utilities to draw out this imbalance, we can find a decision problem on

which Value fails.

Lemma 6.2.2. If 〈W,R1, R2〉 is not transitive, surely-reflexive, surely-updating, and

surely-nested, then 〈W,R1, R2, µ〉 does not validate Value.

Proof. Transitivity: Suppose there is an x ∈ Riw such that there is a z ∈W with zRkx

and xRky but z 6Rk y. Let O = {n, b} with

U(n, v) = 0 for all v ∈W U(b, v) =

1 if v = y

−ε if v 6= y
for small ε > 0.

Since P kx (y) = P kx (U(b) = 1) > 0, as ε → 0 we get Ekx [U(b)] > 0 = Ekx [U(n)]. Once this

happens, since P kz (y) = P kz (U(Dk) > 0) = 0 (since Dk is 0 or −ε everywhere else), then

since P kz (x) ≤ P kz (U(Dk) < 0) > 0, we get Ekz [U(Dk)] < 0 = Ekz [U(n)]. Value fails at z.

36



Theorem 6.2: The Value of Evidence Theorem APPENDIX B: PROOFS

Surely-Reflexivity: Suppose 〈W,R1, R2〉 is not surely-reflexive, so there is an

x ∈ Riw with 6xRkx. We find a decision problem where Value fails. Let O = {n, b} (nope

and bet) with

U(n, v) = 0 for all v ∈W U(b, v) =

ε if v 6= x

−1 if v = x
for small ε > 0.

Since 6xRkx, P kx (x) = 0, so Ekx [U(b)] = ε > 0 = Ekx [U(n)], hence Dk
x = b. But since

wRix, P iw(x) > 0; since [U(Dk) = −1] at x, P kw(U(Dk) = −1) = a > 0. Thus as ε → 0

(in particular, ε < a) we obtain Eiw[U(Dk)] < 0 = Eiw[U(n)]. Value fails at w.

Surely-Updating: We know Riw must be surely-reflexive. Suppose there is an

x ∈ Riw with R2
x 6⊆ R1

x; say xR2y but 6xR1y. By surely-reflexivity, xR1x. Let O = {n, b}
with:

U(n, v) = 0 for all v ∈W U(b, v) =

1 if v = y

−ε if v 6= y
for small ε > 0.

Since P 2
x (y) = P 2

x (U(b) = 1) > 0, as ε → 0 we get E2
x[U(b)] > 0 = E2

x[U(n)], hence

D2
x = b. Now P 1

x (y) = P 1
x (U(D2) > 0) = 0 (since Dk is 0 or −ε everyone else); so since

0 < P 1
x (x) ≤ P 1

x (U(D2) < 0), we have E1
x[U(D2)] < 0 = E1

x[U(n)]. Value fails at x.

Nestedness: We know Riw must be transitive, surely-reflexive, and updating. Sup-

pose it’s not nested: for x, y ∈ Riw : 6xRky and 6yRkx but Rkx ∩ Rky 6= ∅. Recalling that

Nv = {v′ ∈ Riw|Rkv′ = Rkv}, define C = (Rkx ∪Rky)− (Nx ∪Ny). This is the proposition

we will “bet” on. Basically, since Rkx and Rky overlap, C “looms larger” to them than it

should according to w—who can see the whole setup.

Before defining our decision problem, we record some facts about this frame. (1)

Rkx∪Rky ⊆ Riw (transitivity, updating). (2) Rkx∩Rky ⊆ C, for otherwise they’d overlap in

Nx∪Ny and so see each other. (3) For v ∈ C : P kv (C) = 1 (by transitivity, Rkv ⊆ Rkx∪Rky ;

and if v saw one of x or y, either v ∈ Nx, Ny, xRky, or yRkx—all contradictions). (4)

Since x ∈ Rkx and y ∈ Rky (reflexivity), 0 < P kx (C), P ky (C) < 1. Finally, supposing v is x

or y, v′ is the other, and P kv (C) = t, then (α) : P iw(C
∣∣Rkv −Rkv′) < t. For since Rkv ⊆ Riw,

P iw(C|Rkv) = µ(C|Rkv) = P kv (C) = t, and by total probability:

= µ(Rkv′
∣∣Rkv)µ(C

∣∣Rkx ∩Rky) + µ(Rkv −Rkv′
∣∣Rkv)µ(C

∣∣Rkv −Rkv′)
So µ(C

∣∣Rkx ∩Rky) and µ(C
∣∣Rkv −Rkv′) average to t < 1. By (2) the first equals 1, so the

second must be less than t.

We can now set up our decision problem. Without loss of generality, suppose
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P ky (C) ≤ P kx (C), so P ky (C) = t ≤ P kx (C) = t+ d for d ≥ 0. Let O = {n, b} with

U(n, v) =

0 if v /∈ Nx
d

1−t−d if v ∈ Nx
U(b, v) =

1− t+ ε if v ∈ C

−t if v /∈ C
for small ε > 0.

First note that, again, (β) : ∀v ∈ Rkx ∪ Rky = C ∪ Nx ∪ Ny : Dk
v = b. For if v ∈ C,

P kv (C) = 1 and P kv (Nx) = 0, so Ekv [U(n)] = 0 < 1 − t + ε = Ekv [U(b)]. If v ∈ Ny, then

P kv (Nx) = 0 while P kv (C) = t, so Ekv [U(b)] = t(1−t+ε)+(1−t)(−t) = tε > 0 = Ekv [U(n)].

Finally, if v ∈ Nx then

Ekv [U(n)] = P kx (C)0 + P kx (¬C)
d

1− t− d
= (1− t− d)

d

1− t− d
= d

< Ekv [U(b)] = P kx (C)(1− t+ ε) + P kx (¬C)(−t)

= (t+ d)(1− t+ ε) + (1− t− d)(−t) = d+ tε+ dε.

We next show that Eiw[U(b)
∣∣Rkx ∪Rky ] < Eiw[U(n)

∣∣Rkx ∪Rky ].
Proof. By total expectation we have Eiw

[
U(n)

∣∣Rkx ∪Rky]
= P iw(Rkx

∣∣Rkx ∪Rky)Eiw[U(n)
∣∣Rkx] + P kx (Rky −Rkx

∣∣Rkx ∪Rky)Eiw[U(n)
∣∣Rky −Rkx].

Since ∀v ∈ Rky − Rkx : U(n, v) = 0, the second summand is 0. Since Rkx ⊆ Riw,

Eiw[U(n)
∣∣Rkx] = Ex[U(n)] = d. Therefore (γ) : Eiw[U(n)

∣∣Rkx ∪Rky ] = P iw(Rkx
∣∣Rkx ∪Rky)d.

On the other hand, Eiw[U(b)
∣∣Rkx ∪Rky ]

= P iw(Rkx
∣∣Rkx ∪Rky)Eiw[U(b)

∣∣Rkx] + P iw(Rky −Rkx|Rkx ∪Rky)Eiw[U(b)
∣∣Rky −Rkx]

= P iw(Rkx
∣∣Rkx ∪Rky)(d+ tε+ dε) + P iw(Rky −Rkx|Rkx ∪Rky)Eiw[U(b)

∣∣Rky −Rkx]
Taking out a P iw(Rkx

∣∣Rkx ∪Rky)d to subtract from both this and (γ), and factoring, it

suffices to show that

0 > εP iw(Rkx
∣∣Rkx ∪Rky)(t+ d) + P iw(Rky −Rkx|Rkx ∪Rky)Eiw[U(b)

∣∣Rky −Rkx]
Since the left summand approaches 0 as ε does, it in turn suffices to show that Eiw[U(b)

∣∣Rky −Rkx] <
0 for small ε. Recall that by (α), P iw(C

∣∣Rky −Rkx) < t, so it equals t− b for b > 0. Thus

Eiw[U(b)
∣∣Rky −Rkx] = (t− b)(1− t+ ε) + (1− t+ b)(−t) = tε− b− bε.

As ε → 0 we have this goes negative: Eiw[U(b)
∣∣Rky −Rkx] < 0 for small ε, as desired.

Hence (δ) : Eiw
[
U(b)

∣∣Rkx ∪Rky] < Eiw
[
U(n)

∣∣Rkx ∪Rky]
Now by the total expectation, compare:

Eiw[U(Dk)] = P iw(Rkx ∪Rky)Ex[U(Dk)
∣∣Rkx ∪Rky ] + P iw(¬(Rkx ∪Rky))Eiw[U(Dk)

∣∣¬(Rkx ∪Rky)]

(1)

Eiw[U(n)] = P iw(Rkx ∪Rky)Ex[U(n)
∣∣Rkx ∪Rky ] + P iw(¬(Rkx ∪Rky))Eiw[U(n)

∣∣¬(Rkx ∪Rky)] (2)
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Outside Rkx ∪ Rky , U(n, v) = 0 and U(Dk, v) ≤ 0, so the second summand of (1) is ≤
that of (2). But combining (β) with (δ) yields Eiw[U(Dk)

∣∣Rkx ∪Rky ] = Eiw[U(b)
∣∣Rkx ∪Rky ] <

Eiw[U(n)
∣∣Rkx ∪Rky ], so the left summand of (1) is < that of (2), meaning Eiw[U(Dk)] <

Eiw[U(n)]. Value fails at w.

Our flagship awaits:

Theorem 6.2 (Value of Evidence Theorem). The following are equivalent:

(1) The probabilistic frame 〈W,R1, R2, µ〉 validates Trust.

(2) 〈W,R1, R2〉 is transitive, surely-reflexive, surely-updating, and surely-nested.

(3) The probabilistic frame 〈W,R1, R2, µ〉 validates Value.

Proof. By Theorem 5.4, (1) holds iff (2) does. By Lemma 6.2.1, if (2) holds then (3)

does. And by Lemma 6.2.2, if (2) does not hold then (3) does not. Combined, we have

the result.
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