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Abstract

Several current debates in the epistemology of testimony are im-
plicitly motivated by concerns about the reliability of rules for chang-
ing one’s beliefs in light of others’ claims. Call such rules testimonial
norms (tns). To date, epistemologists have neither (i) characterized
those features of communities that influence the reliability of tns, nor
(ii) evaluated the reliability of tns as those features vary. These are
the aims of this paper. I focus on scientific communities, where the
transmission of highly specialized information is both ubiquitous and
critically important. Employing a formal model of scientific inquiry,
I argue that miscommunication and the “communicative structure”
of science strongly influence the reliability of tns, where reliability is
made precise in three ways.

Introduction

Most of our scientific knowledge is based upon others’ testimony. For in-
stance, I have never verified Coulomb’s law, but I know that electrostatic
force obeys an inverse square law. Why? My high school physics teacher
told me so. On first glance, explaining how I know such facts seems easy.
Scientific facts, like Coulomb’s law, are first confirmed by experts in an
experiment. Experts then disseminate their findings by word of mouth or
through journals. Those findings are, in turn, summarized in survey articles
for other academics, in textbooks for students, and in popular media. In
this way, experts’ findings, like Coulomb’s law, are transmitted from one
person to another. Each part of this explanation, however, raises serious
questions. I will mention two.

First, scientists often disagree. How can non-specialists justifiably accept
a hypothesis when there are experts who disagree? Recently, epistemologists

1



have developed several procedures for evaluating experts and deciding whom
to trust. Some argue that, absent other information, non-specialists should
“go by the numbers” and adopt the opinion of the majority of experts in a
field. Others argue that there are criteria by which non-experts can deter-
mine which experts are most reliable.1

Second, much of our scientific knowledge is acquired from non-experts.
Journalists often have no scientific training, and yet both academics and lay
audiences often learn of scientific advances via newspapers and magazines.
Many secondary teachers and college professors are not experts in the field
in which they provide instruction. And so on. Because non-experts may be
(i) unreliable, (ii) dishonest, and/or (iii) prone to miscommunication, there
are serious questions concerning who one should trust.

Recently, epistemologists have defended two theses, called reductionism
and non-reductionism respectively, that attempt to characterize when one is
justified in believing others. Recognizing the implausibility of always verify-
ing others’ claims, non-reductionists argue that one may justifiably trust a
speaker in the absence of evidence of dishonesty or unreliability. In contrast,
recognizing the frequency of dishonesty and/or unreliability, reductionists
argue that one needs positive reasons to trust others, where such positive
reasons might include evidence for the speakers’ honesty and/or expertise.
And there are philosophers who adopt intermediate positions.2

The above debates are partly motivated by concerns about the reliabil-
ity of rules for changing one’s beliefs in light of others’ claims. Call such
rules testimonial norms (tns). The rule “believe others in the absence
of conflicting information” is one tn, and “only believe those you know to
be reliable” is another. Arguably, the reductionism debate is, in part, moti-
vated by the observation that the former tn is reliable in certain contexts but
not in others, and the latter prohibits one from learning when speakers’ are
reliable but cannot known to be so. Similar remarks apply to debates about
expert testimony. It is surprising, therefore, that epistemologists have made
little effort (i) to characterize those contextual features that influence the
reliability of tns, or (ii) to evaluate the reliability of tns as those features

1The Lehrer-Wagner model entails that, ceteris paribus, greater weight ought to be
assigned to beliefs that are held by many experts rather than a few. See Lehrer and
Wagner [1981]. In contrast, Goldman [2001] argues that, because experts judgments
might be highly correlated due to common information, agreement cannot always provide
greater evidence of a hypothesis. Thus, Goldman claims that there are several heuristics
that one might use to evaluate expert testimony.

2See Burge [1993], Coady [1973], and Foley [2005] for several different defenses of the
non-reductionist position. See Adler [1994], Fricker [1994], Fricker and Cooper [1987] for
defenses of reductionism. Additional references are available in Lackey [2011].
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vary. These are the aims of this paper.
In Section 1, I develop a formal model of communal learning; the model is

most appropriate to understanding dissemination of propositional knowledge
in scientific communities. I then use the model to describe six candidate tns
that approximate informal norms such as “believe p if it appears to be the
majority opinion”, and “believe p if is endorsed by an expert” and “believe
p if and only if it appears to be endorsed by a majority of experts.” The six
tns resemble rules that are endorsed by reductionists and non-reductionists,
and by social epistemologists who advocate “going by the numbers” with
respect to expert testimony. To be clear, the six tns are extremely simple
and naive. However, characterizing the reliability of said norms provides a
starting point for characterizing the reliability of the more sophisticated tns
that are, at least implicitly, under discussion in social epistemology.

In Section 2, I use the model to characterize those features of scientific
communities that influence reliability. I evaluate reliability in three ways:
(1) does following a tn lead one to develop true beliefs? (2) if so, how
quickly does it to the truth?, (3) if error is unavoidable, how often does a
tn lead one to believe falsehoods? The final section discusses limitations of
my model and directions for future research.

My central findings are as follows. I argue that, in assessing the reliability
of tns, epistemologists ought to play closer attention to miscommunication
and the “communicative structure” of scientific communities. Why? In
the absence of miscommunication, most tns are equally reliable in the first
two senses above: they lead scientists to develop true beliefs, and they do
so at roughly the same speed. Only when miscommunication is present,
therefore, can one compare norm reliability. In this case, reliability depends
crucially upon the structure of scientific communities. In particular, insular
communities, in which scientists communicate most frequently with experts
in their own fields, are more reliable in the second sense above but less
reliable in the third: they make discoveries more quickly but the accuracy
with which such results are disseminated to non-experts is compromised.

My findings are important for epistemology because, in traditional dis-
cussions of testimony, the effects of miscommunication and of communica-
tive structure are often ignored, and different senses of reliability are often
not distinguished. For philosophers of science, my findings concerning com-
municative structure illustrate the benefits and costs of current scientific
practice, where increased specialization has led to increasingly insular com-
munities. Moreover, the same results also reveal the potential value (or
lack thereof) of recent government and university initiatives that attempt
to eradicate insularity by sponsoring interdisciplinary research.
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1 A Model of Communal Scientific Inquiry

Assume there is some finite set of questions that scientists wish to answer.
Each question has a set of mutually incompatible answers, and scientists
aim to find the unique correct answer to each question.3

For example, imagine medical researchers are investigating the efficacy
of several pills. In this example, each question is of the form “Is pill j effec-
tive?”, and there are two answers: “yes” and “no.” Formally, for each pill j,
there is an unknown real number ej that represents the average effectiveness
of the pill, where a pill’s “effectiveness” is a function of both its side effects
and its efficacy in curing the intended ailment. If ej is non-negative, then
the pill is salutary (on average). Otherwise, the pill is harmful. Moreover,
the magnitude of e indicates how harmful or salutary the treatment is. So
the formal question is, “Is ej non-negative or not?”

Assume there are discrete stages of time t1, t2, and so on. At each stage,
scientists collect data. Importantly, data can be misleading in the short-run.
In the example, suppose that, at each stage, every researcher treats some
fixed, finite number of patients with one of the pills and records the results.
Those results are the researchers’ data. How can such data be misleading?
Imagine that the effect of a pill is probabilistic, and so even if the pill is
salutary on average, some patients may react poorly. Thus, it is possible,
though unlikely, that a researcher observes forty consecutive patients who
react poorly to a pill, even if it is quite beneficial on average.4

I assume each scientist has a specialty, i.e., her data pertains to exactly
one question. Therefore, she must learn the answers to different questions
by asking others. This assumption represents the fact that real researchers’
abilities are limited due to specialized training, time, and/or financial con-
straints. In my example, each researcher studies exactly one pill, and she
treats patients with that pill only.

To model communication, I represent researchers by nodes in a colored,
undirected graph like the one below. The colors indicate researchers’ special-
ties, i.e., two researchers share a specialty if and only if they are represented
by nodes of the same color. In my example, I call the pills the “red pill”,

3Bolded terms are defined in the appendix, which also contains proofs of the theorems.
4In computer simulations, I assume there are finitely many pills 1, 2, . . . , n. At each

stage, a scientist treats a single patient with a pill i ≤ n and observes an outcome.
Outcomes are normally distributed with unknown mean ei (i.e. the effectiveness of the
pill) and known variance σ2

i . The normality assumption is immaterial to the results
below: similar results are obtained when the agents draw from other types of distributions.
Moreover, the theorems do not depend upon assumptions concerning the probabilistic
process by which data is generated; in particular, data need not be i.i.d.
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“blue pill” and so on. I call a scientist “red” if she studies the red pill.
In my model, two scientists can share information if and only if they

are connected by an edge in the graph representing their community. Say
two scientists are neighbors if they are connected by an edge; a scientist’s
neighborhood, then, can be defined as the set of all her neighbors.

g4

g0

g1

g2

g3

Figure 1: A research network and the neighborhood of g0

(indicated by squares) in that same network

Not all graphs, however, properly represent scientific communities. For
instance, suppose a graph can be divided into (at least) two sections such
that information cannot pass (even indirectly through others) from one sec-
tion to the other. In this case, one should not say that the scientists form
a single “community,” as different parts of the so-called “community” never
interact whatsoever. For this reason, I focus exclusively on connected net-
works, which cannot be divided into two separate parts.

Importantly, I assume the type of information that neighbors can share
depends upon their respective specialties. In particular, neighbors with
the same specialty can share data, but those with differing specialties can
share only their beliefs about the answers to questions. In my example,
two “red” scientists tell each other how well their patients have responded
to the red pill. In contrast, a red and a blue scientist can only ask each
other “Do you think the red (or blue, or green, etc.) pill is effective?” and
trade answers. Scientists with different specialties cannot even share their
quantitative assessments of how effective a pill is.

Why assume that researchers can share information in this limited way?
In the real world, scientists must rely on the work and findings of others.
However, if scientists could always share and evaluate each other’s data,
then there would be no such reason to rely on others. The assumption that
not all data is shared, therefore, is intended to capture the fact that certain
“high level” judgments (e.g. is the pill effective?) can be communicated
easily even if the data and the methodology for evaluating said data cannot.

Why assume that researchers with the same specialty can share data,
whereas researchers with different specialties cannot? First, it is generally
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easier for a scientist to understand the findings, methods, etc. of research
conducted in her own field than to understand the work of researchers in
remote disciplines. For example, theoretical physicists can (sometimes) com-
petently evaluate articles in theoretical physics, but can rarely understand
more than the abstract of a paper in molecular biology. Second, researchers
often read only survey articles about work outside their specialties, whereas
they often read the articles on which summaries are based within their own
fields. Thus, even if a researcher could in principle understand work outside
her specialty, she might choose not to do so because of the investment it
would require to learn more than what is available in survey articles.

Thus far, I have explained two ways in which a scientist learns in my
model, namely, (1) she collects data, and (2) she learn the answers to ques-
tions outside her specialty from others. I now explain how my idealized
scientists use such information to arrive at their beliefs.

Within her specialty, a scientist uses a method for inferring answers
from data. Importantly, her beliefs within her specialty are determined ex-
clusively by her method and data; they are not influenced by her neighbors’
beliefs. Formally, a method is a function from data sequences to answers. I
assume that each scientist’s method is convergent, i.e., whatever the truth,
with probability one, there is some stage at which the method eventually
conjectures the truth and does so from that stage onward.

In my example, each scientist employs a method such that, whether her
pill is effective or not, there is some stage at which she conjectures the pill
is effective if and only if it is so. Specifically, each researcher employs a
statistical test to determine whether her particular pill is effective or not.5

This part of my model mirrors scientific practice closely, as statistical tests
are the trade of most medical researchers and social scientists. The way in
which a scientist learns answers to questions outside her specialty is more
complex and is explained in the next section.

Three caveats are necessary. First, I assume researchers’ methods find
the truth in their specialties; no assumptions thus far guarantee finding the
truth outside one’s specialty. Second, researchers do not know when the
truth has been discovered. In my example, a scientist may correctly believe
her pill is effective, but it is possible that her data are misleading. So future

5In simulations, scientists employ likelihood ratio tests (lrts) to test the null hypothesis
ei ≥ 0 vs. the alternative ei < 0, where ei is the effectiveness of pill i. To make such tests
convergent (specifically, s.a.s convergent as defined in the appendix), significance levels
are adjusted downward with sample size. Again, the use of lrts, or frequentist rather
than Bayesian methods, is inconsequential for the analytic results below. What matters
is that scientists methods are convergent.
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data might undermine her current belief.
Third, methods are not guaranteed to be quick. For example, suppose

a scientist conjectures her pill is effective if at least half of her patients
have positive outcomes. Now suppose that the pill is effective, but that
the scientist’s first 100 patients react poorly. Such outcomes are unlikely
but possible. Then the scientist’s method will lead her astray until she sees
many positive outcomes, which will take at least 100 more observations.
In general, I assume that a scientist’s method eventually returns the true
answer, but, there may be no positive number n - no matter how large -
such that one is guaranteed true belief after n stages.

1.1 Testimonial Norms

Recall, a testimonial norm (tn) is a rule for accepting or rejecting the
claims of others. In my model, an agent’s tn dictates which answers she
believes to questions outside her specialty. In this section, I describe six
simple tns. Although the six norms are motivated by debates in social
epistemology, no philosopher, to my knowledge, has endorsed the norms
below. However, studying these six can shed light on more complex tns,
and many of the results below show that even naive norms are reliable.

Assume that, on each stage, researchers must decide which answer to
believe to questions outside their specialties. I call an agent a Reidian if she
adopts the opinion of a randomly chosen neighbor. I call her a majoritarian
Reidian if she adopts the opinion of the majority of her neighbors.

Notice both types of Reidians ignore their neighbors’ expertises. For ex-
ample, a Reidian may consult red expert about the green pill even if she has a
green neighbor. In real-world settings, however, individuals often attribute
more weight to the opinions of experts, and such reliance on intellectual
credentials is often thought to be rational.

To model reliance on experts, I call an agent a e-truster if she adopts
the opinion of a random expert neighbor if she has one, and otherwise, trusts
a random neighbor. For instance, when a blue e-truster is deciding whether
the red pill is effective, she asks one of her red neighbors; if she has no red
neighbors, then she asks a random neighbor. A majoritarian e-truster
adopts the opinion of the majority of her expert neighbors; if she has no
expert neighbors, she adopts the opinion of the majority of her neighbors.
Thus, e-trusters (majoritarian or not) distinguish experts from non-experts.
However, they treat all experts as equally reliable.

Alvin Goldman and others have argued that the norm of e-trusting is
unreliable: they claim that agents ought to assess the reliability of experts
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to determine whom to trust. According to [Goldman, 2001], there are var-
ious heuristics for evaluating reliability. For example, one might attribute
greater weight to the opinions of an expert who advances cogent arguments.
Unfortunately, not all of the Goldman’s heuristics can be accurately cap-
tured in my model. Here, I restrict myself to modeling one heuristic, which
I call informational proximity.

The informal concept of informational proximity is best illustrated by
examples. I am not a physicist, nor do I interact with physicists. However,
some of my colleagues, who study philosophy of physics, do interact with
physicists. Those colleagues, therefore, are more informationally proximate
than I am to current work in particle physics, say. Hence, if a student is
deciding whether to accept my testimony or that of a philosopher of physics
when it concerns current work in particle physics, she might consider the
latter to be more reliable the former because of the informational proximity
of philosophers of physics to the facts.

To model informational proximity, define the distance between two re-
searchers to be the shortest path in the undirected graph representing their
scientific community. Notice both Reidians and e-trusters ignore informa-
tional proximity. For example, suppose an e-truster has two neighbors, nei-
ther of which is an expert in the question q. One of her neighbors, however,
is connected to a q-expert, whereas the other is three-degrees-removed from
a q-expert. Real-world scientists might favor the former’s opinion, as the
former is closer to the source of reliable information. In contrast, e-trusters
in my model ignore informational proximity when they adopt the opinion of
a random neighbor.

Call a researcher a proximitist if, on any given stage of inquiry, she
adopts the opinion of the neighbor who is closest to a q-expert when deciding
which answer to q to believe; if there are multiple such neighbors, then she
chooses one at random. Call an agent a majoritarian proximitist if she
polls her most proximate neighbors.

Examples of tns can be multiplied indefinitely. However, the six consid-
ered here are important because they differ on several dimensions that have
been the focus of debates in social epistemology. By contrasting Reidian-
ism, e-trusting, and proximitism with their majoritarian counterparts, one
can investigate the consequences of “going by the numbers” versus those
of reliance on one individual. And although no non-reductionist may en-
dorse Reidianism, one can investigate the value of seeking positive reasons
to trust a speaker (by employing heuristics like informational proximity) by
comparing Reidianism, e-trusting, and proximitism. Perhaps surprisingly, it
turns out that Reidians (though not majoritarian Reidians) reliably acquire
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true beliefs in the absence of miscommunication. To see why, I compare the
reliability of the six norms, among others, in the next section.

2 Reliability

2.1 Convergence

One way to evaluate the performance of tns is to investigate which are
truth-tracking. Formally, say a tn is convergent if, whatever the truth
about the world, when a network adopts said norm, every researcher will
hold only true beliefs given some (potentially large) finite amount of data.6

Unfortunately, convergence is insufficient to distinguish among four of the
norms by the following theorem:

Theorem 1 In connected research networks, Reidianism, e-trusting, prox-
imitism, and majoritarian proximitism are convergent. In contrast, majori-
tarian Reidianism and/or majoritarian e-trusting are not.

In fact, there is nothing special about the four convergent norms. The
above theorem can be generalized to show that every norm satisfying basic
requirements of rationality and realism is convergent.7 The philosophical
upshot is that, if reliability is understood as the eventual acquisition of true
belief, then there is no difference among a wide class of norms. In particular,
the decision to adopt a “reductionist” norm, which might require one to find
positive reasons to trust a speaker, versus a “non-reductionist” norm, which
might permit one to trust others in the absence of defeating conditions, is
unimportant as long as the norms satisfy basic normative constraints.

6The notion of convergence employed here is what I call “strong almost-sure conver-
gence” which is stronger than almost-sure convergence (and hence, convergence in proba-
bility) in general, but logically equivalent to almost-sure convergence when the partition
of the parameter space is finite. See the appendix for details.

7See the definitions of finite memory, stability, and sensitivity in the appendix. Any re-
alistic tn has finite memory, and though space prevents me from arguing so here, I believe
stability and sensitivity are minimal normative requirements for any tn. Majoritarian
Reidians do not converge because they can get caught in “echo chambers”: if a tightly-
connected group of agents all have identical, false beliefs about the efficacy of some pill
outside their area of expertise, then when each agent in the group polls her neighbors,
she will find her opinion to be in the majority and stick to it. So each agent in the group
holds some belief precisely because others in the group do. Because agents in the group
polls all neighbors, and not just the experts, it follows that the group’s beliefs cannot be
penetrated by external information from experts. Majoritarian e-trusters fail to converge
because they behave like majoritarian Reidians in the absence of expert neighbors.
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The above theorem, however, neglects the speed with which agents learn.
One might wonder, “if reliability is understood in terms of quick conver-
gence, are there any differences among the four convergent norms?” Sur-
prisingly, the answer is “no.” To see why, define convergence time to be
the number of stages elapsed before every researcher holds true beliefs and
will continue to hold such beliefs indefinitely. Thus, the second way of eval-
uating various norms is to consider the question, “which norms minimize
average convergence time?”

To answer this question, I simulated the running example of my model.8

First, I randomly generated approximately 4500 graphs consisting of be-
tween 50 and 100 agents. Disconnected graphs were removed from the data
because no norms are convergent in disconnected networks. To model the
fact that communication is limited, I generated graphs in which researchers
were neighbors with at most 10% of the other agents.

Equal numbers of agents were assigned one of five specialties, and the
network was assigned one of the four convergent norms. A simulation was
stopped when all agents’ beliefs were true for ten consecutive stages, and the
tenth to final stage was assumed to be the convergence time of the network.

What effect(s) do norms have on convergence time?9 The answer: es-
sentially none. Except in the “easiest” problems, there is no statistically
significant relationship between norms and convergence time: populations
of Reidians, proximitists, and so on, all converge at the same rate on average.
In “easy” problems, Reidians converge at a rate slower than the remaining
norms on average, but there is no significant difference among the remaining
three convergent norms.

Although these results may seem surprising, I claim they are intuitive
and illustrate a robust pattern in the history of science. Consider any dif-
ficult scientific undertaking - for example, understanding the principles of
flight. Before the Wright brothers, humans had attempted to engineer planes
for millennia. So the discovery of principles of flight took at least a few
thousand years. In contrast, once the first planes had been constructed, the
engineering knowledge spread worldwide in only a few years. The time to
disseminate such knowledge, therefore, was minuscule in comparison to the
time it took to discover it.

In general, when scientists are faced with a difficult question, discovery
is slow. However, the time required to communicate their eventual findings

8The code for the simulations can be found on the author’s website.
9Convergence times were compared using a one-way random effects analysis of variance.

The raw data and relevant sample statistics are available on the author’s website.
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to non-experts may be the same as if the question had been easy. This
explains why tns have no significant effect on convergence time in my model.
Whereas methods are responsible for discovery, tns affect only the speed of
dissemination. As the questions become more difficult, the time required
for dissemination is dwarfed by discovery time. Hence, tns have only a
negligible effect on convergence time when questions are difficult.

In sum, infinitely many tns are convergent, and when scientific questions
are difficult, there is no significant difference among tn convergence speed.
Since science is a difficult enterprise, one might conclude that choice of tn is
irrelevant. This conclusion is hasty. Although there are several idealizations
in my model, two deserve greater scrutiny.

First, I have assumed that that agents never misspeak or misinterpret
others. Does a tn’s reliability change when miscommunication is possible?
Second, I have evaluated tns in all possible networks, including those that do
not represent real world scientific communities. Do the relative performances
of tns change in more realistic networks? These two questions are the
subject of the next two sections.

2.2 Miscommunication

Miscommunication is an unavoidable feature of human interaction. Speak-
ers make errors that result in ambiguity and/or unintended meanings, and
listeners may misinterpret what speakers say. Misunderstandings seem fairly
common in academic communities when researchers in one field try to share
their findings with others with radically different knowledge and training.
Does such miscommunication affect the reliability of various tns?

To answer this question, I investigate the effects of miscommunication
within the running example. I assume there is fixed (i.e., for all time)
probability ε < 1

2 of miscommunication. That is, if g believes the red pill
is effective and a neighbor n asks g her opinion, then n will believe that g
reported the red pill to be ineffective with probability ε.10 As in the previous
section, one can ask, “which tns are convergent when miscommunication is
present?” The answer: essentially none.

Why does miscommunication prevent convergence? Suppose that - as is
the case in the real world - researchers remember only part of the past, and
their beliefs depend only upon on what they remember. Formally, say a tn
has finite memory if there is a number n such that the tn is a function of
neighbors’ beliefs on only the last n stages. The six tns above all have finite

10None of the results below rely on the fact that ε is the same for all agents. This
assumptions is made for simplicity of calculations and proofs only.
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memory (of length one!). Now, if there is some fixed probability (however
small) of miscommunication, then there is always some chance that, even
when all of her neighbors hold true beliefs, an agent will misunderstand
their claims for as many stages as she can remember. So, if agents have
finite memories, then even the most ingenious tns will fail to converge:

Theorem 2 Suppose there is some fixed, non-zero probability of miscom-
munication. Then no tn with finite memory is convergent. In particular,
none of six tns considered above is convergent.

The theorem only shows that agents might occasionally believe false
statements. Perhaps it is wrong, then, to demand that tns converge. Rather,
one should be interested in tns that minimize error.

How should one calculate error? Imagine taking a snapshot of all agents’
beliefs on a given stage. Given the snapshot, one can calculate the propor-
tion fn said beliefs that are false. So given a network, one can (in theory)
calculate the expected number of false beliefs en = E[fn] on stage n. Call en
the error rate on stage n. For many tns, en fluctuates wildly from one
stage to the next. Luckily, the six tns above are not of this sort:

Theorem 3 Suppose there is some fixed probability of miscommunication.
Then each of the six tns above converges to some fixed error rate. That is,
en approaches a fixed value e as n approaches infinity. If the probability of
miscommunication is non-zero, then the error rate is positive.

Call the fixed value e the error rate of the network. Hence, one can
compare the reliability of tns by comparing their error rates. Simulation
results show that, for all problem difficulties and all networks, the error
rate of Reidians is on average greater than that of e-trusters. E-trusters err
more often than do proximitists, who in turn, err more than majoritarian
proximitists.11 However, although Reidians err more often than do e-trusters
and proximitists, their respective error rates depend crucially upon “network
structure.” This is the subject of the next section.

2.3 Network Structure

Thus far, I have argued that, if communication is perfect and one’s goal is the
quick acquisition of true beliefs, then choice of tn is irrelevant. In contrast,

11Statistical tests supporting these claims are summarized in the appendix to the longer
version of this paper.
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if miscommunication is present, then different tns have differing error rates.
In analyzing the simulation results, however, I have made no attempt to
distinguish realistic network structures from mathematically possible, but
highly unrealistic, ones. Are there any features of real scientific communities
that might affect the performance of tns?

One way in which academic communities are unique is that they are
divided into research units. Roughly, a research unit is a collection of indi-
viduals who (i) have similar research programs and (ii) communicate with
one another frequently. Sometimes, a research unit is a lab or an academic
department at a university. Other times, research units are comprised of
academics who live in different parts of the world, but still read each others’
papers, collaborate, and so on.

In my model, research units are represented by groups of agents who
share a specialty and are highly connected. Formally, for any agent g, define
g ’s insularity to be the proportion of her neighbors who share her specialty.
Define a network’s insularity to be the average insularity of its agents.12

Intuitively, insularity seems both desirable and dangerous. On one hand,
researchers with the same expertise ought to communicate as frequently
as possible. On the other hand, when academic communities become too
insular, there is a chance that one research unit completely isolates itself,
thereby failing to share its own findings or draw upon the work of others.
So too much insularity is harmful.

These intuitions are captured by my model. For the moment, I ignore
miscommunication once again. Below is a graph indicating that proximitists
converge more quickly (on average) in more insular networks; similar results
are obtained for the other three convergent norms.

12What I call insularity is often called homophily by social scientists. There is rela-
tively little work about homophily affects learning. An important exception is Golub and
Jackson [2012], which develops a radically different model from the one presented here.
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The reason that insularity decreases convergence time is fairly simple.
Recall that scientists with the same expertise can share data in my model.
More data allows a researcher to ascertain the true answer in her specialty
more quickly, and therefore, decreases convergence time.

When miscommunication is present, a similar result holds when one
considers the time it takes a network to converge to its error rate. Because
agents employ convergent methods, the error rate of a network is determined
entirely by the number of false beliefs agents hold with respect to questions
outside their respective specialties. During the discovery stage, the fre-
quency of false beliefs will typically be higher than the (asymptotic) error
rate. Why? By definition, during the discovery stage, agents may have false
beliefs in their own specialties. It follows that quickening discovery shortens
the time until a network converges to its error rate. Since insular networks
have shorter discovery stages, they will also typically converge to their error
rates more quickly.

Above, I claimed that insularity is both desirable and dangerous. The
graph above shows it to be desirable. What is its danger? The answer:
higher error rates. Below is the graph that shows that, for each of the four
convergent tns, more insular networks typically have higher error rates.
However, the rate at which error rates increase differs among the four gtns.
In the presence of miscommunication, both radical and e-trusters quickly
become unreliable as insularity increases, whereas both proximitists and
majoritarian proximitists have much slower growing error rates.
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The reason that insularity increases the error rates of the four tns s
fairly easy to explain. Error rates are a consequence of a “telephone-game
effect”. When an agent learns a fact first-hand from an expert, there is only
a small chance of miscommunication. When an agent learns a fact second-
hand, the chance that miscommunication has occurred is higher: not only is
there a chance of miscommunication between an agent and her informant,
but also there is a chance of miscommunication between the informant and
the expert from which the informant learned the fact. So as agents be-
come more distant from experts, the chance that miscommunication has
occurred increases. When a network is insular, informational paths between
two experts in different fields are generally longer, and hence, error rates
are typically higher. This suggests that to minimize error rate and ensure
high speeds of convergence, ideal networks ought to balance insularity and
average path-length between agents; so-called “small worlds” networks often
have this property precisely.

In sum, insular networks converge to (mostly) true belief more quickly,
but there is trade-off between speed of learning and error.13 It is an open
question whether there are any tns for which error rates decrease as insu-
larity increases.

13Zollman [2011] finds a very similar trade-off between speed and reliability in a different
model of scientific inquiry. This is evidence that the phenomenon (i.e., the trade-off) is
robust under varying modeling assumptions.
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3 Conclusions and Future Research

I have argued that, in assessing the reliability of tns, epistemologists ought
to pay closer attention to miscommunication and the communicative struc-
ture of scientific communities. My argument went as follows. In the absence
of miscommunication, most tns are equally reliable in two senses: they lead
to true belief eventually and do so at roughly the same speed (by Theorem
1 and simulation results). In the presence of miscommunication, no tns are
reliable in either of these senses (by Theorem 2). Luckily, reliability can be
compared in the third way: different tns may have differing error rates (by
Theorem 3). Simulation results indicate that reliance on experts decreases
error, but error rates depend crucially upon the structure of communities.
In particular, insular networks, in which researchers communicate primarily
with similar specialists, make discoveries more quickly but at the cost of less
accurate dissemination of said discoveries to non-experts.

The above argument assumes that my idealized model can be used to
draw conclusions about real scientific communities. In the remainder of
the paper, I will discuss three idealizations; doing so clarifies the range of
applicability of my model and suggests questions for future research.

First, in my model, areas of expertise are unrelated: one scientist’s find-
ings are useless to researchers with different specialties. In real scientific
communities, physicists’ models can be applied to economic phenomena;
economists’ techniques are useful in biology, and so on. A more realistic
model, therefore, should represent the complex collaborative relationships
among different academic disciplines.

These considerations suggest ways in which my model might be extended,
but one should be careful not to infer that they make my model completely
inapplicable to science. Although I have suggested that specialties might
represent academic disciplines, one need not interpret my model this way.
Two scientists may study a similar question in my sense, yet they may work
in different disciplines. Thus, because researchers with the same specialty
do collaborate in my model, there’s nothing, in principle, that prevents my
model from representing interdisciplinary collaboration.

Moreover, while science is often collaborative, much research is also car-
ried out in parallel. For example, molecular biologists and sociologists work
in parallel, as techniques for copying DNA need not inform research in mili-
tary sociology or vice versa. My model, at the very least, captures this type
of parallel research. Nonetheless, future research ought to investigate the
reliability of tns when researchers cannot answer their questions in parallel
and in which specialties (in my sense) correspond to academic disciplines.
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Second, in my model, network structure is static. However, real scien-
tific communities change: older scientists die and others enter the profession;
new collaborations are born while others fade, and so on. Preliminary sim-
ulation results suggest that that many of the above results hold even if
network structure changes over time (e.g., many tns converge in the ab-
sence of miscommunication; they converge to an error rate in the presence
of miscommunication, and so on). Nonetheless, dynamic scientific commu-
nities raise a number of new questions. How should the underlying graphical
structure representing scientific communities evolve to mirror the real-world
dynamics of scientific communities? Is there a way to extend the concepts
of “insularity” and “informational proximity” to dynamic networks?

Finally, in my model, agents exchange answers to questions without
providing reasons for their opinions. A more realistic model might represent
the exchange of arguments. Of course, this idealization is both a virtue and
vice of my model. Researchers in the real-world often lack the ability to
critically evaluate the intricate arguments of scientists in other fields, and
my model aims to capture this fact.

Nonetheless, there are also circumstances in which researchers with dif-
fering specialties can competently evaluate each others’ arguments. How
one should define and model tns for argumentative agents remains an open
question, but it is crucial to investigating the reliability of the more realis-
tic tns, especially those that use various heuristics (like those suggested by
Goldman) for evaluating expert reliability.
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5 Appendix

5.1 General Strategy

The theorems in the text are all consequences of well-known results about
Markov processes. Here, I explain the general strategy of the proofs, as the
notation below is rather cumbersome. To do so, I first informally sketch a
proof of Theorem 1, which asserts that four of the testimonial norms in the
body of the paper converge in the absence of miscommunication.

Consider a network of Reidians. Imagine one of the Reidians - let’s call
her Jane - is deciding which of her neighbors to trust at time t concerning a
question outside her area of expertise. If Jane has an expert neighbor, Jill,
then there’s some chance that Jane will adopt the Jill’s opinion. At time t+1,
there’s some chance that Jane’s neighbors will adopt Jane’s beliefs. Then
at time t + 2, neighbors of neighbors of Jane may adopt Jane’s belief, and
so on. In this way, there’s some chance that Jill’s expert opinion propagates
through the entire network (if the network is connected), and this is true at
any point in time. So there’s some chance that every agent outside of Jill’s
area of expertise will eventually hold Jill’s belief.

Since experts eventually hold true beliefs in their area of expertise, this
entails that all agents will eventually hold Jill’s true belief. Once everyone
has the same, true belief, the Reidian norm ensures that everyone continues
to believe it. Since this is true of every area of expertise, the network
must converge. Similar arguments apply to e-trusters, proximitists, and
majoritarian proximitists.

This argument is an instance of a more general argument concerning
absorbing Markov processes. In general, Markov process is one which a
system’s behavior depends only upon its most recent past. For example,
consider a gambler’s total earnings. Suppose a gambler repeatedly makes
$20 bets on a roulette wheel. Then the gambler’s total earnings at time
t+ 1 depend only upon her earnings at time t (and whether or not she wins
her current bet); whether the gambler was nearly bankrupt or enormously
wealthy at some stage prior to t is irrelevant to her total earnings at t+ 1.

Some Markov processes have absorbing states, which means that the
system reaches a state that it cannot leave. For example, suppose our gam-
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bler is very unlucky and loses all of her money at time t. Then she cannot
make any more bets, and so her total earnings equal zero from time t on-
ward. For this reason, the state of having no money is called absorbing.
Similarly for the state in which the gambler wins all of the casino’s money.

Under very weak conditions, a Markov process with absorbing states will
eventually transition into one of its absorbing states and stay there forever.
The crucial assumption is that there is some number n such that, no matter
what state the Markov process is, there’s some finite probability that it
will transition to an absorbing state in n steps. This guarantees that the
probability that the process transitions to an absorbing state at some point
is one. To prove that the tns in the paper are convergent, therefore, it
suffices to show three assumptions are met: (1) agents’ beliefs behave like a
Markov process, (2) the state in which they all have true beliefs is uniquely
absorbing, and (3) there is some number n such that, for any state of the
process, there is positive probability that agents will find themselves in the
unique absorbing state (of all true beliefs) n stages in the future.

For the first assumption, note that all the testimonial norms in the body
of the text have a common property: an agent’s beliefs at time t+1 (outside
her area of expertise) depend only upon what her neighbors believed at
time t. For example, a Reidian fixes her belief at time t + 1 by adopting a
neighbor’s belief at time t. So her neighbors’ beliefs prior to t, no matter
how steadfast or erratic, are completely irrelevant to what she believes now.
Consider the vector of all agents’ beliefs about all pills under investigation.
If all the agents employ tns like the ones in the text, therefore, their beliefs
will behave like a Markov process, just like the gambler’s earnings.

The argument above is right in outline, but a tiny bit too fast. Recall,
agents’ opinions at a given time t depend not only upon others’ opinions,
but also upon data. According to my assumptions, agents can use methods
to make inferences from any amount of data whatsoever, not just the set
of most recent observations. So technically, agents’ beliefs do not form a
Markov process. This is, however, easily fixed.

Recall, I assume that for every researcher in the network, there is some
stage of inquiry at which she holds true beliefs in her area of expertise from
that stage onward. Let En be the event that all researchers have converged
to the truth in their respective domains by stage n. The crucial observation
is that, conditional on En, the evolution of agents’ beliefs do form a Markov
process. Why? Researchers beliefs in their area of expertise are fixed from
n onward by assumption, and by definition, the six tns make one’s beliefs
outside of one’s area of expertise dependent only upon the last stage. Since
experts beliefs converge to the truth with probability one, it follows that
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some En will occur with probability one, and so the evolution of agents’
beliefs will behave like a Markov process after enough time. This is what
the first two lemmas concerning what I call PC-Markov processes say
below. So much for the first assumption.

What about the second assumption? Notice that agents employing the
tns in the text only change their beliefs if their neighbors disagree. So it
looks like any state in which all agents have identical beliefs is an absorbing
one. However, “all true beliefs” is the unique absorbing state as I assumed
that experts eventually have true beliefs in their area of expertise. In general,
any tn satisfying what I call stability will be absorbed in such a way;
stability says that if an agents’ neighbors unanimously believe ϕ for as long
as the agent can remember, then the agent also believes ϕ.

Finally, one needs to show that the network transitions to the absorbing
state of “all true beliefs” with probability one. This is what the Jane and
Jill example showed. For Reidians and e-trusters, there is some positive
probability that experts’ opinions propagate through the network in at most
L many steps, where L is the length of the longest path in the network. In
general, an assumption that I call sensitivity guarantees that true expert
opinions propagate through the network. Roughly, an agent’s tn is sensitive
if, for every area of expertise, there is some positive probability that the
agent adopts the belief of her neighbors that are closer to an expert in the
area, regardless of what others in her neighborhood believe. Proximitism
is sensitive because agents always trust their more proximate neighbors;
Reidianism and e-trusting are sensitive because they trust all their neighbors
with some positive probability. Majoritarian Reidianism and majoritarian
e-trusting are not sensitive because neighbors who are closer to an expert
can be outvoted.

In the presence of miscommunication, however, the “all true beliefs” is
no longer absorbing: an agent may misinterpret her neighbors and develop
false beliefs, even if her neighbors’ beliefs are all true. Instead, agents beliefs
evolve according to a regular Markov process (again, conditional on having
converged in their respective areas of expertise). Regular Markov processes
are, in a sense, the opposite of absorbing ones: there is some number of steps
n such that the process can transition from any state to any other state in
exactly n steps. No state is absorbing. It can be shown that, for each state
s of a regular Markov processes, the probability that the process is in state
s approaches a fixed value as the number of states gets large.

Why do agents’ beliefs evolve according to a regular Markov process
in the presence of miscommunication? The six tns are open-minded in
the sense that for any particular pill and any judgment about the pill (i.e.
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effective or not), there is some vector n such that if an agent thinks her
neighbors beliefs are represented by n, then she will adopt the judgment in
question about the pill. Let b be any vector describing all agents’ beliefs
outside their respective areas of expertise. Because there is some fixed,
positive chance of miscommunication on any stage of inquiry, there is some
positive probability that agents will hear exactly what they need to hear from
their neighbors to form beliefs b, regardless of what everyone in the network
actually believes at the moment. So agents beliefs’ can always transition to
b in exactly one step, which means the process is regular. Note, because b
was arbitrary, it also follows that agents always have some positive chance
of developing false beliefs, regardless of whether experts have converged to
true ones.

This immediately entails that the error rate of the network approaches
a fixed value as Theorem 3 says. Let errt(b) be the number of erroneous
beliefs in the network if agents beliefs’ are represented by b and if the truth
is t. Because agents’ beliefs evolve according to a regular Markov process,
the above mentioned theorem entails there is some fixed probability p(b)
that agents will have beliefs b in the limit. The error rate of the network
is just the weighted average

∑
b∈B p(b) · errt(b), where B is the set of all

possible belief vectors for the network.

5.2 Notation

Let ST denote all functions from T to S, and define S<N to be all finite
sequences from S. Let |S| denote the cardinality of S; when S is a sequence,
|S| is therefore its length. Given a sequence σ and n ≤ |σ|, let σn denote
the nth coordinate of σ. If the coordinates of σ are likewise sequences, then
let σn,k be the kth coordinate of the nth coordinate of σ. And so on. Let
σ � n denote the initial segment of σ of length n.

Given sets S1, S2, . . . , Sn, let ×j≤nSj be the Cartesian product. Given
a collection of σ-algebras 〈Si,Si〉i∈I , let ⊗i∈ISi denote the product algebra.
In particular, ⊗n∈NS is the infinite product space generated by a single
σ-algebra. Given a σ-algebra S, let P(S) denote the set of all probability
measures on S. If p ∈ P(S), let pn ∈ P(⊗k≤n S) denote the product measure
on ⊗k≤n S. When S is a Borel algebra, these measures extend uniquely to
a measure p∞ on ⊗n∈NS (i.e., p∞ ∈ P(⊗n∈N) is the unique measure such
that p∞(F1 × F2 . . . × Fn × SN) = p(F1) · p(F2) · · · p(Fn), where Fi ∈ S for
all i ≤ n). Given a metric space M , let B(M) denote the Borel algebra.
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5.3 Preliminaries

The appendix assumes familiarity with Markov processes. For definitions of
undefined terms below, see any introductory exposition of Markov processes;
I will refer to Chapter 11 in Grinstead and Snell [1997].

Consider a sequence 〈Xn, En〉n∈N, where the Xn’s are random variables
and the En’s are events. Call the sequence a piecewise conditional
Markov process (or pc-Markov process) if

1. The events 〈En〉n∈N are pairwise disjoint,

2. p(∪n∈NEn) = 1, and

3. 〈Xk〉k≥n is a time-homogeneous Markov process with respect p(·|En),
i.e., p(Xk+1|En, X1, X2, . . . Xk) = p(Xk+1|En, Xk) for all k ≥ n.

Call 〈Xk〉k≥n the pieces of a pc-Markov process, where Xk is interpreted
as a function from a probability space with the measure p(·|En). Say a pc-
Markov process is uniform if all its pieces have the same transition matrix.

Say a pc-Markov process is ergodic/regular/absorbing if each of its pieces
is ergodic/regular/absorbing. Say it is uniformly regular/absorbing if
it is uniform and the pieces are regular/absorbing. The next two theorems
show that the asymptotic behavior of uniformly absorbing (or regular) pc
Markov processes is identical to that of each of their pieces. They are routine
corollaries of 11.3 and 11.7 in [Grinstead and Snell, 1997] respectively.

Theorem 4 Suppose 〈Xn, En〉n∈N is a uniformly absorbing, pc-Markov pro-
cess with absorbing states S∗. Then p(limn→∞Xn ∈ S∗) = 1.

Theorem 5 Suppose 〈Xn, En〉n∈N is a uniformly regular, pc-Markov process
with transition matrix P . Then for any state si ∈ S there is some probability
ri ∈ [0, 1] such that limn→∞ p(Xn = si) = ri.

5.4 Definitions

5.4.1 Worlds and Questions

Define a question to be a triple 〈W, 〈Θ, ρ〉〉, where W is a set called worlds,
Θ is a partition of W , and ρ is a metric on Θ. Elements of Θ are called
answers. Given a world w, let θw ∈ Θ be the partition cell containing w.

Example: Suppose one is interested in determining whether the mean of
a normal distribution is at least zero. In this case, W is the set of ordered
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pairs 〈µ, σ2〉 ∈ R× R+ representing the mean and variance of the unknown
distribution, and Θ := {θ≥0, θ<0}, where θ≥0 = {〈µ, σ2〉 ∈ W : µ ≥ 0} and
θ<0 = {〈µ, σ2〉 ∈ W : µ < 0}. Define ρ to be the discrete metric on Θ.
Let QN be the question described here. QN is the question described in the
example in the body of the paper.

5.4.2 Learning Problems and Methods

A data generating process for a question Q = 〈W, 〈Θ, ρ〉〉 is a pair
〈〈D,D〉, c〉 where 〈D,D〉 is a measurable space, and c : W → P(⊗n∈N D) is
a function, whose values cw are called the chances under w. A learning
problem L is a pair consisting of a question and a data generating process.
Informally, D represents data. For all w ∈ W , the probability measure cw
specifies how likely one is to observe particular data sequences.

Example: Let Q = QN , D = R and D = B(R). For every world w =
〈µ, σ〉 ∈ R × R+, let pw be the unique measure on D such that the density
of pw is a normal distribution with mean µ and variance σ2. So data are
just sample points pulled from a normal distribution. Let cw = (pw)∞, and
let LN be learning problem described here.

A method for a learning problem L is a function m : D<N → P(B(Θ)).
Let md := m(d) for all d ∈ D<N. Informally, a method takes data sequences
as input and returns sets of answers with different probabilities.

Example: In the learning problem LN , one method is to employ a likelihood
ratio test to test the null hypothesis H0 : µ ≥ 0 versus the alternative, where
the significance of the test is decreased at a rate of the natural log of the
sample size. Formally, let d ∈ Rn be a data sequence, and let µ(d) and σ2(d)
be the (sample) mean and variance of the data d. Let pd be the probability
measure on R such that the density of pd is a normal distribution with
mean 0 and variance σ2(d). Let α ∈ (0, 1) be a fixed significance level,
and define a method m such that md assigns (i) probability one to θµ≥0 if
pd(x ∈ R : x ≥ µ(d)}) ≥ 1−α

ln |d| and (ii) probability one to θµ<0 otherwise.

5.5 Convergence

Fix some natural number n. Given a method m and world w, define pnw,m to
be the unique measure on 〈Θn,⊗k≤nB(Θ)〉 satisfying the following. For all
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“rectangles” E1×E2× . . .×En ∈ ⊗k≤nB(Θ) (i.e., Ek ∈ B(Θ) for all k ≤ n):

pnw,m(E1 × E2 × . . .× En) =

∫
Dn

∏
k≤n

mδ�k(Ek) dc
n
w(δ)

where (1) cnw is the unique measure such that cnw(F ) = cw(F ×DN) for all
F ∈ ⊗k≤nD, and (2) δ ∈ Dn. Under pnw,m, the probability of a method
returning a sequence of answers is the chance of obtaining a data sequence δ
(given by cnw) times the probability that the method returns a given answer
(given by m) in response to δ.

It is easy to show that there is a unique probability measure pw,m ∈
P(⊗n∈N) such that pw,m(E ×ΘN) = pnw,m(E) for all E ∈ ⊗k≤nB(Θ) and all
n ∈ N. Further, the following are events in ⊗n∈NB(Θ)〉, where θ ∈ Θ:

{θn = θ for large n} := {θ ∈ ΘN : (∃n ∈ N)(∀k ≥ n)θk = θ}
{ lim
n→∞

θn = θ} := {θ ∈ ΘN : lim
n→∞

θn = θ}

A method m is called almost surely (a.s.) convergent if pw,m(limn→∞ θn =
θw) = 1 for all w ∈ W , and it is called strongly almost surely (s.a.s.)
convergent if pw,m(θn = θw for large n) = 1. When Θ = {{r} : r ∈ Rd} is
a parametric model, then a.s. convergence as defined here is the standard
notion of a.s. convergence of a parameter estimator. It is trivial to show
that, if Θ is finite, then a.s. convergence entails s.a.s. convergence.

Example: In the learning problem LN , the method defined above is a.s.
convergent by the second Borel Cantelli Lemma. Hence, it is s.a.s. conver-
gent by the previous remark and the fact that Θ is finite.

5.5.1 Expert Networks

A network is a finite undirected graph G; vertices of G are called agents.
A group is a set of agents J ⊆ G. For any g ∈ G, let NG(g) ⊆ G denote the
group of agents g′ ∈ G such that g and g′ are incident to a common edge.
Call NG(g) the neighborhood of g, and call its elements neighbors of g.
For simplicity, I assume every agent is her own neighbor. When G is clear
from context, I will write N(g) instead of NG(g).

An expert network E is a pair 〈G, 〈Lg〉g∈G, 〈mg〉g∈G〉 such that G is a
network, Lg is a learning problem for each agent g ∈ G, and mg is a method
for Lg. For all g ∈ G, let Qg be the question confronted by g; define Θg,
cw,g, etc., similarly. An expert network can be represented by a colored

25



undirected graph such that two vertices g and g′ are the same color just in
case Qg = Qg′ .

Example: In the example in the body of the paper, the expert networks
consist of agents confronted with instances of learning problem LN . Note
different agents may sample from different normal distributions.

Let ΘE = {Θg : g ∈ G} be the set of questions faced by agents in
the expert network E , and let AE = ×Θ∈ΘEΘ be the set of answers to all
questions raised in the expert network. Define ΘE−g = ΘE \ {Θg} to be the
set of questions faced by agents other than g, and AE−g = ×Θ∈ΘE−g

Θ be all
possible answers.

For brevity, I introduce the following notation conventions. θ will repre-
sent an answer to a single question Θ, and a designates answers to several
questions. Generally, a will be a member of AE or of AE−g. The bolded
letter a will indicate a group’s answers to several questions; so a ∈ (AE)

J or
a ∈ (AE−g)

J for some J ⊆ G. Finally, I use the “bar-notation” a to indicate
a sequence of group answers to several questions (so a ∈ ((AE)

J)<N).
Recall, there is a Borel algebra B(Θ) over each Θ ∈ ΘE . Hence, one can

define AE be the product σ-algebra on AE = ×Θ∈ΘEΘ, and similarly for
AE−g. It is easy to check the following are events in these algebras:

{(∀g ∈ G)an,g = a for large n} = {a ∈ ((AE)
G)N : (∃n ∈ N)(∀k ≥ n)(∀g)an,g = a}

{(∀g ∈ G) lim
n→∞

an,g = a} = {a ∈ ((AE)
G)N : (∀g ∈ G) lim

n→∞
an,g = a}

5.5.2 Testimonial Norms

A testimonial norm (tn) is a class of functions τE,g : ((AE−g)
N(g))<N →

P(AE−g), where E is an expert network and g is an agents in E . Informally,
a tn specifies a probability distribution over answers to questions outside
g’s specialty given what g’s neighbors have reported in the past.

To define the six tns introduced in the body of the paper, let a ∈
((AE−g)

N(g))<N be an arbitrary sequence of answer reports of g’s neighbors
to all questions of interest. Suppose a has length n. Recall that, for each
agent h in g’s neighborhood and each Θ ∈ ΘE−g, the symbol an,h,Θ repre-
sents h’s report to question Θ on stage n (i.e. the last stage of a). Similarly,
if a ∈ AE−g is an answer to all questions outside of g’s area of expertise, and
if Θ ∈ ΘE−g is one such question outside of g′s area of expertise, then aΘ is
the answer a provides to the question Θ.
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Example: Reidianism is the norm such that for all a ∈ AE−g:

τE,g(a)(a) =
∏

Θ∈ΘE−g

|{h ∈ N(g) : aΘ = an,h,Θ}|
|N(g)|

In other words, an answer θ to a given question Θ is chosen to be the pro-
portion of one’s neighbors that report θ on the most recent stage. Answers
to different questions are chosen independently of one another, so the prob-
ability of choosing a sequence of answers a is the product of the probabilities
of choosing each element aΘ of the sequence.

To define e-trusting and proximitism, replace “h ∈ N(g)” in the above
definition by the requirement that h is an expert neighbor (if one exists) or
is most proximate to such an expert. The majoritarian versions of all three
norms can be defined similarly.

A few properties of tns will play a critical role in proofs. Let τ be a
tn. Suppose that (∗) τE,g(a) = τE,g(b) for all expert networks E , all agents
g in E , and all answer reports a, b ∈ ((AE−g)

N(g))<N with identical last
coordinates (i.e., a|a| = b|b|). Then τ is said to be Markov, as its behavior
depends only upon the last element of an answer sequence. It is said to be
Markov with memory t if (∗) holds for any sequences a and b for which the
last t coordinates are identical.

Given Θ ∈ ΘE−g and some θ ∈ Θ, define E(θ) = {a ∈ AE−g : aΘ =
θ}. A Markov tn τ with memory t is said to be stable if for all a ∈
((AE−g)

N(g))<N, if ak,h,Θ = θ for all h ∈ N(g) and all k such that |a| − t ≤
k ≤ |a|, then τE,g(a)(E(θ)) = 1. Finally, a tn is said to be sensitive if for
all expert networks E , all agents g in the network, and all Θ ∈ ΘE , there is
some ε > 0 and some J ⊆ PN(g,Θ) such that for all a ∈ ((AE−g)

N(g))<N, if
a|a|,h,Θ = θ for all h ∈ J , then τE,g(a)(E(θ)) > ε. By construction, the six
tns in the body of the paper are Markov, and stable. All said tns except
majoritarian Reidianism and majoritarian e-trusting are also sensitive.

A group testimonial norm (or gtn for short) is a proper class function
from expert networks to vectors of tns for each agent in the network. A
gtn is called pure if it is a constant function; it is called mixed otherwise.

5.6 Scientific Communities, Probabilities over Answer Se-
quences, and More on Convergence

A scientific network is a pair S = 〈E , 〈τ(g)〉g∈G〉 consisting of an expert
network E and an assignment of tns τ(g) to each agent g in the network.
τ(g)E,g is abbreviated by τE,g below, as no confusion will arise.
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Define WE = {Wg : g ∈ G}, and let w ∈ ×W∈WEW be the true state
of the world for all questions faced by agents in the network. Recall, in a
given world, an agent’s methods induces a probability measure over answer
sequences within her area of expertise. Moreover, gtns specify the proba-
bility that agents will assign to answers outside their respective specialties.
Therefore, given a scientific network S and world w ∈ ×W∈WEW , one can
define a probability measure pw,S over infinite sequences of answers for the
entire network ((AE)

G)N (where, the events are those in the product alge-
bra). Defining pw,S is straightforward but tedious. So details are omitted.

Say an expert network E is s.a.s methodologically convergent if
the methods employed by each agent are s.a.s. Given w ∈ ×W∈WEW , let
a(w) ∈ AE be the unique answer sequence such that w ∈ a(w). That is,
a(w) is the sequence of true answers to every question if w describes the
true state of the world. Say a gtn is s.a.s testimonially convergent if
for all scientific networks S = 〈E , 〈τ(g)〉g∈G〉:

pw,S((∀g ∈ G)an,g = a(w) for large n) = 1

whenever E is a connected, s.a.s. methodologically convergent network.

5.7 Proofs of Theorems

Given an expert network E and w ∈ ×W∈WEW , define a(w) ∈ (AE)
G to

be the vector representing the state in which all agents believe a(w). Let
A(w) = {a ∈ (AE)

G : wg ∈ ag,Θg} be the set of belief vectors in which every
agent holds a true belief in her own specialty. Next, define by recursion:

E0(w) = {a ∈ ((AE)
G)N : (∀n ∈ N)an ∈ A(w)}

En+1(w) = {a ∈ ((AE)
G)N : (∀k ≥ n+ 1)ak ∈ A(w)} \ En(w)

So En(w) is the event that n is the first stage at which every agent has
converged to the true answer in her specialty. Finally, let Xn : (AGE )N → AGE
be the function a 7→ an that represents the beliefs of all agents, to all
questions on stage n. In the following lemma, let S = 〈E , 〈τ(g)〉g∈G〉 be a
scientific network and w ∈ ×W∈WEW . Suppose that E is methodologically
s.a.s. convergent and that τ(g) is Markov for all g ∈ G.

Lemma 1 Then 〈Xn, En(w)〉n∈N is a uniform pc-Markov process over the
state space A(w) with respect to pw,S.

Proof: Since E is s.a.s. methodologically convergent, it follows that
pw,S(∪n∈NEn(w)) = 1. The events En(w)’s are disjoint by construction.
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Conditional on En, each agent’s beliefs change only outside her specialty at
every stage k ≥ n + 1. Hence, agents’ beliefs at any stage k ≥ n depend
only upon tns and not upon data. Since the tns are Markov, the vectors
of all agents beliefs at stages past n, represented by 〈Xk〉k≥n, form a time-
homogeneous, Markov process conditional on En as desired.a

The next theorem corresponds to Theorem 1 in the text.

Theorem 6 Suppose that, for all g ∈ G, the norm τ(g) is also stable and
sensitive. Then 〈Xn, En(w)〉n∈N is a uniformly absorbing pc-Markov process
with respect to pw,S, where the unique absorbing state is a(w).

Proof: By the previous lemma, 〈Xn, En(w)〉n∈N is a uniform pc-Markov
process. For all agents g, one can use sensitivity to show, by induction on
g’s length n from a Θ-expert, that there is some non-zero probability that
g will believe an answer θ to Θ exactly n many stages after all the most
proximate Θ experts to g believe θ. Again, using stability and induction,
one can show that, for all natural numbers n and k, if g believes θ on stage
n and all the most proximate Θ experts to g continue to believe θ for k
stages, then g will believe θ on stage n + k. Since the network is s.a.s.
convergent, this suffices to show that true beliefs will eventually propagate
through the entire network. By the stability and Markov property of the
tns, the network will be absorbed in this state.a

5.8 Modeling Miscommunication

For the following theorems, suppose each agent’s question has only two
answers. In order to model miscommunication, one needs only to alter the
definition of the measure pw,S , so that, on each stage, for all her neighbors,
an agent reports the answer other than the one she believes with some
fixed probability ε > 0. Call the measure induced by this process pw,S,ε.
Below, retain the assumptions of the previous theorems and add the further
assumption that, for all g ∈ G, the function τ(g) is one of the six tns from
the body of the paper.

Theorem 7 Then 〈Xn, En(w)〉n∈N is a uniformly regular pc-Markov process
(over state space A(w)) with respect to pw,S,ε.

Proof: By the same reasoning as above, the process is a pc-Markov process.
So it suffices to show it is regular. In fact, since each of the six tns has a
memory of length one, the process can transition from any state in A(w) to
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another in exactly one step. To show this, I show that any agent’s belief,
with respect to any question, changes with positive probability and stays
the same with positive probability. This suffices because there are only two
answers to a question.

Consider a fixed agent g and a fixed question Q. Since there are two
possible answers, the agent’s belief with respect to Q can be represented by
a 0 or 1, and her neighbors beliefs with respect to Q can be represented by a
binary vector a. Now each of the six tns has the following property: there
are binary vectors bstay and bchange such that, (i) if g thinks her neighbors’
beliefs with respect to Q are represented by bstay, then g’s beliefs with
respect to Q will remain the same with positive probability, and (ii) if g
believes her neighbors’ beliefs are represented by bchange, then g’s beliefs
will change with positive probability. For instance, if g is a Reidian who
currently believes 0, then the constant vector containing only zeros is one
example that could be bstay, and the constant vector containing only ones
is one example of bchange.

Let a represent g’s neighbors’ current beliefs, and Let n be the number
of entries in the vector differs from the vector bstay. Then, by the definition
of miscommunication, the probability that g will think her neighbors believe
bstay is εn. By definition of bstay, if g believes her neighbors believe bstay,
then g will retain her belief with some positive probability δ. So the proba-
bility that g’s belief will stay the same is at least δ · εn, which is positive. A
similar argument shows that g’s belief changes with respect to question Q
with positive probability. a

The next theorem corresponds to Theorems 3 and 2 in the body of the
paper.

Theorem 8 The error rate approaches a fixed positive number.

Proof: By the previous lemma and Theorem 5, there is a limiting proba-
bility distribution over states (i.e. specifications of beliefs for every agent in
the network) of the PC-Markov process describing the evolution of agents’
beliefs, and that distribution does not depend on agents’ initial beliefs. In
each such state, agents have some non-negative number of erroneous beliefs.
The error rate is the expectation of error relative to this limiting probability
distribution over states. Note every state has some positive probability by
the argument in the previous theorem. So there is some non-zero probability
of having erroneous beliefs, which entails the error rate is positive.a
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