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Introduction

Most of our scientific knowledge is based upon the testimony of others. For
example, I have never verified Coulomb’s law in a laboratory, but I still know
that electrostatic force obeys an inverse square law. Why? My high school
physics teacher told me so. On first glance, explaining my knowledge of such
scientific facts seems rather easy. Scientific facts, like Coulomb’s law, are
confirmed repeatedly by experts in laboratories or other experimental set-
tings. Experts then disseminate their findings by word of mouth or through
journal articles. Those findings are, in turn, summarized in survey articles
for other academics, in textbooks for high school students, and in popular
articles and lectures for the lay public. In this way, experts’ knowledge of
scientific facts, like Coulomb’s law, is transmitted from one person to an-
other. Each part of this explanation, however, raises serious epistemological
questions. I will mention three.

First, scientists often disagree. In the presence of such disagreements,
how can non-specialists justifiably accept a scientific hypothesis merely on
the basis of others’ claims, especially when there are experts who hold an
opposing view? Recognizing the importance of resolving conflicting expert
testimony, epistemologists and legal theorists have begun to develop proce-
dures for evaluating experts and deciding who to trust. Some epistemologists
have argued that, absent other information, non-specialists should “go by
the numbers” and adopt the opinion of the majority of experts in a field.
Others have argued that there are a series of criteria by which non-experts
can determine which experts are most reliable.1

1The Lehrer-Wagner model entails that, all other things being equal, greater weight
ought to be assigned to beliefs that are held by many experts rather than a few. See Lehrer
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Second, much of our scientific knowledge is acquired from non-experts.2

Journalists often have no scientific training, and yet both academics and
lay audiences often learn of scientific advances via newspapers and maga-
zines. Many secondary teachers and college professors are not experts in
the field in which they provide instruction. And so on. Given that non-
experts are sometimes unreliable, may have strong incentives for dishonesty,
and are prone to miscommunication, there are even more philosophical and
practical questions concerning who one can justifiably trust.3 Recent de-
bates in the epistemology of testimony have led to the establishment of
two positions, called reductionism and non-reductionism respectively, that
attempt to characterize the conditions under which one is justified in ac-
cepting others’ claims. Recognizing the implausibility (or our inability) of
always verifying others’ claims, non-reductionists argue that one can justi-
fiably trust a speaker in the absence of evidence of dishonesty or unrelia-
bility. In contrast, recognizing the frequency of dishonest and/or unreliable
communication, reductionists claim that one needs positive reasons to trust
others, where such positive reasons might include evidence for the speakers’
honesty and/or expertise an area. And there are philosophers who adopt
intermediate positions.4

Finally, several philosophers have questioned whether knowledge is trans-

and Wagner [1981]. In contrast, Goldman [2001] argues that, because experts judgments
might be highly correlated due to common information, agreement cannot always provide
greater evidence of a hypothesis. As a result, Goldman claims that there any number of
heuristics that one might use to evaluate expert testimony.

2I am not claiming there is a bright line between experts and non-experts; there are
clearly degrees of expertise and knowledge. My point is that we often rely on individuals
who are not extremely well-versed in the area in which they are testifying. Moreover, I
would hypothesize that we often rely on individuals who are no more qualified to evaluate
the truth of scientific hypotheses than ourselves.

3I am not claiming that scientists are immune from error, dishonesty, and/or miscom-
munication. There are plenty of cases to indicate otherwise. Rather, I am claiming that
universities, academic journals, and research institutions have established mechanisms to
mitigate these sources of error, whereas such mechanisms are often not present in every-
day conversational contexts, television journalism, and so on. Peer review, for instance,
arguably decreases the chances of mistakes; there are strong punishments for fabricating
data that minimize dishonesty; finally, the training of scientific professionals, along with
the establishment of technical vocabularies, can decrease the chances of miscommunica-
tion. Such incentives and punishments are, I assume, less frequent outside of academic
settings.

4See Burge [1993], Coady [1973], and Foley [2005] for several different defenses of the
non-reductionist position. See Adler [1994], Fricker [1994], Fricker and Cooper [1987] for
defenses of reductionism. An extensive list of citations for this debate is available in
Lackey [2011].
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ferred via testimony. Lackey [1999], for example, argues that a creationist
biology teacher might not know the theory of evolution (because she does
not believe it to be true) and yet still successfully teach it to students (who
thereby acquire knowledge). Lackey’s examples raise the possibility that we
can know scientific facts via testimony even if those facts are transmitted
via a series of conversational or written exchanges in which no individual
believes, or has sufficient reason to believe, the fact in question.

Many of the above philosophical debates are (at least implicitly) moti-
vated by concerns about the reliability of various rules for changing one’s
beliefs in light of others’ claims. Call such rules testimonial norms. The
rule “believe others’ claims in the absence of conflicting information” is
one testimonial norm, and the rule “believe all and only those individuals
you know to be reliable and trustworthy” is another. Arguably, the debate
between reductionists and non-reductionists is, in part, motivated by the
observation that the former norm is reliable in certain contexts but not in
others, and the latter norm prohibits one from learning from individuals in
certain contexts in which speakers are generally reliable and trustworthy.
Similar remarks apply to debates about expert testimony.5

It is surprising, therefore, that epistemologists have made little effort
(i) to characterize those contextual features that influence the reliability
of different testimonial norms, or (ii) to evaluate the reliability of differ-
ent testimonial norms as those contextual features vary.6 Both projects

5Testimonial norms are a subset of what are generally called epistemic norms (or epis-
temic rules). See Pollock [1987]. Two notes are important. First, most epistemologists
have discussed only passive norms, i.e., rules for updating one’s beliefs in light of evi-
dence. However, there might be epistemic norms dictating active obligations to acquire
information (e.g., by making particular observations, performing particular experiments),
or, at the very least, to avoid ignoring pertinent information (e.g., by sticking one’s fin-
gers in her ears, or covering one’s eyes, etc.). See Booth [2006]. Active testimonial norms
might require us to seek information from particular individuals rather than others. In
this paper, I investigate only passive testimonial norms. A discussion of active ones is
presented in Zollman [2011b]. Second, among passive norms, there might be both norms
of obligation (e.g. “given evidence E, you should believe p”) and norms of permission
(e.g. “given evidence E, it is permissible to believe p”). See Boghossian [2008]. Arguably,
non-reductionists advocate a norm of permission (“you may trust others’ testimony in the
absence of conflicting information”) whereas reductionists advocate norms of obligation
(“you must not trust others’ testimony in the absence of positive reasons.” ). In this pa-
per, all testimonial norms are modeled as functions from others’ claims to current beliefs;
this may obscure the relevant distinction between permissive and obligatory norms, and I
would welcome further suggestions concerning how to capture it formally.

6In contrast, philosophers have examined the reliability of epistemic norms guiding de-
duction (e.g., in characterizing valid rules of inference), induction (e.g., in characterizing
the conditions under which Bayesian updating, particular belief-revision procedures, etc.
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are, to a certain extent, empirical ones, which might require some combi-
nation of psychological research (e.g., of common biases and errors of rea-
soning that might influence speaker reliability), sociological research (e.g.,
into norms of conversation and truth-telling), and so on. Both projects,
however, can also be pursued in the same way that reliability of rules for in-
ductive/statistical inference are evaluated - namely, by modeling. In formal
epistemology, statistics, and computer science, researchers develop idealized
models of learning from data, and ask, given that data is produced and
acquired in a particular way, which rules or procedures reliably lead indi-
viduals to develop true beliefs. Further, the conditions under which such
rules are reliable can be precisely characterized within a given model, or by
modifying the model and characterizing which rules continue to be reliable
(i.e., so-called “robustness” testing).

Similarly, one might develop a model of conversational exchanges, and
investigate, within such a model, (i) which features influence the reliability of
different testimonial norms, and (ii) how reliability changes as those features
are modified. This is the aim of this paper.

In Section 1, I develop a formal model of communal learning. The model,
I argue, is most appropriate to understanding dissemination of propositional
knowledge in scientific communities, but I would be happy if the model
were applicable elsewhere. In particular, minor modifications to the model
might make it appropriate to understanding dissemination of information in
everyday conversational exchanges and/or to the transmissions of behaviors
or norms (in contrast to propositional knowledge).7

I then use the model to make precise the concept of a testimonial norm,
and to describe six candidate testimonial norms that approximate informal
norms such as “believe p if it appears to be the majority opinion”, and
“believe p if is endorsed by an expert”, and “believe p if and only if it appears
to be endorsed by a majority of experts.” The six norms resemble rules
that are endorsed by reductionists and non-reductionists about testimony,
and by social epistemologists who advocate “going by the numbers” when
deciding whether to accept expert testimony. To be clear, these six norms are
extremely simple and naive, and no philosopher, to my knowledge, advocates
any of them. However, characterizing the reliability of said norms provides
a starting point for characterizing the reliability of the types of norms that
are, at least implicitly, under discussion in social epistemology.

lead one to the truth), and inference from perception. Obviously, much of this work has
also been carried out by mathematicians, statisticians, computer scientists, and psychol-
ogists.

7Thanks to Richard Samuels for suggesting the latter interpretation.
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In Section 2, I use the model (i) to characterize those features of scientific
communities that influence reliability, and (ii) to evaluate the reliability of
a wide class of testimonial norms, including the six examples, as relevant
features of the community change. I evaluate reliability in three different
ways: (1) does employing the testimonial norm eventually lead an individual
to develop true beliefs? (2) if so, how quickly does the norm lead one to true
beliefs?, (3) if error is unavoidable, how often does the norm lead to believ-
ing falsehoods? Using these three criteria, I argue that miscommunication
and the “social structure” of scientific communities can strongly influence
reliability of different testimonial norms. Moreover, changes in norm relia-
bility are often a result of the interaction of these two factors.8 My findings
are important because, in traditional, more “individualistic” discussions of
the epistemology of testimony, the effects of miscommunication and of social
structure are often omitted.

The final section ends with a discussion of limitations of my model and
directions for future research.

1 A Model of Communal Scientific Inquiry

In my model, there is some finite set of questions that scientists are at-
tempting to answer. Each question has some set of mutually incompatible
answers, and the scientific community’s goal is to find the (unique) correct

8Since Kuhn, philosophers of science have argued that the “social structure” of scien-
tific communities can drastically affect the products of scientific research. What exactly
“social structure” means has, in many cases, been left intentionally vague. In recent years,
philosophers of science have studied several factors that might be called “social structure.”
For instance, Kitcher [1990, 1995] and Strevens [2003, 2006] study practices for attributing
credit for discoveries. Zollman [2010, 2011a] studies the “communicative structure” of sci-
entific communities, i.e., the way in which scientists share and disseminate their findings
to one another and through journals. there is also a brief discussion of publications in
Weisberg and Muldoon [2009].

In this paper, I will focus on two possible “social structures” of scientific communities,
namely whether the community is interdisciplinary, in the sense that scientists fre-
quently discuss their research with others outside their field of expertise, or whether it is
insular, in the sense that scientists rarely discuss their work with individuals outside their
field. What I call “insularity” is often called homophily among economists and sociolo-
gists who employ “network” models like the one I present. Recent work in economics (see
Young [2011], and Golub and Jackson [2012]) has investigated the relationship between
homophily and speed of learning in such models. Due to constraints on space, I cannot
discuss the relationship between my results and those in the existing literature.
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answer to each question.9

For example, imagine medical researchers are investigating the efficacy
of several pills. Each pill is designed to treat a different ailment, and thus,
researchers are not interested in comparing the effectiveness of the pills.
Rather, they only care which pills are salutary and which are harmful. In
this example, each question is of the form “Is pill j effective?”, and there
are two answers: “yes” and “no.” Formally, for each pill j, there is some
unknown real number ej that represents the average effectiveness of the
pill, where a pill’s “effectiveness” is a function of both its side effects and
its efficacy in curing the intended ailment. If ej is positive, then the pill is
salutary (on average). Otherwise, the pill is harmful, or at the very least, not
beneficial. Moreover, the magnitude of e indicates how harmful or salutary
the treatment is. So the formal question is, “Is ej positive or not?”

I assume that there are discrete stages of time t1, t2, and so on, such
that, at each stage, each scientist collects data. Importantly, such data
can be misleading in the short-run. Continuing with the above example,
imagine that, on each stage of inquiry, every researcher treats some fixed,
finite number of patients with one of the pills and records the results. Those
results are the researchers’ data. How can such data be misleading? Imagine
that the effect of any given pill is probabilistic, and so even if the pill is
salutary on average, some patients may react poorly (or not at all) when
treated. Thus, when a researcher begins her study, she may observe, as a
matter of chance, forty patients who react poorly to the pill, even if it is
quite beneficial on average. Similarly for when the pill is harmful.10

Here’s the complication. I assume that each scientist has a specialty
(or area of expertise), and so each scientist can investigate only one of the
questions of interest. In other words, each scientist acquires data that can
help her answer only one question. Therefore, she must learn the answers
to questions outside her area of expertise by asking others. These modeling
assumptions are intended to capture the fact that real researchers’ abilities

9All bolded terms are defined precisely in Appendix A; they are described only infor-
mally in the body of the paper.

10In computer simulations described below, I assume there are finitely many pills
1, 2, . . . , n. When a patient is treated with pill i ∈ {1, 2, . . . , n}, the scientist observes
random effect, which is normally distributed with unknown mean ei (i.e. the effectiveness
of the pill) and unknown variance σ2

i . The normality assumption is immaterial to all
of the results below: similar simulation results are obtained when the agents draw from
other types of distributions. Moreover, the theorems below do not depend upon any as-
sumptions concerning the probabilistic process by which data is generated; in particular,
sample points are not even assumed to be iid (i.e. they might be correlated, or drawn
from different distributions).
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are limited due to specialized training, time, and/or financial constraints. Of
course, I assume that many scientists might have the same area of expertise.
In my running example, imagine each researcher specializes in the study of
exactly one pill, and that she treats patients with that pill only. Therefore,
she must learn about the efficacy of other pills from the testimony of others.

To model communication, I represent researchers by nodes in a colored,
undirected graph like the one pictured below.11 The colors of the nodes in
the graph indicate a researcher’s area of expertise, i.e., two researchers share
an area of expertise if and only if they are represented by nodes of the same
color. For this reason, in my running example, I refer to the various pills as
the “red pill”, “blue pill” and so on, and the I call a scientist “red” precisely
if she studies the red pill.

Edges in the graph represent which scientists communicate with which
others. In other words, two scientists can share information if and only if
they are connected by an edge. Say two scientists are neighbors if they are
connected by an edge in the graph; a scientist’s neighborhood, then, can
be defined as the set of all her neighbors.

g4

g0

g1

g2

g3

Figure 1: A research network and the neighborhood of g0

(indicated by squares) in that same network

Not all graphs, however, properly represent scientific communities. Sup-
pose that the graph representing a collection of scientists can be divided into
(at least) two sections such that information cannot pass from one section
to the other. For instance, see the figure below. In this case, one should
not say that the scientists form a single “community,” as different parts
of the so-called “community” never interact whatsoever. For this reason, I
focus exclusively on connected networks, which cannot be divided into two

11The model here is a member of a large class of models of “network” learning models.
See Goyal [2003] for a survey. In this paper, the theorems and summarized simulation
results concern undirected graphs, but I have obtained similar simulation results for di-
rected graphs (in which sharing of information may not be symmetric), and it is obvious
that all of the theorems hold for directed graphs under minor additional assumptions.
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separate parts like below. Formally, define a path to be a sequence of re-
searchers r1, r2, . . . , rn, such that r1 is r2’s neighbor, r2 is r3’s neighbor, and
so on. A network is said to be connected if there is a path between any
two researchers.

Figure 2: A connected network vs. a disconnected network

Although two neighboring scientists can share information in my model,
the type of information they share depends upon their respective areas of
expertise. In particular, I assume that two researchers with the same spe-
cialization can share the data they learn, but those with differing specialties
can only share their beliefs about the answers to questions. In the running
example, two “red” scientists can communicate how well each of their pa-
tients has responded to the red pill. In contrast, a red and a blue scientist
can only ask each other “Do you think the red pill is effective?”, “Do you
think the blue pill is effective?”, or even “Do you think the green pill is effec-
tive?” and trade answers. That is, scientists with different specializations
cannot share their data records, which contain a list of patients and their
reactions to the pills, nor can they share their quantitative assessments of
how effective a pill is.

Why assume that researchers can share information in this limited way?
In the real world, scientists must rely on the work and findings of others.
However, if scientists could always share and evaluate each other’s data,
then there would be no such reason to rely on others. The assumption that
not all data is shared, therefore, is intended to capture the fact that certain
“high level” judgments (e.g. is the pill effective?) can be communicated
easily even if the data and the methodology for evaluating said data cannot.

But why assume that researchers with the same specialty can share fine-
grained information (i.e., data), whereas researchers with different special-
ties cannot? There are two related reasons. First, it is generally easier for a
scientist to understand the findings, methods, etc. of research conducted in
her own field than to understand the work of researchers in remote scientific
disciplines. For example, theoretical physicists can (sometimes) competently
evaluate journal articles in theoretical physics, but can rarely understand
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more than the abstract and conclusion of a paper in molecular biology. Sec-
ond, researchers often only read survey or summary articles about work
outside their areas of expertise, whereas they often read the journal articles
on which summaries are based within their field of research.12 Thus, even
if a researcher could in principle understand work outside her own areas of
expertise, she might choose not to do so because of the time-investment it
would require to learn more than what is available in survey articles.

Thus far, I have explained two ways in which scientists learn answers to
questions in my model, namely, (1) they collect data about a question in
their area of expertise, and (2) they learn the answers to questions outside
their area of expertise from others. I now explain how my idealized scientists
use such information to arrive at their beliefs.

Within her area of expertise, a scientist employs a method for infer-
ring answers from data. Formerly, a method is just a function from data
sequences to answers. I assume that each scientist’s method is convergent,
in the sense that, whatever the truth happens to be, employing the method
eventually leads the researcher to the truth with probability one.13 In other
words, given enough data, scientists’ methods always output the correct
answer to their respective questions.

Three caveats are in order. First, I make no assumptions about how
quickly such methods find correct answers. For example, suppose that, in
my running example, a scientist conjectures that her pill is effective just
in case at least half of the patients she has treated have positive outcomes.
Now suppose that the pill is effective, but that the first forty treated patients
all react poorly to treatment. Such a series of outcomes might be unlikely,
but it is possible. Then the scientist’s method will lead her astray until
she sees a number of positive outcomes, which might take quite a few more
observations. In general, I assume that a scientist’s method eventually will
lead her to the true answer to her question, but, there may be no positive
number n - no matter how large - such that the scientist is guaranteed to
discover the correct answer if her data set contains at least n points.

Second, my imagined researchers do not know when the correct answer
has been discovered. There are no “bells and whistles” when the truth is
found. In the running example, a scientist may correctly believe that a pill
is effective, but she knows that her data might be misleading. Hence, she
must entertain the hypothesis that future observations will provide evidence

12Thanks to David Danks for suggesting this point.
13There are several notions of convergence defined in the Appendix. The theorems

in the body of the paper employ the notion of strongly, almost-sure convergence in the
Appendix, but similar theorems should hold for the other notions of convergence.
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for a different answer than the one she currently endorses.
Third, although I assume researchers eventually discover the truth in

their respective areas of expertise, no such assumptions are made about
finding the truth outside one’s specialty. My imagined scientists will need
additional rules for learning answers from their colleagues.

In my running example, researchers use statistical methods to evaluate
their quantitative data. More precisely, a researcher employs a significance
test to determine whether her particular pill is effective or not.14 This part
of my model mirrors scientific practice closely, as statistical tests are the
trade of most medical researchers and social scientists.

The way in which scientists learn answers to questions outside their area
of expertise is a little more complex and is explained in greater detail in the
next section.

1.1 Testimonial Norms

Recall, from the introduction, that I defined a testimonial norm to be
a rule for accepting or rejecting the claims of others. In my model, an
agent’s testimonial norm dictates which answers she believes to questions
outside her area of expertise. In this section, I describe six simple testimonial
norms. Although the six that I describe are motivated by debates in social
epistemology, I should emphasize that I do not think that any philosopher
has endorsed norms so simple as the ones below. However, studying these
simple norms, I think, can shed light on more complex norms, and many
of the results in the next section show that even rather naive-appearing
testimonial norms are nonetheless reliable.

Suppose a researcher must decide, on a given stage of inquiry, which
answer to believe to a question outside her area of expertise. I call such an
agent a Reidian if she adopts the opinion of a randomly chosen neighbor
in her scientific community.15 I call her a majoritarian Reidian if she
adopts the opinion of the majority of her neighbors.

14In computer simulations, I assume that treatment effect of pill i is normally dis-
tributed with unknown mean ei (i.e. the effectiveness of the pill) and unknown variance.
Researchers employ likelihood ratio tests to determine whether ei is greater than or equal
to zero, or not. In order for said tests to be convergent (i.e. in the limit), the significance
of the tests employed is decreased over time at the appropriate rate. See Jeffreys [1998].

15I call such an agent a “Reidian” because Thomas Reid is often seen as one of the
first philosophers to argue that, in absence of conflicting information, one is justified in
believing others’ claims. Recall, this is the central thesis of so-called non-reductionists
in contemporary epistemology. Of course, the testimonial norm described here is much
simpler than what Reid would advocate, as my Reidians randomly chose an agent to
trust even when there hear conflicting reports from different neighbors. However, for non-
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Notice both types of Reidians ignore their neighbors’ areas of expertise.
For example, both types of Reidians may trust a red expert concerning ques-
tions about the green pill even if they have a green neighbor. In real-world
settings, however, individuals often attribute more weight to the opinions of
experts, and this reliance on intellectual credentials is often thought to be
perfectly reasonable.

To model reliance on experts, I call an agent a expert truster (or e-
truster, for short) if she adopts the opinion of a randomly chosen expert
if one is available, and otherwise, trusts a randomly chosen neighbor. For
instance, when a blue e-truster is deciding whether or not the red pill is
effective, she asks one of her neighbors who studies the red pill; when she
has no red neighbors, then she asks a randomly chosen neighbor. Thus,
e-trusters distinguish experts from non-experts. However, when they have
expert neighbors, e-trusters trust all such experts equally and distrust all
non-experts equally. Call an agent a majoritarian e-truster if she adopts
the opinion of the majority of her expert neighbors (when she has at least
one expert neighbor), and otherwise, adopts the opinion of the majority of
all of her neighbors.

Alvin Goldman and others have argued that the norm of e-trusting is
unreliable: they claim that agents ought to assess the reliability of both
experts and non-experts to determine whom to trust. According to Gold-
man, an individual can employ various heuristics for evaluating a speaker’s
reliability. For example, one might attribute greater weight to the opinions
of an expert whose opinions are supported by cogent arguments. Unfor-
tunately, not all of the heuristics discussed by Goldman can be accurately
represented/captured in my model. Here, I restrict myself to modeling one
heuristic for evaluating a neighbor’s reliability, which I call informational
proximity.

The informal concept of informational proximity is best illustrated by
examples. I am not a theoretical physicist, nor do I ever communicate with
theoretical physicists. However, some of my colleagues, who study philoso-
phy of physics, do in fact speak and collaborate with theoretical physicists.
Those colleagues, therefore, are more informationally proximate than I am
to current work in theoretical physics. Hence, if a philosophy student is
deciding whether to accept my testimony or that of a philosopher of physics
when it concerns current work in theoretical physics, she might consider the

reductionists like Reid, recognizing the presence of disagreement is precisely the type of
“conflicting information” that can override one’s default justification to trust others. I
have chosen the name because the testimonial norm here is the most permissive of the six
examples I illustrate with respect to whom one is willing to trust.
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latter to be more reliable the former because of the informational proximity
of philosophers of physics to the facts under investigation.

In my model, the notion of informational proximity can be made precise.
Define the distance between two researchers to be the shortest path in the
undirected graph representing their scientific community. Notice both Rei-
dians and e-trusters ignore informational proximity. For example, suppose
an e-truster has two neighbors, neither of which is an expert in the question
q. One of the neighbors, however, communicates with a q-expert, whereas
the other is three-degrees-removed from the closest q-expert. In such a case,
real-world scientists might favor the former’s opinion rather than the latter,
as the former is closer to the source of reliable information. In contrast,
e-trusters in my model ignore informational proximity when they adopt the
opinion of a randomly chosen neighbor.

Call a researcher a proximitist if, on any given stage of inquiry, she
adopts the opinion of the neighbor who is closest to a q-expert when deciding
which answer to q to believe; if there are multiple such neighbors, then she
chooses one at random. An even more conservative testimonial norm is to
poll one’s most proximate neighbors; call an agent who follows this norm a
majoritarian proximitist.

Examples of testimonial norms can be multiplied indefinitely. However,
the six norms considered here are important because they differ on several
dimensions that have been the focus of debate in social epistemology. By
contrasting Reidianism, e-trusting, and proximitism with their majoritarian
counterparts, for example, one can investigate the consequences of “going by
the numbers” versus those of reliance on one individual. And although no
non-reductionist may endorse a testimonial norm so simple as Reidianism,
one can investigate the epistemic value of seeking positive reasons to trust a
speaker (by employing heuristics like informational proximity) by compar-
ing Reidianism, e-trusting, and proximitism. Perhaps surprisingly, it turns
out that Reidians (though not majoritarian Reidians) reliably acquire true
beliefs in the absence of miscommunication. More on this later.

Thus far, I have discussed how individuals use testimony. However, var-
ious testimonial norms interact in interesting ways. For instance, suppose
a proximitist and Reidian are neighbors. Further, suppose that the Reid-
ian is the proximitist’s neighbor who is uniquely closest to a q-expert. By
definition, the the proximist will always trust the Reidian about the correct
answer to q. However, the Reidian is willing to trust all of her neighbors,
including the proximitist. Thus, the two researchers might form temporary
“echo chambers”, where the proximitist believes some answer a because the
Reidian does so, and the Reidian believes a because the proximitist does.
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Since testimonial norms might interact in interesting ways when em-
ployed in groups, I will consider the reliability of group testimonial norms
(or gtns, for short), which assign a testimonial norm to each agent in the
network. A gtn is said to be pure if every agent is assigned the same norm
(e.g., every agent in the network is a proximitist); it is said to be mixed
otherwise. The next section characterizes the features of scientific commu-
nities that affect reliability of gtns, where reliability is made precise in the
four ways discussed in the introduction. I then investigate how reliability
varies as those features of scientific communities vary.

2 Reliability

2.1 Convergence

A central goal of scientific inquiry is the discovery of truth. As such, one
way to evaluate the performance of gtns is to investigate, when adopted
by a network, whether agents will eventually discover true answers to ev-
ery question under investigation. Formally, say an gtn is convergent if,
whatever the truth about the world, when a network adopts said gtn, ev-
ery researcher will hold only true beliefs given some (potentially very large)
finite amount of data. Say a testimonial norm is convergent if any pure gtn
consisting of that norm is convergent.

Unfortunately, convergence is insufficient to distinguish among four of
the gtns by the following theorem:16

Theorem 1 In connected research networks, every pure and mixed gtn
consisting of Reidianism, e-trusting, proximitism, and majoritarian prox-
imitism is convergent. In contrast, there are mixtures of (any subset) of
these four testimonial norms with majoritarian Reidianism and/or majori-
tarian e-trusting that are not convergent.

Theorem 1 may seem surprising for at least two reasons. First, one may
be surprised that Reidianism and e-trusting are convergent norms, as they
seem rather naive. Second, one may be surprised that the majoritarian ver-
sions of the two norms are not, as one might expect that reliance on the tes-
timony of several individuals is more reliable than reliance on the testimony
of one. Understanding (a sketch) of the proof of the theorem can eliminate
both surprises. It reveals that the Reidianism, e-trusting, proximitism, and
majoritarian proximitism are members of a wide class of convergent norms

16Proofs of all theorems are all available in Appendix A.
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that satisfy minimal conditions of rationality and descriptive realism. In
contrast, majoritarian Reidianism and majoritarian e-trusting are not.

Recall that, by assumptions of my model, all researchers employ con-
vergent methods. That means that, given enough data, every scientist in
a community will eventually know the correct answer to the question con-
cerning her area of expertise. Thus, to examine which testimonial norms are
convergent, it suffices to consider which norms will lead agents to develop
true beliefs outside their areas of expertise.

Consider Reidianism first. Outside her area of expertise, a Reidian’s
beliefs depend entirely upon what her neighbors believed on the last stage
of inquiry. That is, given the beliefs of her neighbors at time t, one can
determine the probability that a Reidian will hold a particular belief at
time t + 1. Knowing what the Reidian or her neighbors believed before
time t is irrelevant. The exact same is true of the remaining five testimonial
norms considered here.

For this reason, the six example testimonial norms behave much like
Markov processes, and in particular, they behave similarly to what are
called absorbing Markov processes. A common example of a Markov
process is the lost tourist. Suppose you are lost in a foreign city and that you
cannot tell one street from the next. Because the streets and buildings look
similar to you, you may walk in circles without realizing it. So whenever
you reach an intersection, you choose a direction at random. In other words,
the chances that you will turn left now do not depend upon where you have
been, but only upon where you currently are. Now you may choose different
directions with different probability (perhaps you really like turning left),
and moreover, the chances of choosing any given direction may differ from
one intersection to the next. The point is that the chance of turning left
at time t depends only upon what intersection you are currently facing.
What is the probability that, given an unlimited amount of time, you will
eventually find your hotel again?

Under very mild assumptions, it can be shown that the probability is
one. For example, it suffices to assume that, at every intersection, there
is some non-zero probability that you will choose to move in any given
direction. The reason is that there is some path back to your hotel. If
there is some non-zero probability of moving in any given direction at every
intersection, then there is some probability that you will follow the path
back to your hotel exactly. But since you are given infinite time to find your
hotel, no matter how small the probability of taking the right path is, you
will eventually find it. To see why, consider flipping a coin infinitely many
times. Even if the coin is weighted to land heads 99.99% of the time, you
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should tell expect to observe tails once in ten-thousand flips. An analogous
argument holds for the lost tourist finding his hotel.

In my model, Reidians, e-trusters, proximitists, and majoritarian prox-
imitists are much the lost tourist, and the state in which all agents hold
true beliefs is much like the tourist’s hotel. To see why, consider a network
of Reidians. Imagine one of the Reidians - let’s call her Jane - is deciding
which of her neighbors to trust at time t concerning a question outside her
area of expertise. If Jane has an expert neighbor, Jill, then there’s some
chance that Jane will adopt the Jill’s opinion. At time t + 1, there’s some
chance that Jane’s neighbors will adopt Jane’s beliefs. Then at time t + 2,
neighbors of neighbors of Jane may adopt Jane’s belief, and so on. In this
way, there’s some chance that Jill’s expert opinion propagates through the
entire network (if the network is connected), and this is true at any point
in time. So there’s some chance that every agent outside of Jill’s area of
expertise will eventually hold Jill’s belief concerning the question of interest.

Since experts eventually hold true beliefs in their area of expertise, this
entails that all agents will eventually hold Jill’s true belief. And once ev-
eryone has the same, true belief, the Reidian norm ensures that everyone
continues to believe it. Since this is true of every area of expertise, the net-
work must converge. For this reason, the process of belief revisions is said to
be absorbed by the state in which all agents hold only true beliefs. Similar
arguments apply to e-trusters, proximitists, and majoritarian proximitists.

In contrast, majoritarian Reidians and majoritarian e-trusters can be-
have much like the tourist who always turns left. In other words, there
is some chance that majoritarian Reidians and majoritarian e-trusters will
never follow the path to true belief. Why? When one employs these two
norms, the true opinions of experts can be outweighed by enough contrary
opinions of non-experts. Consider a network, like the one below in Figure
3, in which there is a community of experts in one field who do not interact
with experts in another field. For example, suppose that, at the outset of
inquiry, the three neighboring blue experts in Figure 3 all believe the or-
ange pill to be ineffective. Further, suppose that the three blue experts are
all either majoritarian Reidians or majoritarian e-trusters. Because none of
these blue experts have a orange expert neighbor, they poll their neighbors
to determine the efficacy of the orange pill on each stage of inquiry. Since
all three believe the pill to be ineffective initially, they will continue to be-
lieve the pill is ineffective forever, regardless of the evidence. So the three
scientists will fail to hold true beliefs if the pill were effective, and hence,
neither majoritarian Reidianism nor majoritarian e-trusting is convergent.
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Figure 3: A network in which majoritarian reidians and e-trusters may
not converge

The above arguments, however, obviously apply to far more norms than
the six defined above. Say an agent’s testimonial norm has finite memory
if there is some (potentially very large) finite number n such that the agent’s
beliefs depend only upon the last n stages. The six testimonial norms con-
sidered here have a memory of length one, but it turns out that increasing an
agent’s memory has no effect on the above arguments, so long as her memory
is finite. Because I am interested in modeling communication among real
human beings, it seems natural to consider testimonial norms with finite
memory.17

So consider an agent employing a testimonial norm with memory of
length n. What characteristics of the four convergent norms ensured they
eventually found the path to the truth? There were two basic properties
at work in the above arguments. Suppose that an agent has been told by
all of her neighbors for the last n stages (i.e., for as long as the agent can
remember) that ϕ is the correct answer to a question outside her area of
expertise. Intuitively, the agent should believe ϕ with probability one, as
she has no evidence to the contrary. Call a testimonial norm with this
property stable. Stability ensures that consensus perpetuates itself, and in
particular, it ensures that if all agents hold true beliefs, then the network
has been “absorbed” into the state of all true belief.

The second property ensures that experts’ true opinions can propagate
through the network with some positive probability. Fix an agent A and a

17Two notes are in order. First, one might question whether having finite memory is
best modeled by assuming the agent can remember the most recent n stages, rather than
remembering n stages in total (not necessarily consecutive, or most recent). I believe
that all of the theorems discussed here continue to hold under this alternative assump-
tion, but more work is necessary. Thanks to Patricia Rich for suggesting this alternative
assumption. Second, although I assume testimonial norms have finite memory, I do not
assume anything similar about agents’ methods for answering questions in their own areas
of expertise. In fact, for many of the paradigmatic questions that I use as examples (in
the Appendix), agents’ methods must have unbounded memory in order to be convergent.
This is an unfortunate combination of assumptions, and further work is necessary to model
descriptively feasible methods.
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question q outside the A’s area of expertise. Say A’s testimonial norm is
q-sensitive if there is some (potentially very small) non-zero probability ε
and some set N of A’s neighbors such that (i) N is a subset of A’s neighbors
who are most proximate to a q-expert, and (ii) if every agent in N believes
that ϕ is the correct answer to q, then A believes ϕ with probability at least
ε. Say A’s testimonial norm is sensitive if it is q-sensitive for all questions
outside her area of expertise. Then we obtain:

Theorem 2 Any mixed or pure gtn is convergent if it consists of finite-
memory norms that are sensitive and stable.

So there is nothing special about the four convergent norms. They are
members of an extremely wide class of convergent testimonial norms satis-
fying basic requrirements of rationality (i.e., stability and sensitivity) and
realism (i.e., finite memory). In contrast, majoritarian Reidianism and ma-
joritarian e-trusting are not sensitive norms. This does not entail that they
are not convergent (as the converse to the above theorem is false), but it
does explain in what ways these two norms differ from the remaining ones.

The philosophical upshot of the above theorems is that, if reliability is
understood solely in terms of the eventual acquisition of true beliefs, then
there is no epistemic difference among a wide class of testimonial norms.18 In
particular, the decision to adopt a “reductionist” norm, which might require
one to find positive reasons to trust a speaker, versus a “non-reductionist”
norm, which might permit individuals to trust others in the absence of
defeating conditions, is unimportant as long as the norms in question are
sensitive and stable.

The above two theorems, however, seem to depend crucially upon the
assumption that agents have infinitely long to acquire true beliefs. In partic-
ular, I have neglected the speed with which agents learn. One might wonder,
“if reliability is understood in terms of quick convergence to the truth, then
are there any differences among the four convergent testimonial norms?”
Surprisingly, the answer is “no,” and this is the topic of the next section.

18A similar conclusion holds for methods for inferring theories or hypotheses from data.
Reichenbach justified his “straight-rule” by arguing that, in the long run, the straight rule
outputs increasingly accurate answers over time. Carnap [1996] criticized Reichenbach
because, in many paradigmatic applications of the straight rule, there are infinitely many
methods for inferring hypotheses from data that also exhibit long-run reliability.
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2.2 Speed of Convergence

Define the convergence time of a network to be the number of stages
elapsed before every agent in the network holds true beliefs and will continue
to hold such true beliefs indefinitely. Thus, the first way of evaluating various
gtns is to consider the question, “which gtns minimize average convergence
time?”

To evaluate the effect of gtns on convergence time, I simulated the
running example of the model described in the previous section.19 First,
I randomly generated approximately 4500 undirected graphs consisting of
between 50 and 100 agents. If a graph was disconnected, it was removed
from the data set because none of the gtns discussed above is convergent in
disconnected networks.20 To model the fact that communication is limited,
I generated only graphs in which researchers could communicate with at
most 10% of the other agents.

Other than ensuring the network was connected and that the number
of edges was limited, I made no attempt to generate “realistic” networks
that resemble actual scientific communities; any network satisfying these
two constraints was possible, including ones in which researchers form a
line Figure 4 and in which an expert in question q is more informationally
proximate to an expert in q′ 6= q than she is to any expert in her own field.
Below, I describe the results of the simulations when more realistic networks
were considered.

Figure 4: Unrealistic Networks: A Line Network

Equal numbers of agents were assigned one of five areas of expertise
(i.e. the study of one of five pills). The network was then assigned either
one of the four pure gtn or one of 1000 mixed gtns. At each stage of
the simulation, the researchers acquired data and updated their beliefs as
described in the previous section. A simulation was stopped when all agents’
beliefs were true for ten consecutive stages of inquiry, and the tenth to final
stage was assumed to be the convergence time of the network.

19I employed the NetLogo programming language for all computer simulations. For
information concerning NetLogo, see Wilensky [1999]. The code for the simulations can
be found online at http://www.andrew.cmu.edu/user/conormw/Papers.htm.

20Connectedness is sufficient but not necessary for consistency. Call a network expert
connected if every connected component contains at least one expert of each type. Note
that every connected network with at least one expert of each type is expert connected.
Then every pure or mixed gtn consisting of the four typical norms is consistent if and
only if the network is expert connected. See Appendix A.
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What effect(s) do gtns have on convergence time?21 The answer: essen-
tially none. Except in the “easiest” problems (where “ease” will be defined
shortly), there is no statistically significant effect of choice of pure gtn on
convergence time. In other words, populations of exclusively Reidians, pop-
ulations of exclusively proximitists, and so on, all converge at the same rate
on average. In “easy” problems, Reidians converged at a rate slower than
the remaining pure gtns on average, but there is no significant difference
among the remaining pure gtns.

The results for mixed gtns are similar. When the problem is sufficiently
hard, there is no statistically significant difference among the 1000 mixed
gtns, and when the problem is easy, mixtures containing more Reidians
converge at slower rates.

On first glance, these results may seem surprising and might even seem
like evidence that something is very wrong with my model. In order for
Reidians to converge, a very specific sequence of events need to occur: when
deciding which answer to believe for question q, agents must first trust their
q-expert neighbors, and then neighbors of said agents need to trust those who
received information from q-experts, and so on. Although I have argued, in
the previous section, that this improbable sequence of events will transpire
at some point, it is not guaranteed to happen quickly. In contrast, in a
network of proximitists, true belief propagates from experts to non-experts
as soon as it is discovered. So how can Reidians and proximitists converge,
on average, at roughly the same rate in difficult problems?

I claim these findings are intuitive and reveal a robust pattern in the
history of science when the notion of difficulty is properly understood. To
understand the notion of difficulty, imagine that some scientific community
is faced with two different questions. Suppose there are two possible answers
to each of the two questions. For simplicity, call the answers to first question
T1 and T2, and call the answers to the second T3 and T4. Suppose that T1

and T2 are mutually contradictory (i.e. if T1 is true, then T2 if false, and
vice versa), so one cannot reasonably endorse both. Similarly for T3 and T4.

With respect to question one, suppose that scientists have designed an
experiment that will, with high probability, rule out either T1 or T2, de-
pending on which was false. In contrast, there is no “crucial” experiment
to answer the second question: theories T3 and T4 entail that similar obser-
vations would be made in almost all experimental settings. Hence, without

21The effects of pure gtns on convergence time were compared using a one-way random
effects analysis of variance. Sample statistics and an explanation of the statistical methods
employed to analyze simulation data is available in Appendix B.
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sufficiently large samples, precise measuring instruments, and/or ingenious
experimental design, researchers will be unable to determine which of the
latter two theories is true. Intuitively, it seems that the second question is
more difficult to answer than the first. In general, we can (roughly) define
the difficulty of a question to be the degree of precision that is required to
distinguish among all possible answers, where precision may be gained by
acquiring more data, employing better measurement tools, and so on.

In the running example of my model, this notion of difficulty can be
made precise. If the pills in question are very effective or very harmful, then
researchers need observe only a few patients to learn this fact. However,
if the pills are only slightly salutary or harmful, then much larger samples
are necessary. Therefore, in simulations, I used the absolute value of the
effectiveness ej of pill j as a measure of difficulty.

Clearly, when agents are faced with more difficult questions, they learn
more slowly within their area of expertise. However, the time they take to
communicate their findings to those outside their area of expertise is the
same as if the question had been easy. It should now be clear why testimo-
nial norms have no significant effect on convergence time when the questions
of interest are difficult. Testimonial norms affect only the dissemination of
information to non-experts, whereas methods are responsible for the time it
takes experts to discover the true answers. As the questions under investi-
gation become more difficult, the time require to disseminate information is
dwarfed by discovery time. Hence, testimonial norms have only a negligible
effect on convergence time when questions are difficult.

This is not an artifact of my model, but is also readily observable phe-
nomenon in the history of science. Consider any difficult scientific undertak-
ing - for example, understanding the principles of flight. Before the Wright
brothers, human beings had attempted to engineer airplanes for millennia.
So the discovery of principles of flight took at least a few thousand years.
In contrast, once the first airplanes had been constructed, the engineering
knowledge spread around the globe in a matter of a few years. The time to
disseminate such knowledge, therefore, was minuscule in comparison to the
time it took to gain it in the first place.

So we have seen that infinitely many gtns are convergent, and when the
questions under investigation are difficult, there is no significant difference
among gtns in terms of quickness of convergence to truth. Since science
is a difficult enterprise, one might conclude that choice of testimonial norm
is epistemically irrelevant for scientists. This conclusion is hasty. Although
there are several idealizations in my model, there are three that have been
neglected thus far that deserve close scrutiny.
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First, I have assumed that that researchers can adopt the beliefs of their
neighbors. But that is equivalent to assuming that agents never misspeak or
misinterpret others’ claims. Do the performances of the various gtns change
when miscommunication is possible? Second, I have evaluated the perfor-
mance of gtns over all possible networks. However, many networks do not
represent the types of communities formed by real world scientists. Do the
relative performances of gtns change in more realistic networks? Finally,
because e-trusting and proximitism require a scientist to identify which of
her neighbors are experts (and even those most proximate to experts!), I
have assumed that scientists can evaluate the knowledge and ability of re-
searchers outside their specialization. However, identifying experts is often
very difficult. Do the above results change when agents misidentify experts?
These three questions are the subject of the next three sections.

2.3 Miscommunication

Miscommunication is an unavoidable feature of human conversation. Speak-
ers make (grammatical, vocabulary-related, etc.) errors that result in ambi-
guity and/or unintended meanings, and listeners may misinterpret or mis-
understand what speakers say. Anecdotally, misunderstandings seem fairly
common in academic communities when researchers in one field try to share
their findings with non-experts. Does such miscommunication affect the
reliability of various testimonial norms?

The answer is “yes”, and it is helpful to consider the relationship between
honest miscommunication and dishonesty to see why.22 Intuitively, in com-
munities in which lying is widespread, relying on the testimony of others will
be less reliable than in communities in which individuals are honest. The
reason seems to be fairly obvious: when a lie is successfully told, the speaker
believes some proposition ϕ, and the listener is led to believe a proposition
ψ that is incompatible with ϕ. If the speaker has a true belief, then the
listener will have a false one. Notice the exact same story is true in many
circumstances of miscommunication. When miscommunication occurs, the
speaker has one belief, and the listener another. Often times, the former is
true and the latter is false. So if dishonesty can undermine the reliability
of testimonial norms, then one should expect miscommunication to do the
same.23

22Thanks to John Greco for this suggestion.
23Of course, the degree to which dishonesty and miscommunication affect reliability

might be different. Here are two candidate differences between dishonesty and miscom-
munication. First, if a speaker lies and she is asked to explain or clarify what she has
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This may seem obvious, but much of the literature in the epistemology of
testimony has neglected miscommunication and focused almost exclusively
on dishonesty. Since both might affect the reliability of testimonial norms,
for the remainder of the paper, I will say that miscommunication has oc-
curred when a speaker believes ϕ, and as a result of the speaker’s testimony,
an agent comes to believe some proposition ψ that is incompatible with ϕ.
In the general model I have presented, this broad notion of miscommunica-
tion might be made precise in any number of ways. Hence, for the remainder
of the paper, I will investigate the effect of miscommunication only within
the running example.

In the running example, I assume there is fixed probability ε < 1
2 with

which, on any given stage of inquiry, agents lie to one another, misunder-
stand one another, misspeak, etc. That is, if g believes the red pill is effective
and a neighbor n asks g her opinion, then n will believe that g reported the
red pill to be ineffective with probability ε. I assume ε is less than a half
because I am uncertain whether assertions can have a fixed meaning if mis-
communication is more probable than the flip of a fair coin. None of the
results below rely on the fact that ε is the same for all agents; nor do they
depend upon the fact that misspeaking, misinterpretation, and/or dishonest
communication are all lumped into one general notion of miscommunication.
These assumptions are made for simplicity of calculations and proofs only.

As in the previous section, one can ask, “which of the pure and mixed
gtns discussed are convergent when miscommunication is present?” The
answer: none.

Theorem 3 Suppose there is some fixed, non-zero probability of miscommu-
nication. Then no pure or mixed gtn consisting of the above six testimonial
norms considered above is convergent.

The justification for the above theorem is simple. Because there is some
fixed probability (however small) that agents will misspeak or misinterpret
others, there is always some finite probability that, even when all of one’s
neighbors hold true beliefs, one will accidentally misinterpret their claims.24

said, then it seems likely that she will reiterate the same false statement. When miscom-
munication occurs, clarification might eliminate the transmission of false beliefs. So, in
repeated conversational exchanges, errors due to miscommunication might be mitigated
more easily than errors due to dishonesty. Second, when a speaker successfully lies to a
listener, the latter will come to believe something the former regards as false. If the former
had a true belief, then the latter will have a false one. When miscommunication occurs,
listeners may arrive at true beliefs accidentally.

24The assumption that the probability is fixed is sufficient, but not necessary for the
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If the possibility of miscommunication is high, researchers’ beliefs may fluc-
tuate chaotically. It is possible for every agent to hold only true beliefs on
one stage, and only false beliefs on the next.

One might worry that the failure of the above norms to converge is again
an artifact of their naiveté. For instance, the six norms considered here all
require an agent to change her beliefs in light of what she learns from he
neighbors on the most recent stage of inquiry. One might worry that this
tantamount to assuming that, if a professor delivers the same lecture one
thousand times to the same class, then students may change their beliefs
if she misspeaks on the thousandth iteration. A more realistic assumption
is to alter the above testimonial norms so that agents remember past. For
instance, one might try to model agents who only alter their beliefs only
when the underlying “signal” from a neighbor has changed. That is, agents
change their beliefs only when they cannot attribute the differences between
past and current utterances of their neighbors to miscommunication. How-
ever, if agents can remember only finitely many stages of inquiry into the
past, then even the most ingenious testimonial norms are subject to the
same argument as above: no gtn converges.

Theorem 4 Suppose there is some fixed, non-zero probability of miscom-
munication. Then no pure or mixed gtn consisting of norms with finite
memory is convergent. In particular, none of six testimonial norms consid-
ered above is convergent.

The above argument only shows that agents might occasionally believe
false statements. Perhaps it is wrong, then, to demand that testimonial
norms converge. Rather, one should be interested in testimonial norms that
minimize error. When convergence is possible, minimizing error in the long-
run should require one to employ convergent norms, and when convergence
is not possible, the criterion of error minimization can help to distinguish
among rival testimonial norms.25

How should we calculate error? Imagine taking a snapshot of all agents’
beliefs on a given stage of inquiry. Given the snapshot, one can calculate

result. As long as the frequency of miscommunication does not decrease too quickly, then
convergence is prevented (by the Borel Cantelli Lemma).

25Of course, it has been long recognized that seeking truth and avoiding error are two
different epistemic goals that may pull one in different directions. See James [1896].
Because agents in my model cannot abstain from belief, and because answers to questions
are incompatible with one another, avoiding error in my model requires having true beliefs.
Future work ought to relax these assumptions and consider testimonial norms that allow
agents to abstain from belief and to believe disjunctions of answers.
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the proportion fn of all agents’ beliefs that are false. Given a particular
set of questions and a model of how data is generated, one can (in theory)
calculate the expected number of false beliefs in a network en = E[fn]. Call
en the error rate of the network on stage n. For many testimonial norms,
the error rate en fluctuates greatly from one stage to the next. Luckily, the
six testimonial norms that we have considered are not of this sort:

Theorem 5 Suppose there is some fixed probability of miscommunication.
Then every pure and mixed gtn of the six testimonial norms above converges
to some fixed error rate. That is, en approaches some fixed e value as n
approaches infinity.

Call the fixed value e the error rate of the network (simpliciter). Hence,
one can compare the performance of various gtns by comparing their re-
spective error rates. Surprisingly, when miscommunication is possible, the
link between testimonial norm and truth becomes clearer. Simulation re-
sults show that, for all problem difficulties and all networks, the error rate of
populations of Reidians is on average greater than that of e-trusters. Pop-
ulations of e-trusters err more often than do proximitists, who in turn, err
more than majoritarian proximitists. The statistical tests supporting these
claims are summarized in the Appendix.

Although Reidians err more often than do e-trusters and proximitists,
it turns out that the error rates of various testimonial norms differ widely
across different “network structures.” This is the subject of the next section.

2.4 Network Structure

Thus far, I have argued that, if communication is perfect and one’s goal is the
quick acquisition of true beliefs, then choice of testimonial norm is irrelevant.
In contrast, if miscommunication is present, then different testimonial norms
have differing rates of error. In analyzing the simulation results, however,
I have made no attempt to distinguish realistic network structures from
mathematically possible, but highly unrealistic, ones. For instance, in my
simulations, I could have (but did not) randomly generated a “line” network
like in Figure 4, which obviously does not resemble any real-world scientific
community. Are there any features of real scientific communities that might
affect the performance of gtns?

One way in which academic communities are unique is that they are
often divided into research units. Roughly, a research unit is a collection
of individuals who (i) have similar research programs and (ii) communicate
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with one another frequently. In some cases, a research unit may be a partic-
ular academic department at a particular university. In other circumstances,
research units are comprised of academics who live in different parts of the
world, but still collaborate on papers, read each others’ independent work,
and so on.

Because the graphs in my model represent scientists’ expertises and how
they share their findings, they are perfectly suited to model research units.
In my model, I represent research units by collections of agents who (i) share
an area of expertise and (ii) are highly connected by a collection of edges.
Further, the degree to which scientists form a research unit can also be made
precise. Given an agent g, define the insularity of g’s communication
of g to be proportion of agents in g’s neighborhood who share g’s expertise.
Define the insularity of a network to be the average insularity of all agents.

Intuitively, insularity so-defined seems to be both desirable and danger-
ous. On one hand, researchers with similar expertise ought to communicate
and collaborate as frequently as possible; so insularity is desirable. On
the other hand, when academic communities become too insular, there is
a chance that one research unit completely isolates itself, thereby failing
to share its own findings or draw upon the work of others. So too much
insularity is harmful.

Again, these intuitions are captured by my model. For the moment, let
us ignore miscommunication once again. Below is a graph illustrating the
relationship between the convergence times of several networks of proximi-
tists and the insularity of those networks. The graph shows that proximitists
converge more quickly (on average) in more insular networks. However, re-
call that, in my simulations, I discarded all data generated by disconnected
networks, as such networks may not converge to true belief at all. Together,
the graph and the omitted data capture the above intuitions about insular-
ity precisely: if quick convergence is the goal of science, then increasing the
insularity of a network seems to be desirable until it fractures the network
into smaller, isolated (i.e. disconnected) research communities.
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The reason that insularity decreases convergence time is fairly simple.
Recall that scientists with the same expertise can share data in my model.
More data allows the researchers to more quickly ascertain the true answer
in their own areas of expertise, and therefore, decreases convergence time.

The above graph depicts a fact about networks of proximitists only.
Similar graphs are obtained for the other three convergent (pure) gtns,
with one important exception. Recall that, when the underlying problem
is easy, populations of Reidians converge less quickly than do communities
employing the other three pure gtns. It turns out that Reidians do not
always underperform e-trusters, proximisits, and majoritarian proximitists:
they only do so when the underlying network is insular. Below is a graph
illustrating this fact. At first, increasing the insularity of a network increases
the speed at which Reidians converge, until a critical point is reached at
which their speed slows significantly.
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To explain the relationship in the above graph, it is helpful to recall that
convergence to true belief is a two-stage process consisting of discovery and
dissemination. In the discovery stage, scientists acquire data that allows
them to ascertain the truth in their respective areas of expertise. In the
dissemination stage, the true views of experts propagate through the network
due to the gtns. Recall that, when convergence is viewed in this way, gtns
play a significant role only in the dissemination stage.

For populations of e-trusters, proximists, and majoritarian proximitists,
the views of the expert, research units propagate quickly through the entire
community, even when the network is insular. So the dissemination stage of
convergence is always quick. In contrast, for Reidians, dissemination takes
more time on average when the network is insular, as scientists with different
areas of expertise become more and more isolated from one another. Thus,
all other things being equal, one should expect Reidians to converge more
slowly precisely when the dissemination stage constitutes a significant chunk
of the convergence process.

Now, when the problem is easy, it is solved quickly by experts. As
a result, the discovery and dissemination stages are approximately equal in
length for populations of e-trusters, proximists, and majoritarian proximists.
In contrast, for Reidians, the second stage takes more time in insular net-
works, resulting in a statistically significant increase in average convergence
time.

In contrast, when the problem is difficult, the discovery stage is consid-
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erably longer, as research units take greater time to find the truth. So the
length of the discovery stage dwarfs that of the dissemination state, regard-
less of which gtn is employed. Recall, this is why there is no statistically
significant difference among the convergence times of the gtns when the
underlying learning problem is difficult. Moreover, it also explains the re-
lationship illustrated in the graph below, namely, that when the problem
is difficult, more insular networks of Reidians converge more quickly on av-
erage. Why? Since increasing insularity quickens the discovery stage, and
since the discovery stage is significantly longer when the question is difficult,
the gains in discovery speed outweigh the losses in dissemination speed.

When miscommunication is present, a similar result holds when one
considers the time it takes a network to converge to its error rate. Because
agents employ convergent methods in my model, the error rate of a network
is determined entirely by the number of false beliefs agents hold with respect
to questions outside their area of expertise. During the discovery stage,
the frequency of false beliefs in a network will typically be higher than
the (asymptotic) error rate, as by definition, during the discovery stage
agents may have false beliefs in their own area of expertise. It follows that
shortening the discovery stage shortens the time until a network converges
to its error rate. Since insular networks have shorter discovery stages, they
will also typically converge to their error rates more quickly.
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What is the relationship between the magnitude of error rates and net-
work structure? One might expect that insular networks also have lower
error rates. In fact, the opposite is the case. Below is the graph that shows
that, for each of the four pure, convergent gtns, more insular networks typi-
cally have higher error rates. However, the rate at which error rates increase
as a function of insularity differs among the four gtns. In the presence of
miscommunication, both radical and e-trusters quickly become unreliable as
insularity increases, wheras both proximists and majoritarian proximitists
have slower growing error rates.

Hence, the possibility of miscommunication raises a dilemma. On the
one hand, more insular networks have higher error rates. On the other hand,
such networks also converge more quickly to said error rates. So there is a
direct trade-off between speed of acquisition of (mostly) true belief, and the
number of true beliefs (on average) in research communities.26 How such a
trade-off ought to be handled, I think, will depend largely on the questions
of interest and the degree to which getting information quickly is valued.

The reason that insularity increases the error rates of all the testimo-
nial norms under consideration is fairly easy to explain. Essentially, error

26 [Zollman, 2011a] finds a very similar trade-off between speed and reliability in a
different model of scientific inquiry. This is evidence that the phenomenon (i.e., the trade-
off) is robust under varying modeling assumptions.
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rates are a consequence of a “telephone-game effect” that arises when mis-
communication is present. When an agent learns a fact first-hand from an
expert, there is only a small chance of miscommunication. When an agent
learns a fact second-hand, the chance that miscommunication has occurred
is higher: not only is there a chance of miscommunication between an agent
and her informant, but also there is a chance of miscommunication between
the informant and the expert from which she learned the fact. So as the
length of the informational path between an agent and expert is increased,
so is the chance that miscommunication has occurred somewhere along the
way. When a network is insular, informational paths between two experts
in different fields are generally longer, and hence, error rates are typically
higher. This suggests that to minimize error rate and ensure high speeds
of convergence, ideal network structures ought to balance insularity and av-
erage path-length between agents; so-called “small worlds” networks often
have this property precisely.

One might worry that the simulations and analytic results above paint
Reidianism in poor light only because I have assumed that e-trusters and
proximitists can do the impossible - namely, they reliably identify experts
in subject matters about which they know nothing. How do e-trusters and
proximitists perform when they make mistakes concerning who is an expert?
This is the subject of the next section.

3 Identifying Experts

Thus far, I have argued for three theses. First, in the absence of mis-
communication, a large class of testimonial norms are convergent. Second,
in difficult scientific enterprises, many testimonial norms converge at the
same speed. Thus, third, only when miscommunication is present can one
distinguish between the value of differing testimonial norms, and it is the
interaction of miscommunication and social structure that produces such
differences in reliability. However, one might question whether the above
results are robust, as I have assumed that scientists can infallibly recognize
experts outside their own area of expertise. This is a highly dubious assump-
tion, as identifying experts may require precisely the knowledge that expert
testimony is intended to supply. The purpose of this section is to show
that, in fact all, three theses are robust even when agents are unreliable in
identifying experts.

With respect to the first thesis, one might ask, “in the absence of mis-
communication, is there any guarantee that e-trusting and proximitism are
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convergent if it is possible to misidentify experts?” To answer this question,
suppose that each scientist can correctly identify experts within her own
field, but that, in different subject matters, she is fallible with respect to
expert identification. Specifically, assume that on the nth stage of inquiry,
every scientist correctly identifies which of her neighbors are experts (or are
most proximate to an expert) with some probability pn < 1.

Notice, the probability pn might be very low: agents may only correctly
recognize experts one in a million times. Moreover, agents may become more
or less reliable in identifying experts as time passes. Nonetheless, under a
fairly weak assumption, the first thesis remains true even when experts may
be misidentified.27

Theorem 6 Suppose that the infinite sum
∑

n∈N p
k
n is infinite for all nat-

ural numbers k. Then any mixed gtn consisting of Reidianism, e-trusting,
proximitism, and majoritarian proximitism is convergent. In contrast, for
some series of probabilities pn satisfying the above conditions, there are mix-
tures containing majoritarian Reidianism and majoritarian proximitism that
are not convergent.

How strong is the assumption that
∑

n∈N p
k
n is infinite for all natural

numbers k? Not very. For example, the assumption is satisfied when pn
is any constant, no matter how small. So if there is any lower bound on
agents’ chances of misidentifying experts (say one in a billion), then a wide
variety of testimonial norms are convergent. Perhaps more surprisingly, the
assumption is met even when pn is equal 1

logn , which represents the situation
in which agents’ ability to identify experts (or those most proximate to
experts) approaches zero as inquiry progresses. In other words, so long as
expert misidentification does not increase quickly, many gtns will converge
nonetheless.

What about the second thesis? In the presence of expert misidentifi-
cation (but no miscommunication), do different gtns converge at differing
rates? Again, the answer is “not in difficult problems”, and the same ar-
gument as before is still applicable. Recall that convergence is a two-stage
process consisting of discovery and dissemination. In the discovery stage, sci-
entists identify the correct answers to the questions in their respective areas
of expertise. In the dissemination stage, those answers propagate through
the community.

27One might ask whether it is crucial to assume (i) that pn is the same for all agents in
a network and (ii) that scientists’ abilities to recognize experts does not depend upon the
difficulty of the subject matter. It is not: the assumptions are made for convenience only.
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Now recall that I have assumed that scientists can correctly identify
experts within their own area of expertise. This entails that expert misiden-
tification affects only the speed of dissemination. Because dissemination has
a negligible effect on convergence speed in difficult inquiries, it follows that
testimonial norms have an insignificant effect on convergence speed, even
when experts may be misidentified. Of course, in easy problems, expert
misidentification slows the speed with which e-trusting, proximitism, and
majoritarian proximitism converge.

What happens when expert misidentification and miscommunication are
both present? Under one additional assumption, it turns out that one can
calculate error rates of gtns as before:

Theorem 7 Suppose that there is some finite chance of miscommunication
and that the probability of expert misidentification is constant (i.e., there is
some finite q such that pn = q for all stages of inquiry n). Then any mixture
of the above six testimonial policies approaches a fixed error rate.

Therefore, if one assumes that the probability of expert misidentification
is constant, then gtns can be ranked by comparing error rates, just as I did
before.

4 Conclusions and Future Research

Recall, my goal is this paper was twofold: (i) to identify those contextual
features that influence the reliability of testimonial norms, and (ii) to as-
sess the reliability of various testimonial norms as those contextual features
vary. I have argued that miscommunication and the degree of insularity of
scientific communities are two such contextual features. As either feature
is increased, so is the error rate attributable to testimonial norms. How-
ever, more insular networks typically converge to (mostly) true belief more
quickly, and hence there is trade-off between speed of learning and error. It
is an open question whether there are any testimonial norms for which error
rates decrease as the network becomes more insular.

The paper leaves open a number of questions and areas for future re-
search. One obvious project is to investigate the reliability of more realistic
testimonial norms. The six norms that I have studied are simplified versions
of ones that have been suggested by epistemologists, but clearly, the types of
testimonial norms are employed by real human beings are far more complex
and nuanced. This paper has provided the concepts and tools for studying
such complex norms, but the work remains to be done.
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There are also a number of idealizations and/or limitations of my model
that deserve further investigation. I will mention three. First, in my model,
network structure is static, but clearly real scientific communities change:
new research collaborations are formed and old ones break apart. A more
realistic model would allow the underlying network structure to change.
Such dynamic scientific communities raise a number of new questions. How
should the underlying graphical structure representing scientific communi-
ties evolve to mirror the real-world dynamics of scientific communities? Is
there a way to extend the concepts of “insularity” and “informational path
length” to dynamically evolving networks?

Second, in my model, areas of expertise are disjoint and unrelated:
one agent’s findings are useless to researchers with different expertises. In
real scientific communities, a mathematician’s findings can help physicists
solve problems; physicists’ models can be applied to economic phenomena;
economists’ techniques can be applied in biology, and so on. A more realistic
model, therefore, would be capable of representing the complex collaborative
relationships among different academic disciplines.

Finally, in my model, agents exchange answers to questions without pro-
viding reasons for their opinions. A more realistic model of communication
might represent the exchange of arguments as well as answers. How one
should define and model testimonial norms when agents exchange reasons
remains an open question, but it is crucial to investigating the reliability of
the more realistic, complex norms that humans actually use.
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5 Appendix A - Proofs

5.1 Notation

Given a set S, let P(S) denote its power set. Let ST denote all functions
from T to S, and so SN is the set of all functions from natural numbers to
S. Alternatively, one can think of SN as all infinite sequences of elements of
S. So we suggestively define S<N to be all finite sequences from S.

For any set S, let |S| denotes its cardinality; when S is a sequence, |S|
is therefore its length. Given a sequence σ and n ≤ |σ|, let σn denote the
nth coordinate of σ. If the coordinates of σ are likewise sequences, then let
σn,k be the kth coordinate of the nth coordinate of σ. And so on if σ is
a sequence of sequences of sequences. Alternatively, let πn denote the nth

projection function so that σn = πn(σ), and σn,k = πk(πn(σ)). Let σ � n
denote the initial segment of σ of length n.

If S1, S2, . . . , Sn is a sequence of sets, then let ×j≤nSj be the standard
Cartesian product. Given a collection of σ-algebras 〈Si,Si〉i∈I , let ⊗i∈ISi
denote the product algebra. In particular, ⊗n∈NS is the infinite product
space generated by a single σ-algebra.

Give a σ-algebra S, let P(S) denote the set of all probability measures
on S. If p is a probability measure on 〈S,S〉, then let pn ∈ P(⊗k≤n S)
denote the induced product measure on ⊗k≤n S. When S is a Borel algebra,
these measures extend uniquely to a measure p∞ on ⊗n∈NS (i.e., p∞ is the
unique measure on 〈SN,⊗n∈N S〉 such that p∞(F1 × F2 . . . × Fn × SN) =
p(F1) · p(F2) · · · p(Fn), where Fi ∈ S for all i ≤ n). Given a metric space
M , let B(M) denote the Borel algebra. Given ε > 0 and m ∈M , let Bε(m)
denote the ε ball around m.

5.2 Preliminaries

This section introduces basic facts about Markov processes that will be
used in later proofs. For proofs, see any introductory exposition of Markov
processes, such as Chapter 11 in Grinstead and Snell [1997].

A sequence of (abstract) random variables 〈Xn〉n∈N is called Markov
process just in case p(Xn|X1, X2 . . . Xn) = p(Xn+1|Xn) for all n. Given
a Markov process, the codomain S of the random variables is called the
state space, and its elements are called states. For the remainder of this
paper, I will discuss only Markov processes that have finitely many states.
A Markov chain is called ergodic if, for any pair of states si and sj , there
is some finite number n of steps for which it is possible to for the process to
transition from si to sj in n steps. More formally, for any pair of states si
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and sj , there is some finite number n such that p(Xm+n = sj |Xm = si) > 0
for all m.

A Markov process is time-homogeous if the probability of transitioning
from one state to the next is the same at all times. Formally, this means
that p(Xn+1 = si|Xn = sj) = p(Xm+1 = si|Xm = sj) for all si, sj ∈ S
and m,n ∈ N. Since S is finite, one can represent a time-homogenous
Markov process by a transition matrix P whose ijth entry is the probability
p(Xn+1 = si|Xn = sj). Let

P n = P · P · · ·P︸ ︷︷ ︸
n-times

It is easy to show that the ijth entry of the matrix P n the probability of
the problem being in state si exactly n stages after it is in state sj . For the
remainder of the Appendix, we will consider only time-homogeneous Markov
processes.

If Pm is a strictly positive matrix for some m ∈ N, then the Markov
process is called regular. Informally, a Markov process is regular if it is
possible to transition from any state to any other in exactly m steps. The
following theorems concerning Markov processes are well-known, and so their
proofs are omitted.

Theorem 8 If 〈Xn〉n∈N is a finite, regular, time homogenous Markov pro-
cess with transition matrix P , then there exists some transition matrix P∞
such that limn→∞P n = P∞. Moreover, all rows of P∞ are identical (i.e.,
columns are constant).

Theorem 9 Let P be a transition matrix for a time-homogeneous, ergodic
Markov process. If the diagonal entries of P are all positive, then P is
regular.

A set of states S∗ ⊆ S is said to be absorbing if p(Xn+1 ∈ S∗|Xn ∈ S∗) = 1.
A Markov process is absorbing if it is ergodic and there is at least one
absorbing state s∗.

Theorem 10 Suppose 〈Xn〉n∈N is an absorbing Markov process with ab-
sorbing states S∗. Then p(limn→∞Xn ∈ S∗) = 1.

In fact, the above theorem can be strengthened slightly. One need not
assume the Markov process is ergodic, but only that, for each state s, there
is an absorbing state s∗ ∈ S∗ (which may depend upon s) such that there is
positive probability of transiting from s to s∗. This is the stronger version
of the theorem used in the remainder of the Appendix.
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5.3 Piecewise Conditional Markov Processes

Consider a sequence 〈Xn, En〉n∈N, where the Xn’s are random variables
and the En’s are events. The sequence is called a piecewise conditional
Markov process (or pc-Markov process) if

1. The events 〈En〉n∈N are pairwise disjoint,

2. p(∪n∈NEn) = 1, and

3. 〈Xk〉k≥n is a Markov process with respect p(·|En), i.e., for all k ≥ n:

p(Xk+1|En, X1, X2, . . . Xk) = p(Xk+1|En, Xk)

Call the sequences of random variables 〈Xk〉k≥n the pieces of a pc-Markov
process. Say a pc-Markov process is ergodic/regular/absorbing if each of
its pieces is ergodic/regular/absorbing. Say it is uniformly regular if
the pieces are regular and have identical transition matrices, and similarly,
say it is uniformly absorbing if each of the pieces are absorbing and
have an identical set of absorbing states. The next two theorems show
that the asymptotic behavior of uniformly absorbing (or regular) pc Markov
processes is identical to that of each of their pieces.

Theorem 11 Suppose 〈Xn, En〉n∈N is a uniformly absorbing, pc-Markov
process with absorbing states S∗. Then p(limn→∞Xn ∈ S∗) = 1.

Proof:

p( lim
n→∞

Xn ∈ S∗) = p(∪n∈NEn ∩ ( lim
n→∞

Xn ∈ S∗))

= p(∪n∈N(En ∩ lim
k→∞

Xk ∈ S∗))

=
∑
n∈N

p(En ∩ lim
k→∞

Xk ∈ S∗)

=
∑
n∈N

p( lim
k→∞

Xk ∈ S∗|En) · p(En)

=
∑
n∈N

p(lim
k≥n

Xk ∈ S∗|En) · p(En)

=
∑
n∈N

1 · p(En)

= 1

38



The first equality follows by the fact that p(∪n∈NEn) = 1; the second fol-
lows from Demorgan’s laws. The third is a consequence of the pairwise
disjointness of the En’s, and the fourth follows by the definition of condi-
tional probability. The fifth follows from basic facts about limits, and the
sixth follows from Theorem 10 and the fact that 〈Xk〉k≥n is an absorbing
Markov chain under p(·|En). Finally, the last equality follows from the fact
that p(∪n∈NEn) = 1 and the disjointness of the En’s.

�

Theorem 12 Suppose 〈Xn, En〉n∈N is a uniformly regular, pc-Markov pro-
cess with transition matrix P . Then for any state si ∈ S there is some
probability ri ∈ [0, 1] such that limn→∞ p(Xn = si) = ri.

Proof: Let P be the common transition matrix of the uniformly regular,
pc-Markoc process. By Theorem 8, there is some P∞ with constant columns
such that P n → P∞ as n→∞. Given a state si, let ri be the value of the ith

column in P∞. So ri is the asymptotic probability of state si for a Markov
process with transition matrix P . We claim that limn→∞ p(Xn = si) = ri.

To prove this, we must find some nε such that |p(Xk = si)− ri| < ε for
all k ≥ nε. First, note that because

∑
n∈N p(En) = 1, there is some kε such

that
∑

n≤kε p(En) ≥ 1− ε
2 . As the pieces are regular Markov processes with

transition matrix P , it follows that limk→∞ p(Xk = si|En) = ri for all n by
theorem 8. Hence, for all n, there is some mε,n such that

|p(Xk = si|En)− ri| <
ε

2
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for all k ≥ mε,n. Let nε = max{mε,n : m ≤ kε}. Then for all k ≥ nε, it
follows that:

p(Xk = si) = p(Xk = si ∩ ∪n∈NEn)

= p(∪n∈N(Xk = si ∩ En))

=
∑
n∈N

p(Xk = si ∩ En)

=
∑
n∈N

p(En) · p(Xk = si|En)

≤ ε

2
+

∑
n≤kε

p(En) · p(Xk = si|En) by choice of kε

≤ ε

2
+

∑
n≤kε

p(En) · (ri +
ε

2
) by choice of nε and the fact that k ≥ nε

=
ε

2
+ (ri +

ε

2
)
∑
n≤kε

p(En)

≤ ε

2
+ (ri +

ε

2
)

= ri + ε

Similarly,

p(Xk = si) ≥
∑
n≤kε

p(En) · p(Xk = si|En)

≥
∑
n≤kε

p(En) · (ri −
ε

2
)

= (ri −
ε

2
)
∑
n≤kε

p(En)

≥ ri −
ε

2

So |p(Xk = si)− ri| < ε as desired.

�

5.4 Definitions

5.4.1 Worlds and Questions

Define a question to be a triple 〈W, 〈Θ, ρ〉〉, where W is an arbitrary set
whose elements are called worlds, Θ is a partition of W , and ρ is a metric
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on Θ. Elements of Θ are called answers to the question, and ρ quantifies
how different two possible answers are. I use the variable Θ because, as
will be seen in examples below, in many circumstances Θ is a partition of
possible parameter values for some unknown distribution, and the variable
Θ is frequently used in statistics to represent parameter values. Given a
world w, let θw ∈ Θ be the partition cell (i.e. answer) containing w.

Example 1: Suppose one is interested in the bias of a trick coin (i.e., the
frequency with which the coin lands heads). In this case, the set of possible
worlds W is the set of real numbers between 0 and 1 inclusive (i.e. W =
[0, 1]), and the set of possible answers is Θ := {{θ} : θ ∈ [0, 1] = W}. The
appropriate metric ρ on Θ is the Euclidean metric: ρ({θ1}, {θ2}) = |θ1−θ2|.
Let QB be the question described here; B stands for “Bernoulli.”

Example 2: Suppose one is interested in the mean of a normal distribution.
However, imagine one does not care about the exact value of the mean, but
rather one only wants to know whether it is at least zero. In this case,
the set of possible worlds W is the set of ordered pairs 〈µ, σ2〉 ∈ R × R+

representing the mean and variance of the unknown distribution. The set
of possible answers is Θ := {θ≥0, θ<0}, where θ≥0 = {〈µ, σ2〉 ∈ W : µ ≥ 0}
and θ<0 = {〈µ, σ2〉 ∈W : µ < 0}.

Here, the most appropriate metric ρ on Θ would be the discrete metric,
which assigns a distance of 1 between any two distinct answers. Let QN
be the question described here; here, N stands for “normal.” This is the
question described in depth in the running example in the body of the paper.

Example 3: This example presupposes some familiarity with the practice
of representing causal relationships among random variables by means of
Bayesian networks. Suppose one is interested in the causal relationships
among a collection of real-valued, random variables V = {V1, . . . , Vk}. Let
〈Ω,F〉 be the the measurable space on which the Vj ’s are defined. Suppose,
however, that one has access only to observational data, and hence, one
believes can discover causal structure only up to Markov equivalence [Spirtes
et al., 2000].

The set of worlds W consists of all pairs 〈G, p〉 such that p ∈ P(F) is
Markov and faithful to the graph G ∈ dagV , where dagV is the set of di-
rected acyclic graphs with vertex set V. Given two worlds w = 〈G, p〉 and
w′ = 〈G′, p′〉, write w ≡ w′ if G is Markov equivalent to G′. Let Θ be
the partition on W induced by equivalence relation ≡. If one is only inter-
ested in discovering the underlying causal structure/graph (up to Markov
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equivalence), then the discrete metric is the appropriate measure of dis-
tance between two elements of Θ. Call this question QC , where C stands
for “causal graph.”

Example 4: Suppose one’s data is drawn from a Markov process that is
known to have a unique absorbing state, and one is interested in discovering
that state. So let S be a finite state space, and W be the set of transition
matrices for absorbing Markov processes over S with a unique absorbing
state. Define the distance between two such transition matrices as follows:

ρ(w,w′) =

√∑
si∈S

∑
sj∈S
|wij − w′ij |2.

Call this question QM , where M stands for “Markov.”

5.4.2 Learning Problems

Imagine that one learns about the world by making a series of observations.
To model such learning, define a data generating process for a question
Q = 〈W, 〈Θ, ρ〉〉 to be a pair 〈〈D,D〉, c〉 where

1. 〈D,D〉 is a measurable space, and

2. c : W → P(⊗n∈N D) is a function, whose values cw are called the
chances under w.

Define a learning problem L to be a pair consisting of a question and a
data generating process for that question. Informally, the set D represents
data that one might learn when making observations in any world. For any
world w, the probability measure cw specifies how likely one is to observe
particular data sequences. These notions are best explained by examples:

Example 1: Consider Q = QB be the Bernoulli question in Example 1
above. One data-generating process for QB is the following. Let D = {0, 1}
and let D = P({0, 1}) be the power set algebra. Here, 0 represents observing
a heads, and 1 represents observing a tails. For all w ∈ W = [0, 1], let pw
be the unique measure on D such that pw({0}) = w. Define cw = (pw)∞.
Then the chances given by cw are exactly those of independent coin tosses.

Example 2: Let Q = QN be the “normal” question in Example 2 above.
Let D = R and let D = B(R) be the Borel algebra. So data are just sample
points pulled from a normal distribution. For every world w = 〈µ, σ〉 ∈
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R×R+, let pw be the unique measure on D such that the density of pw is a
normal distribution with mean µ and variance σ2. Let cw = (pw)∞, and let
LN be learning problem described here.

Example 3: Let Q = QC be the causal question in Example 3 above. Let
D = R|V| and D = ⊗k≤|V|B(R). For all w = 〈G, p〉 ∈ W , let pw be the
unique measure on D such that pw(E) = p(〈V1, V2 . . . V|V|〉 ∈ E) for E ∈ D.
Again, let cw = (pw)∞, and let LC be learning problem described here.

Example 4: In the previous three examples, the data generated by the
underlying world consists of the values of iid random variables. One need
not assume that data is acquired from such a process. For instance, let
Q = QM be the “Markov” question in Example 4 above, and suppose one
observes successive states of the underlying Markov process.

To model such learning, let D = S be the states of the Markov process
and D be the power set of D. Fix a state s0 ∈ S = D, which represents the
starting state of the process. For all transition matrices w ∈ W , let cw be
the unique product measure on the infinite product space on SN such that

cw(〈s1, s2, . . . , sn〉 × SN) = Πk≤nwsi,si+1 = ws0,s1 · ws1,w2 · · ·wsn−1,sn

where wsi,sj is the element of the transition matrix w giving the probability
of transitioning from si to sj . Then, in general, the data generated in this
process are highly dependent and not identically distributed. Let LM be the
learning problem defined here.

5.5 Methods

A method for a learning problem L is a function m : D<N → P(B(Θ)). Let
md := m(d) for all d ∈ D<N. Informally, a method takes data sequences as
input and returns sets of answers with different probabilities.

Example 1: Consider the learning problem LB. Then one common method
m is return the sample mean. In other words, let d ∈ {0, 1}n be a sequence
of coin flips (e.g. 〈0, 1, 1〉) of some finite length n , and let w(d) be the
proportion of flips in d that land heads (e.g. w(〈0, 1, 1〉) = 2

3). Notice that
since the possible set of worlds W is the unit interval [0, 1], the proportion
w(d) ∈ W . Then define m to be the function such that, for all d, the mea-
sure md assigns unit probability to the event {w(d)} and zero probability
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elsewhere.

Example 2: Consider the learning problem LN . One method m is to em-
ploy a likelihood ratio test to test the null hypothesis H0 : µ ≥ 0 versus the
alternative, where the significance of the test is decreased at a rate of the
natural log of the sample size. Formally, let d ∈ Rn be a data sequence, and
let µ(d) and σ2(d) be the (sample) mean and variance of the data d. Let
pd be the probability measure on R such that the density of pd is a normal
distribution with mean 0 and variance σ2(d). Let α ∈ (0, 1) be a fixed sig-
nificance level, and define a method m such that md assigns (i) probability
one to θµ≥0 if pd(x ∈ R : x ≥ µ(d)}) ≥ 1−α

ln |d| and (ii) probability one to θµ<0

otherwise.

Example 3: Consider the learning problem LV . Spirtes et al. [2000] define
several methods including the SGS algorithm, PC algorithm, and so on.

Example 4: Consider the learning probelm LM . Define a method m
that returns the last observed state of the process. In other words, let
d = 〈s1, s2 . . . , sn〉 be a data sequence of observed states. Then md assigns
probability one to the event {sn}.

Three comments about methods are in order. First, as indicated in the
above samples, the most commonly employed methods in statistics are de-
terministic in the sense that for all data sequences d, there exists some
θ ∈ Θ such that md(θ) = 1. In other words, answers are chosen determinis-
tically in response to data sequences and do not depend upon some external
randomizing device. Although none of the examples I have described re-
quire indeterministic methods, I have defined methods in such a way to
accomodate such generality.

Second, when the learning problem L concerns discovering some un-
known parameter, then a deterministic method in my sense is simply a pa-
rameter estimator in the standard statistical sense (see Example 1 above).

Finally, in statistics, it is standard to define methods to be functions from
data to parameters, or decisions, etc. Since my methods return answers with
different probabilities, it is easier to think of methods as returning probability
measures over answers; to determine how much probability is assigned to
different sets of answers given some data d, we investigate the measure md

that is indexed by d.
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5.6 Convergence

Methods are often evaluated by whether they discover the true answer in a
given world, and how quickly they do so. To this end, we introduce several
notions of convergence, some of which are standard in probability theory
in statistics. To do so, however, we must first define a probability measure
over infinite sequences of answers so that we can characterize the asymptotic
performance of a method. Fix some natural number n. Given a method
m and world w, define pnw,m to be the unique measure on 〈Θn,⊗k≤nB(Θ)〉
satisfying the following. For all “rectangles” E1×E2× . . .×En ∈ ⊗k≤nB(Θ)
(i.e., Ek ∈ B(Θ) for all k ≤ n):

pnw,m(E1 × E2 × . . .× En) =

∫
Dn

∏
k≤n

mδ�k(Ek) dc
n
w(δ)

where (1) cnw is the restriction of cw to 〈Dn,⊗k≤nD〉 (i.e. cnw is the unique
measure such that cnw(F ) = cw(F ×DN) for all F ∈ ⊗k≤nD), and (2) δ is an
element of Dn (i.e., a data sequence of length n). I have used δ instead of d to
denote a data sequence so as to avoid confusion because the dummy letter
“d” is used here to indicate that the integral is being taken with respect
to the measure cnw. Under the measure pnw,m, the probability of a method
returning a sequence of answers is the probability of obtaining particular
data sequence (given by cnw) times the probability that the method returns
a given answer (given by m) in response to that data sequence. So this
construction assumes that the randomizing device by which one chooses
answers is probabilistically independent of the data that will be observed in
a world.

Using standard measure-theoretic constructions, it is easy to show that
there is a unique probability measure pw,m on the infinite product algebra
〈ΘN,⊗n∈NB(Θ)〉 extending each of the pnw,m’s (i.e. pw,m(E×ΘN) = pnw,m(E)
for all E ∈ ⊗k≤nB(Θ) and all natural numbers n). Further, it is easy to
check the following are events in the infinite product algebra, where θ ∈ Θ
and ε > 0:

{θn = θ for large n} := {θ ∈ ΘN : (∃n ∈ N)(∀k ≥ n)θk = θ}
{ lim
n→∞

θn = θ} := {θ ∈ ΘN : lim
n→∞

θn = θ}

{θn ∈ Bε(θ)} := {θ ∈ ΘN : θn ∈ Bε(θ)}.

A method m is called

45



• almost surely (a.s.) convergent if for all w ∈W

pw,m( lim
n→∞

θn = θw) = 1

• consistent if for all w ∈W and all ε > 0

lim
n→∞

pw,m(θn ∈ Bε(θw)) = 1

• uniformly consistent if for all ε > 0

lim
n→∞

inf
w∈W

pw,m(θn ∈ Bε(θw)) = 1

• strongly almost surely (s.a.s.) convergent if for all w ∈W

pw,m(θn = θw for large n) = 1

When Θ = {{r} : r ∈ Rd} is some parametric model, then almost sure con-
vergence (respectively, convergence and uniform convergence) of a method
is the standard notion of almost sure convergence (respectively, convergence
and uniform convergence) of a parameter estimator.

The relationships between the notions of convergence are as follows; the
first two facts are well-known and the last is trivial.

Lemma 1 Let θ̂ be a method for learning problem L.

1. If m converges a.s., then it is consistent, but not vice versa.

2. If m is uniformly consistent, then it is consistent, but not vice versa.

3. Suppose Θ is finite. Then a.s. convergence entails s.a.s. convergence.

Example 1: Consider the learning problem LB. Then the method that
returns the sample mean (i.e. frequency of heads) converges almost surely
by the strong law of large numbers. Hence, it is consistent as well. However,
it is not s.a.s., as if w is an irrational number, then the method never returns
w with any positive probability at any sample size.

Example 2: Consider the learning problem LN . The method defined above
is consistent. See Jeffreys [1998]
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Example 3: Consider the learning probelm LV . Then the algorithms of
Spirtes et al. [2000] are all consistent.

Example 4: Consider the learning probelm LM . Then the method of re-
turning the last state describe above is a.s. convergent, and hence, s.a.s.
convergent because the process is finite. Why? By Theorem 10, with prob-
ability one, the process eventually enters the unique absorbing state s∗ and
never leaves it. Since the method m returns that last observed state with
probability one (under the measure md), then there is unit probability (un-
der pw,m) that m eventually returns the unique absorbing state from some
stage onward. The same argument works for a method that returns the kth

to last observed state, for some fixed natural number k.

5.6.1 Expert Networks

A network is a finite undirected graph G; we will refer to the vertices
of G as agents. A group is a set of agents J ⊆ G. For any g ∈ G, let
NG(g) ⊆ G denote the group of agents g′ ∈ G such that g and g′ are incident
to a common edge. Call NG(g) the neighborhood of g, and call is elements
neighbors of g. For simplicity, we assume every agent is her own neighbor.
When the network is clear from context, I will write N(g) instead of NG(g).

An expert network E is a pair 〈G, 〈Lg〉g∈G, 〈mg〉g∈G〉 such that G is a
network, Lg is a learning problem for each agent g ∈ G, and mg is a method
for Lg. For each agent g ∈ G, let Qg be the question confronted by the
agent; define Θg, cw,g, etc., similarly. An expert network can be represented
by a colored undirected graph such that the vertices g and g′ are the same
color just in case Qg = Qg′ ; notice, agents may share a color in the graph
even if the type of data they collect is very different. In other words, agents
that are faced with the same question might observe data that cannot be
combined in any meaningful way.

Example: In the running example in the body of the paper, the expert net-
works consist of agents confronted with instances of learning problem LN ;
however, different agents may sample from different normal distributions.

Let ΘE = {Θg : g ∈ G} be the set of questions faced by agents in
the expert network E , and let AE = ×Θ∈ΘEΘ be the set of answers to all
questions raised in the expert network. Define ΘE−g = ΘE \ {Θg} to be the
set of questions faced by agents other than g, and AE−g = ×Θ∈ΘE−gΘ be all
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possible answers.
In future sections, we will need to investigate several agents’ beliefs (i)

to all questions under investigation in a network (ii) over several stages of
inquiry. In symbols, if J ⊆ G is a group, then a sequence of answers given
by J to all questions under investigation is a member of the set ((AE)

J)<N.
We realize this is a notational nightmare because the elements of these sets
are sequences of sequences of sequences. However, the complicated notation
is unavoidable. To avoid confusion, we will use specific letters to denote
elements of particular sets. The letter “θ” will always be an answer to a
single question Θ. The letter “a” will designate answers to several questions,
and hence, will be a sequence of answers; generally, a will be a member of AE
or of AE−g. The bolded letter a will indicate several agents’ (i.e. a group’s)
answers to several questions (so a ∈ (AE)

J or a ∈ (AE−g)
J). Finally, we

use the “bar-notation” a to indicate a sequence of group answers to several
questions (so a ∈ ((AE)

J)<N).
Recall, by definition of a question, there is a Borel algebra B(Θ) over

each Θ ∈ ΘE . Hence, one can define AE be the product σ-algebra on AE =
×Θ∈ΘEΘ, and similarly for AE−g. It is easy to check the following are events
in these algebras:

{(∀g ∈ G)an,g = a for large n} = {a ∈ ((AE)
G)N : (∃n ∈ N)(∀k ≥ n)(∀g)an,g = a}

{(∀g ∈ G) lim
n→∞

an,g = a} = {a ∈ ((AE)
G)N : (∀g ∈ G) lim

n→∞
an,g = a}

And so on. These definitions will be of importance in the definition of a
testimonial norm, and in characterizing their asymptotic reliability.

5.6.2 Testimonial Norms

A testimonial norm is a class of functions τE,g : ((AE−g)
N(g))<N → P(AE−g),

where the index E ranges over expert networks and g ranges over agents in
the network E . Informally, a testimonial norms specifies, for each expert
network E and each agent g ∈ E , a probability distribution over answers
to questions outside an agent g’s area of expertise given what g’s neighbors
have reported in the past.

The body of the paper introduces the following six testimonial norms.
To describe them, let a ∈ ((AE−g)

N(g))<N be an arbitrary sequence of an-
swer reports of g’s neighbors to all questions of interest. Suppose a has
length n. Recall that, by our notational conventions, for each agent h in g’s
neighborhood and each Θ ∈ ΘE−g, the symbol an,h,Θ represents h’s report
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to question Θ on stage n (i.e. the last stage of a). Similarly, if a ∈ AE−g is
an answer to all questions outside of g’s area of expertise, and if Θ ∈ ΘE−g
is one such question outside of g′s area of expertise, then aΘ is the answer
a provides to the question Θ.

Example 1: Reidianism is the norm such that for all a ∈ AE−g:

τE,g(a)(a) =
∏

Θ∈ΘE−g

|{h ∈ N(g) : aΘ = an,h,Θ}|
|N(g)|

In other words, an answer θ to a given question Θ is chosen to be the pro-
portion of one’s neighbors that report θ on the most recent stage. Answers
to different questions are chosen independently of one another, so the prob-
ability of choosing a sequence of answers a is the product of the probabilities
of choosing each element aΘ of the sequence.

To describe the remaining norms, we need to introduce some nota-
tion. Let NE(g,Θ) = {h ∈ NG(g) : Θh = Θ} be the neighbors of g who
study the question Θ; if there are no such neighbors, we stipulate that
NE(g,Θ) = N(g). Let PNE(g,Θ) be those neighbors of g that have minimal
path length to an expert in Θ. Again, when E is clear from context, I will
drop the subscript.

Example 2: E-trusting is the norm such that for all a ∈ AE−g:

τE,g(a)(a) =
∏

Θ∈ΘE−g

|{h ∈ N(g,Θ) : aΘ = an,h,Θ}|
|N(g)|

Example 3: Proxmitism is the norm such that for all a ∈ AE−g:

τE,g(a)(a) =
∏

Θ∈ΘE−g

|{h ∈ PN(g,Θ) : aΘ = an,h,Θ}|
|N(g)|

Although it is a tedious task, the majoritarian versions of all three norms
can also be defined rigorously in a similar manner. We leave this task to the
reader.

As noted in the body of the paper, there are a few special properties
of testimonial norms that will play a critical role in proofs. Let τ be a
testimonial norm. Suppose that for all expert networks E , all agents g in E ,
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and all answer reports a, b ∈ ((AE−g)
N(g))<N with identical last coordinates

(i.e., a|a| = b|b|):

(∗) τE,g(a) = τE,g(b).

Then τ is said to be time homogeneous and Markov, as its behavior de-
pends only upon the last element of an answer sequence (time-homogeneity
is implicitly built in as a and b need not even have the same length). It
is said to be time-homogeneous and Markov with memory t if (∗) holds for
any sequences a and b for which the last t coordinates are identical.

Given Θ ∈ ΘE−g and some θ ∈ Θ, define E(θ) = {a ∈ AE−g : aΘ = θ}.
A time-homogeneous, Markov testimonial norm τ with memory t is said to
be stable if, for all a ∈ ((AE−g)

N(g))<N, if ak,h,Θ = θ for all h ∈ N(g) and
all k such that |a| − t ≤ k ≤ |a|, then

τE,g(a)(E(θ)) = 1

Finally, a testimonial norm is said to be sensitive if for all expert networks
E , all agents g in the network, and all Θ ∈ ΘE , there is some ε > 0 and some
J ⊆ PN(g,Θ) such that for all a ∈ ((AE−g)

N(g))<N, if a|a|,h,Θ = θ for all
h ∈ J , then:

τE,g(a)(E(θ)) > ε

By construction, the six testimonial norms in the body of the paper are
time-homogeneous, Markov, stable, and sensitive.

A group testimonial norm (or gtn for short) is a proper class function
from expert networks to vectors of testimonial norms for each agent in the
network. A gtn is said to be pure if it is a constant function; it is said to
be mixed otherwise. We would

5.7 Scientific Communities, Probabilities over Answer Se-
quences, and More on Convergence

A scientific network is a pair S = 〈E , 〈τ(g)〉g∈G〉 consisting of an expert
network E and an assignment of testimonial norms τ(g) to each agent g in
the network. We abbreviate τ(g)E,g by τE,g below, as no confusion will arise.

Define WE = {Wg : g ∈ G}, and let w ∈ ×W∈WEW be the true state
of the world for all questions faced by agents in the network. Recall, in a
given world, an agent’s methods induces a probability measure of answer
sequences within her area of expertise. Moreover, testimonial norms specify
the probability that agents will assign to various answers outside their area
of expertise. Therefore, given a scientific community S and world w ∈
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×W∈WEW , one can define a probability measure pw,S over infinite sequences
of answers for the entire network ((AE)

G)N (where, the events are those in
the product algebra). Defining the measure pw,S is rather involved, but it
is tedious. So the details are omitted.

The measure pw,S allows us to characterize the asymptotic reliability
of different gtns in much the same way we characterized the reliability of
methods. To do, we first introduce two more definitions. First, an expert
network E is said to be expert connected if, for every question Θ ∈ ΘE ,
every connected component of G contains some agent g such that Θg = Θ.
See Figure 5 for an example of an expert-disconnected network; the right
network is expert-disconnected because one connected component does not
contain a red expert.

Second, say an expert network E is s.a.s methodologically conver-
gent (or consistent, uniformly consistent, etc.) if the methods employed
by each agent are s.a.s (respectively, or consistent, uniformly consistent,
etc.). Given w ∈ ×W∈WEW , let a(w) ∈ AE be the unique answer sequence
such that w ∈ a(w). That is, a(w) is the sequence of true answers to ev-
ery question if w describes the true state of the world. Say a gtn to be
s.a.s testimonially convergent (for short, s.a.s. t-convergent) if for all
scientific networks S = 〈E , 〈τ(g)〉g∈G〉:

pw,S((∀g ∈ G)an,g = a for large n) = 1

whenever E is an expert connected, s.a.s. methodologically convergent net-
work. The definitions of convergence, uniform consistency, and so on are
similar.

Figure 5: An expert-connected network vs. a expert-disconnected
network

Notice that, in the convergence definitions for testimonial norms, we
require the expert networks to be expert-connected and convergent in some
way. We make these requirements because our goal is to characterize the
reliability with which testimonial norms transfer information and not the
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reliability of the methods used to reach conclusions from data in the first
place. Expert-connectedness ensures that each agent has (at a minimum)
indirect access to data concerning every question under investigation.

5.8 Proofs of Theorems

Because the measure pw,S was not explicitly constructed, the proofs of the
theorems below can only be sketched. Contact the author if greater detail
is desired.

Given an expert network E , define a(w) ∈ (AE)
G to be the vector rep-

resenting the state in which all agents believe a(w) (i.e., they believe the
total truth). In contrast, let A(w) = {a ∈ AGE : wg ∈ ag,Θg} to be the set
of belief vectors for the network in which every agent holds a true belief in
her own area of expertise. Next, define by recursion:

E0(w) = {a ∈ (AGE )N : (∀n ∈ N)an ∈ A(w)}
En+1(w) = {a ∈ (AGE )N : (∀k ≥ n+ 1)ak ∈ A(w)} \ En(w)

So En is the event that n is the first stage at which every agent has converged
to the correct answer in her own area of expertise. Finally, let Xn : (AGE )N →
AGE be the function a 7→ an that represents the beliefs of all agents, to all
questions (including those in their area of expertise) on stage n.

Lemma 2 Let S = 〈E , 〈τ(g)〉g∈G〉 be a scientific community and w ∈ ×W∈WEW .
Suppose that E is methodologically s.a.s. convergent and that τ(g) is time-
homogenous and Markov for all g ∈ G. Then 〈Xn, En(w)〉n∈N is a pc-Markov
process over state space A(w) with respect to pw,S.

Proof Sketch: Since E is s.a.s. convergent, it follows that pw,S(∪n∈NEn(w)) =
1. Notice the En(w)’s are disjoint by definition. Next, notice that condi-
tional on En, each agent’s beliefs change only outside her area of expertise
at every stage k ≥ n+ 1 (as, by definition of En, agents’ have converged to
the true answer within their area of expertise at stage n). Hence, agents’
beliefs at any stage k ≥ n depend only upon the randomness of testimonial
norms, and not upon the randomness of data. Since the testimonial norms
are Markov and time-homogeneous, the vectors of all agents beliefs at stages
past n, represented by 〈Xk〉k≥n, form a time-homogeneous, Markov process
conditional on En as desired.

�
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Theorem 13 Let S = 〈E , 〈τ(g)〉g∈G〉 be a scientific community and w ∈
×W∈WEW . Suppose that E is methodologically s.a.s. convergent and that
τ(g) is time-homogenous, Markov, stable, and sensitive for all g ∈ G. Then
〈Xn, En(w)〉n∈N is a uniformly absorbing pc-Markov process with respect to
pw,S, where the unique absorbing state is a(w).

Proof Sketch: By the previous lemma, 〈Xn, En(w)〉n∈N is a pc-Markov
process. For all agents g in the network, one can use sensitivity to show,
by induction on g’s length n from a Θ-expert, that there is some non-zero
probability that g will believe an answer θ to Θ exactly n many stages after
all the most proximate Θ experts to g believe θ. Again, using stability and
induction, one can show that, for all natural numbers n and k, if g believes
θ on stage n and all the most proximate Θ experts to g continue to believe θ
for k stages, then g will believe θ on stage n+ k. Since the network is s.a.s.
convergent, this suffices to show that true beliefs will eventually propagate
through the entire network. By the stability and Markov property of the
testimonial norms, the network will be absorbed in this state.

�

5.9 Modeling Miscommunication

Suppose for the remainder of this section that the each agent’s question has
only two candidate answers like the running example in the text. In order
to model miscommunication, one needs only to alter the definition of the
measure pw,S , so that, on each stage of inquiry, for all her neighbors, an
agent reports the answer other than the one she believes with some fixed
probability ε > 0. Call the measure induced by this process pw,S,ε.

Theorem 14 Let S = 〈E , 〈τ(g)〉g∈G〉 be a scientific community and w ∈
×W∈WEW . Suppose that E is methodologically s.a.s. convergent and that
τ(g) is one of the six testimonial norms considered in the body of the pa-
per for all g ∈ G. Then 〈Xn, En(w)〉n∈N is a uniformly regular pc-Markov
process (over state space A(w)) with respect to pw,S,ε.

Proof Sketch: By the same reasoning as above, the process is a pc-Markov
process. So it suffices to show it is regular. In fact, since each of the six
testimonial norms has a memory of length one, the process can transition
from any state in A(w) to another in exactly one step. To show this, we
show that any agent’s belief, with respect to any question, changes with pos-
itive probability and stays the same with positive probability. This suffices
because there are only two answers to a question.
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Consider a fixed agent g and a fixed question Q. Since there are two
possible answers, the agent’s belief with respect to Q can be represented by
a 0 or 1, and her neighbors beliefs with respect to Q can be represented by
a binary vector a. Now each of the six testimonial norms has the following
property: there are binary vectors bstay and bchange such that, (i) if g thinks
her neighbors’ beliefs with respect to Q are represented by bstay, then g’s
beliefs with respect to Q will remain the same with positive probability, and
(ii) if g believes her neighbors’ beliefs are represented by bchange, then g’s
beliefs will change with positive probability. For instance, if g is a Reidian
who currently believes 0, then the constant vector containing only zeros is
one example that could be bstay, and the constant vector containing only
ones is one example of bchange.

Let n be the number of entries in the vector a (which g’s neighbors’
current beliefs) differs from the vector bstay. Then, by the definition of
miscommunication, the probability that g will think her neighbors believe
bstay is εn. By definition of bstay, if g believes her agents believe bstay, then
g will retain her belief with some positive probability δ. So the probability
that g’s belief will stay the same is at least δ · εn, which is positive. A
similar argument shows that g’s belief changes with respect to question S
with positive probability.

�

Theorem 15 Let S = 〈E , 〈τ(g)〉g∈G〉 be a scientific community and w ∈
×W∈WEW . Suppose that E is methodologically s.a.s. convergent and that
τ(g) is one of the six testimonial norms considered in the body of the paper
for all g ∈ G. Then the error rate of the network approaches a fixed value.

Proof Sketch: By the previous lemma and Theorem 12, there is a fixed
distribution that the Markov chain will be in any given state (i.e. a speci-
fication of beliefs for every agent in the network) in the limit, regardless of
the initial beliefs of each agent. In each such state, there is some number of
erroneous beliefs. The error rate is the expectation of error relative to this
limiting distribution.

�
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Appendix B - Data Summary and Statistical Tests

B1. Convergence Times for Pure GTNs

The following tables summarize the results of a one-way, random effects
analysis of variance of the convergence times of the four pure gtns on net-
works of 50 and 100 agents; similar results were obtained for networks of 60,
70, and 80 agents and the (analyzed) data can be obtained from the author.
Here, imagine each network is subjected to a “treatment” of a pure gtn. I
list the mean and variance of the convergence times of each of the four gtns
when the number of agents and difficulty of the problem is held constant.

When the number of agents and difficulty of the problem are held fixed,
let n be the number of networks subjected to each of the pure gtns. For
brevity, it will be helpful to number the gtns; let the numbers zero through
three represent Reidians, e-trusters, proximitists, and majoritarian proximi-
tists respectively. So µ0, µ1, µ2, and µ3 represent the mean convergence
times of Reidians, e-trusters, proximitists, and majoritarian proximitists re-
spectively. Let µ be the average of the µi’s. Finally, let Xij be the jth

sample point in the ith gtn. Then the mean sum of treatment residuals
(MSTR) and mean squared error (MSE) are defined as follows:

MSTR =

∑
i≤4(µi − µ)2

3 · n

MSE =

∑
j≤n

∑
i≤4(Xij − µi)2

4 · (n− 1)

Then, under the null hypothesis that µi = µj for all i, j, the statistic MSTR
MSE

has an F distribution with 3, 4 · (n− 1) degrees of freedom.

50 Agents, Difficulty 0:

Radical Moderate Proximitist Majoritarian Sample size for each gtn
Mean 109 69.43 51.48 50.67 182

Variance 6620.03 1333.49 694.73 678.12

MSTR MSE F-Statistic P-value Decision
134295.9939 2347.504162 51.48 3.4 · 10−33 Reject null
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50 Agents, Difficulty 1:

Radical Moderate Proximitist Majoritarian Sample size for each gtn
Mean 2188.35 2161.43 2143.99 2075.63 182

Variance 3494459.80 3445192.34 3432294.65 2523214.5

MSTR MSE F-Statistic P-value Decision
421153.10 3263114.68 0.13 .94 Do not reject null

50 Agents, Difficulty 2:

Radical Moderate Proximitist Majoritarian Sample size for each gtn
Mean 11717.40 11667.93 11669.60 12061.74 182

Variance 286146690.9 286315861.7 286325510.6 181769916.6

MSTR MSE F-Statistic P-value Decision
6554253.48 261576729.7 0.03 .99 Do not reject null

100 Agents, Difficulty 0:

Radical Moderate Proximitist Majoritarian Sample size for each gtn
Mean 58.84 40.2 38.5 38.18 547

Variance 441.15 406.13 422.44 397.57

MSTR MSE F-Statistic P-value Decision
54477.94 416.58 130.77 6.04 · 10−6 Reject null

100 Agents, Difficulty 1:

Radical Moderate Proximitist Majoritarian Sample size for each gtn
Mean 1631.04 1619.65 1619.32 1626.88 547

Variance 1525950.25 1523186.23 1527091.808 1507969.15
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MSTR MSE F-Statistic P-value Decision
17961.92 1523835.17 .01 .99 Do not reject null

100 Agents, Difficulty 2:

Radical Moderate Proximitist Majoritarian Sample size for each gtn
Mean 9500.54 9538.55 9519.88 9773.41 547

Variance 118741818.6 130970540.1 130938650.4 103751751.5

MSTR MSE F-Statistic P-value Decision
8937190.30 121322486.3 0.07 0.97 Do not reject null

B2. Error Rates for Pure GTNs in Presence of Miscommuni-
cation

This appendix analyzes the effect of pure gtns on the asymptotic error
rate. The tables below list the total number of false beliefs in the network
(on average) asymptotically; to obtain the error rates (i.e. the frequency
of false beliefs), one should divide the numbers in the “mean” row by five
times the number of agents (as each agent had beliefs about five questions).

The null hypothesis is that the four pure gtns possess identical average
error rates when the number of agents and probability of miscommunica-
tion is held fixed. The methodology is exactly the same as the previous two
appendices. Again, only some of the results are reported because the null
hypothesis was rejected every time, and the ordering of magnitudes of the
error rates was identical for all networks of a fixed size and all problems of
similar difficulty.

50 Agents, 1% Miscommunication:

Radical Moderate Proximitist Majoritarian Sample size for each gtn
Mean 33.40 16.61 4.57 3.46 434

Variance 231.63 153.09 2.26 2.6

MSTR MSE F-Statistic P-value Decision
84244.02 130.16 647.24 0 Reject null
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50 Agents, 40% Miscommunication:

Radical Moderate Proximitist Majoritarian Sample size for each gtn
Mean 98.20 93.32 92.19 85.02 434

Variance 1.55 10.61 9.24 36.94

MSTR MSE F-Statistic P-value Decision
2846.18 19.49 658.98 2.68 · 10−260 Reject null

100 Agents, 1% Miscommunication:

Radical Moderate Proximitist Majoritarian Sample size for each gtn
Mean 44.55 9.47 5.75 2.80 749

Variance 312.52 33.53 0.88 0.97

MSTR MSE F-Statistic P-value Decision
283738.76 116.13 2443.38 0 Reject null

100 Agents, 40% Miscommunication:

Radical Moderate Proximitist Majoritarian Sample size for each gtn
Mean 195.03 175.36 173.75 153.59 749

Variance 4.13 42.09 31.81 197.89

MSTR MSE F-Statistic P-value Decision
214750.12 92.1 2331.75 0 Reject null
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