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Abstract

We prove a generalization of Birnbaum’s theorem, which states that
the sufficiency and conditionality principles together entail the likelihood
principle. Birnbaum’s theorem poses a dilemma for frequentists, who typ-
ically accept versions of the former two principles but reject the third. Our
generalization of Birnbaum’s theorem relies only on axioms for qualita-
tive/comparative, conditional probability.

Statistical reasoning is just one among many types of reasoning, and so
norms for statistical reasoning ought to be special cases of norms for reasoning
more broadly. Thus, one way of assessing the plausibility of the three major ap-
proaches to statistical inference – frequentistism, likelihoodism, and Bayesianism
– is to assess to what extent their underlying principles generalize to everyday
reasoning. And to model everyday reasoning, it might be impractical, unfruitful,
or misleading to model agents as if they (i) know the precise numerical likelihood
functions associated with various experimental outcomes and then (ii) update
(perhaps unconsciously) their precise numerical degrees of belief upon making
such observations.

In this paper, we argue that a central argument for likelihoodist and Bayesian
approaches to statistical inference generalizes naturally to evidential reasoning
that involves only qualitative comparisons of the form “A given B is more
likely than C given D.” Specifically, we generalize Birnbaum’s theorem that
the sufficiency and conditionality principles – which frequentists often endorse
– together entail the likelihood principle, which frequentists universally reject.

In §1, we begin with a few philosophical remarks about modeling belief
using comparative, conditional probability; this section motivates the specific
framework we have chosen for generalizing Birnbaum’s theorem. In §2, we
review the sufficiency, conditionality, and likelihood principles. We motivate the
three principles, explore their relationship to Bayesian and frequentist methods,
and finally, review Birnbaum’s theorem and its proof. This section is extensive to
make the paper self-contained, but all but §2.3 can be skipped by readers familiar
with the likelihood principle and Birnbaum’s theorem. In §3, we generalize the
three statistical principles and prove a generalization of Birnbaum’s theorem. In
§4, we conclude by discussing further philosophical implications of the theorem
and avenues for future research.
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1 Incorporating Probabilistic Data into Non-Probabilistic
Beliefs

Everyone agrees that data should sometimes change our beliefs. Because ex-
perimental data are often finite frequencies, which obey the probability axioms,
it is only natural that many philosophers and statisticians have have argued
(via Dutch Books, accuracy-dominance considerations, etc.) for probabilism,
i.e., the thesis that our degrees of belief should obey the probability axioms.
Equipped with probabilism, one can then easily explain how the probabilistic
structure of data should incorporated into a rational agent’s beliefs, as the latter
also have probabilistic structure.

Yet everyone recognizes that, at best, probabilism is a norm for an ideal
agent. It is well-known that if our degrees of belief should obey the probability
axioms, then there’s a sense in which we should also be logically omniscient
[Savage, 1972, p. 7, especially footnote †]. And it seems unreasonable to require
logical omniscience from fallible reasoners with limited computational resources.
Moreover, we risk introducing modeling artifacts when we represent degrees of
belief using precise probabilities, when in fact many arguments for probabilism
(e.g., representation theorems) begin with primitive comparative judgments of
likelihood.

So here is the dilemma. On one hand, it seems far too demanding to require
that degrees of belief obey the probability axioms. On the other hand, it is
difficult to specify how probabilistic data ought to influence our beliefs unless
we model belief itself using probability theory.

The framework for qualitative/comparative, conditional probability below
provides one way to address that dilemma. We axiomatize expressions of the
form “A|B � C|D”, which can be roughly understood as the representing the
claim “A given B is more likely than C given D.” The axioms are necessary for
the binary relation � to be representable using (conditional) probabilities, and
so any data obeying the probability axioms will satisfy our qualitative axioms.
However, our axioms are not sufficient for a probabilistic representation, and
so an agent’s beliefs might satisfy our axioms without being probabilistically
“coherent.”

Perhaps most importantly, our framework addresses some of the motivations
for thinking rational degrees of belief need not satisfy the probability axioms. In-
stead of requiring P (ϕ) = 1 for any tautology ϕ, our axioms more-or-less require
a qualitative analog of the claim that P (ϕ|ϕ) = 1 for any formula ϕ. Famously,
there is no algorithm for determining whether a formula of predicate logic is a
tautology (and so there is no program for deciding whether the standard axiom
entails that P (ϕ) ought to equal one), but it is computationally trivial to check
whether two formula tokens are syntactically identical (and hence, it is trivial to
determine if our axiom requires that P (ϕ|ϕ) = 1). Further, because our axioms
concern a binary relation, we avoid worries about introducing modeling artifacts
by representing comparative judgments using precise, numerical probabilities.

To be clear, the likelihood principle – and the related “law” of likelihood –
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say nothing about rational belief. Yet likelihoodists often motivate the law of
likelihood and likelihood principle by arguing the two theses dovetail with the
Bayesian theory of rational belief [Edwards, 1984, p. 28], [Royall, 1997, p. 87].
It is only natural, therefore, to ask whether there are qualitative/comparative
likelihoodist principles that dovetail nicely with a generalization of Bayesianism,
in which rational degrees of belief are not required to satisfy the probability
axioms. The generalization of Birnbaum’s proof (of the likelihood principle)
below suggests an affirmative answer to that question.

2 Frequentism vs. Bayesianism

In the foundations of mathematics, rival philosophies (e.g., intuitionist vs. classi-
cal) can be characterized by which axioms and rules of inference they accept and
which they reject. In the foundations of statistics, things are messier. Although
likelihoodism and Bayesianism each might be identified with axiomatic theo-
ries, frequentism cannot.1 Instead, frequentist methods – including Neyman-
Pearsonian tests, confidence intervals, and particular approaches to point esti-
mation – are typically motivated by a hodgepodge of theses about minimizing
error, maximizing “coverage” probabilities, and avoiding inadmissibility.

Despite lacking an axiomatic basis, frequentists often endorse variants of
the sufficiency and conditionality principles discussed below. Like the likeli-
hood principle, which frequentists reject, sufficiency and conditionality are the-
ses about evidential equivalence. Here, “evidential equivalence” is intended to
denote an explication of an informal, normative concept. Intuitively, two sam-
ples and might convey the exact same information about an unknown quantity.
In such cases, statisticians would call the two samples “evidentially equivalent”,
and the three statistical principles discussed below aim to provide precise con-
ditions for evidential equivalence.

To state the three principles, we must introduce some notation. Let Θ repre-
sent the simple hypotheses under investigation. Each experiment E has a set
of possible outcomes ΩE, which represents the data one might obtain. Statisti-

1Calling likelihoodism and Bayesianism “axiomatic” theories for the “foundations of statis-
tics” might be misleading for two reasons. First, it’s not clear the two schools’ axioms concern
the same subjects. Likelihoodists (e.g. Royall [1997]) argue that their “axioms” – the law of
likeliihood and likelihood principle – answer the question, “Which hypotheses does the evi-
dence support?”, not “What should one believe in light of the evidence?” or “What should
one do?” Arguably, Bayesianism is first and foremost a theory answering the latter two ques-
tions. Comparing Bayesianism and likelihoodism, therefore, might seem like comparing group
theory and plane geometry. Second, contrary to what some Bayesians claim [Bernardo, 2011],
Bayesianism is rarely presented as an axiomatic theory like most mathematical subjects, and
self-identified Bayesians might disagree about the axioms. One reason for the disagreement is
that it’s not clear what is being axiomatized. In geometry, one axiomatizes the relationship
between points and lines; what exactly is axiomatized by Bayesianism? The obvious choices
are rational belief and action, but should the axioms for belief concern pairwise confidence
judgments (i.e., Is A or B more likely?) or functions from a set of propositions to the real
number line (e.g., what properties should a rational belief function P from a set of proposi-
tions to R have?). Are preferences manifested in binary choices, or better modeled by choice
functions? And so on.
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cians assume that, for each experiment E and each hypothesis θ ∈ Θ, there is a
probability measure PE

θ over ΩE. To avoid unnecessary measure-theoretic com-
plications, we assume that the set of hypotheses Θ and the set of experimental
outcomes ΩE are finite. We also assume all probability measures are defined on
the appropriate power set algebra.

Example 1: Imagine you want to test the success rate of a new drug in treating
a serious cancer; you are interested in how many people survive three months
after treatment. One experiment E1 consists in treating 100 patients. The set
of hypotheses Θ is best represented by some subset of the unit interval [0, 1],
where θ ∈ Θ represents the hypothesis that, any given patient’s probability of
surviving three months is precisely θ. The set of possible outcomes ΩE1 contains
all binary sequences of length 100, representing which of the 100 patients survive
three months. For each θ, the probability measure PE1

θ specifies how likely
various outcomes are, if the drug’s success rate equals θ.

�

Example 2: Imagine you are interested in the same drug as in the previous
example, but you are worried that it might be less effective than the conventional
treatment, which has a 94% survival rate. So you design an experiment E2 in
which you treat a new patient every three months until two patients die in
total. The set of hypotheses Θ is as before, but the set ΩE2

of outcomes differs.
Here, ΩE2 contains (i) all finite binary sequences containing exactly two zeroes
(representing the two deaths), where the last digit is zero (because the trial
stops with the fourth death) and (ii) all infinite binary sequences containing
one or fewer zeroes.

�

Informally, evidential equivalence is a relation between two outcomes of (i)
the same experiment or (ii) two different experiments. For instance, consider the
above experiment E1. One might think that any two outcomes of E1 containing
exactly the same number of deaths are evidentially equivalent (assuming one
knows nothing else about the patients); that turns out to be a consequence
of the sufficiency principle discussed below. More controversially, let ω1 be a
sequence containing two deaths in experiment E1, and let ω2 = ω1 be exactly
the same sequence of 100 outcomes obtained in experiment E2 (so exactly 100
patients are treated). One might claim that, in virtue of being exactly the same
sequence of outcomes, ω1 and ω2 ought to demand the same inferences, even
though in experiment E1 the number of patients was fixed in advance whereas
in E2, it was not. That claim is a consequence of the likelihood principle.

In the ensuing sections, we summarize three common principles about evi-
dential equivalence. For now, we flag two important features of the discussion.
First, evidential equivalence is a relation between experimental outcomes. Some
frequentists argue that statisticians can only characterize the reliability of re-
peatable procedures, like experiments, estimators, or tests. According to such
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frequentists, statisticians ought to remain silent about the “evidence” or “infor-
mation” contained in a particular experimental outcome (i.e., a particular data
set or sample).2 Such frequentists will reject all of the principles below. We
emphasize, however, that we believe most frequentists do not take that extreme
position.

Second, evidential equivalence is really a three-place predicate that relates
two experimental outcomes and a set of hypotheses Θ. That means that two
outcomes might be evidentially equivalent with respect to one set of hypotheses
Θ but not with respect to another Θ′. As a trivial case, two distinct observations
(e.g., heads and tails of a coin flip) might be equivalent in one sense because
they tell one nothing about the hypotheses under investigation (e.g., the success
rate of a particular treatment), but if the hypotheses are identical with the
experimental outcomes, then clearly the two are not evidentially equivalent.
Nonetheless, we will omit discussing the dependence of the evidential equivalence
relation on Θ, assuming the parameter space is clear from context.

2.1 Conditionality and Sufficiency

Conditionality

Suppose a researcher is unsure which of the two experiments above (i.e., E1 or
E2) to conduct. She decides to flip a coin to pick an experiment, and on the
basis of flip, she chooses to conduct E1. Using a randomizing device like a coin
or die to select from several possible experiments is called performing a mixed
experiment. In the case at hand, because a coin flip tells one nothing about
the efficacy of cancer drugs, intuitively, any sample the researcher acquires in
her mixed experiment seems evidentially equivalent to the same sample she
would have obtained had she just decided, without flipping a coin, to conduct
E1. That is what the conditionality principle says.

Formally, given some probability r ∈ (0, 1) representing the known bias of a
coin and two experiments E and F, let M(r,E,F) represent the mixed experiment
in which a coin of bias 1 − r is flipped, E is conducted if the coin lands tails,
and F is conducted otherwise. Clearly, M(r,E,F) is representable by a pair

〈ΩM(r,E,F), {P
M(r,E,F)
θ }θ∈Θ〉 with the following properties:

• The outcome space ΩM(r,E,F) equals ({0} × ΩE) ∪ ({1} × ΩF). For any
ω ∈ ΩE, the pair 〈0, ω〉 ∈ ΩM(r,E,F) represents the outcome in which the
coin lands tails, one conducts E, and one obtains the outcome ω.

• P
M(r,E,F)
θ (0, ω) = r · PE

θ (ω) for every θ ∈ Θ and any ω ∈ ΩE. Similarly,

P
M(r,E,F)
θ (1, ω) = (1− r) · P F

θ (ω) for every ω ∈ ΩF.

It is assumed that one knows the value of r, and so the coin flip is uninfor-
mative with respect to Θ.

2Arguably, [Neyman and Pearson, 1933] endorse this position. See [Mayo, 2018] for an
alternative interpretation of the famous passage in Neyman and Pearson’s landmark paper.

5



Conditionality Principle (c): Let E and F be any two experiments, and M
a mixture of the two. Then the outcome 〈0, ω〉 of M is evidentially equivalent
to the outcome ω of E.

Sufficiency

Informally, a statistic is a way of summarizing a data set. For example, instead
of reporting the exact sequence of fifty coin tosses to you, we might report the
number of heads. Just as you might learn all the important events in a movie
from a comprehensive preview, so some statistics summarize all the important
information in a data set. For both Bayesians and many frequentists, a sufficient
statistic is such a comprehensive summary. Thus, the sufficiency principle says
that learning the value of a sufficient statistic is evidentially equivalent to seeing
the entire sample.

Formally, a statistic is a function T : ΩE → R of the outcomes of some
experiment E, where elements of the rangeR are typically real numbers or vector
of numbers. In some cases, a statistic compresses the data substantially. For
instance, if ΩE is the set of all binary sequences of length 50 (representing 50 coin
tosses), then one succinctly summarizes the data using the statistic T that maps
every sequence ω to the number of heads it contains T (ω) ∈ R = {0, 1, 2, . . . 50}.
But a degenerate example of a statistic is the identity map, which maps every
sample ω to itself T (ω) = ω ∈ R = ΩE.

Given an experiment E, a statistic is called sufficient if, Pθ(ω|T = t) =
Pυ(ω|T = t) for any value of the statistic t ∈ R, any data set ω ∈ ΩE and
for all θ, υ ∈ Θ. Informally, the value of a sufficient statistic “screens off” the
parameter from any data set.

Example 1 (continued): The number of successes/survivals in E1 is a suffi-
cient statistic. See, [Casella and Berger, 2002, p. 274] for a proof.

Example 2 (continued): The number of survivals (which determines the
number of treated patients) is again a sufficient statistic for E2. Why? Let
tω represent the number of survivals in a sample ω. If t 6= tω, then clearly
Pθ(ω|T = t) = 0 for all θ. And if t = tω, then:

Pθ(ω|T = tω) =
Pθ({ω} ∩ {T = tω})

Pθ(T = tω)
by definition of conditional probability

=
Pθ(ω)

Pθ(tω)
because ω ∈ {T = tω} := {ω′ ∈ ΩE2

: tω′ = t} since t = tω

=
θ2(1− θ)tω(

tω+1
1

)
· θ2(1− θ)tω

=
1

tω + 1

Since the final line does not depend upon θ, it follows that Pθ(ω|T = tω) =
1

tω+1 = Pυ(ω|T = tω) for all θ, υ ∈ Θ.
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It turns out that, no matter the experiment, there are always at least two
sufficient statistics. First, note the identity map T (ω) = ω is sufficient because
Pθ(ω|T = t) = 1 if t = ω and is zero otherwise, no mater the parameter.
Second, for any experiment and any outcome ω ∈ ΩE, the function Lω : θ 7→
PE
θ (ω) is called the likelihood function. The next lemma, which is crucial for

Birnbaum’s proof, shows the likelihood function is a sufficient statistic.3

Lemma 1 In every experiment, the statistic T : ω 7→ Lω is sufficient.

Proof: Like Example 2, let Lω be the likelihood function of ω. If t 6= Lω, then
clearly Pθ(ω|T = t) = 0 for all θ. And if t = Lω, then

Pθ(ω|T = t = Lω) =
Pθ({ω} ∩ {T = Lω})

Pθ(T = Lω)
by definition of conditional probability

=
Pθ(ω)

Pθ(T = Lω)
because ω ∈ {T = Lω} := {ω′ ∈ ΩE : Lω′ = Lω}

=
Pθ(ω)∑

ω′∈{T=Lω} Pθ(ω
′)

=
Pθ(ω)

Pθ(ω) · |{T = Lω}|
because Pθ(ω

′) = Pθ(ω) if Lω = Lω′

=
1

|{T = Lω}|

Again, the final line does not depend on θ, and so we’re done.

�

With this background, we can state the sufficiency principle. Given any
experiment E = 〈ΩE, {PE

θ }θ∈Θ〉 and any sufficient statistic T : ΩE → R, let ET
denote the experiment in which one performs E but learns only the value of T .

Clearly, ET is representable by a pair 〈ΩET

, {PET

θ }θ∈Θ〉 such that:

• The outcome space ΩET

equals T (ΩE) = {T (ω) : ω ∈ ΩE} ⊆ R. Infor-
mally, instead of seeing the outcome ω of E, one sees the value T (ω) of
the sufficient statistic.

3Technical aside: The lemma above differs from the standard lemma used in Birnbaum’s
theorem because, as I have defined matters, the statistic T : ω 7→ Lω is sufficient but not
minimal. According to my definition, T (ω) = T (ω′) only if the likelihood functions of ω and
ω′ are precisely equal, i.e., it is not enough for them to be related by a positive multiplicative
constant. Typically, in proving Birnbaum’s theorem, one defines T ∗ to be the statistic such
that T (ω) = T (ω′) if there is some c > 0 such that PE

θ (ω) = c · PE
θ (ω′) for all θ, and then

one proves T ∗ is a minimal sufficient statistic in a way analogous to above. Some frequentist
statisticians do think that minimality is a crucial epistemic notion, but I lack the space to enter
that debate. For my purposes, I have chosen to use T in my reconstruction of Birnbaum’s proof
as the strategy generalizes naturally to the qualitative setting; there is no direct qualitative
analog of T ∗.
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• For each θ ∈ Θ and each t ∈ ΩET

, one has PET

θ (t) = PE
θ (T−1(t)) :=

PE
θ ({ω ∈ ΩE : T (ω) = t).

Sufficiency Principle (s): Let E be any experiment and T a sufficient statis-
tic. Then T (ω) in ET is evidentially equivalent to the outcome ω of E.

An immediate corollary of the sufficiency principle (assuming evidential
equivalence is transitive) is the following:

Weak Sufficiency Principle: Let E be any experiment. If T is a sufficient
statistic and ω, ω ∈ ΩE are two outcomes of E such that T (ω) = T (ω′), then ω
and ω′ are evidentially equivalent.

2.2 The Likelihood Principle and its consequences

The most controversial statistical principle is the likelihood principle.

Likelihood Principle (lp): Let E and F be any two experiments, and let
E ⊆ ΩE and F ⊆ ΩF. If there is some c > 0 such that PE

θ (E) = c ·P F
θ (F ) for all

θ ∈ Θ, then E and F are evidentially equivalent.

Frequentists reject lp for at least three related reasons: (1) lp has a number
of consequences (e.g., the stopping rule principle) that some find unintuitive, (2)
lp seems to contraindicate the use of p-values, confidence intervals, and other
classical methods, and (3) lp is intricately connected with Bayesian methodol-
ogy. We discuss those three issues in order.

Controversial Consequences: Irrelevance of Stopping Rules

Perhaps the most controversial consequence of lp is the stopping rule principle,
which asserts that, under certain precisely circumscribed conditions, statisti-
cians may safely ignore the reason an experiment was halted. Rather than
precisely defining which types of stopping rules can be ignored according to
that principle, we give a simple example.

Examples 1 and 2 continued: Experiment E1 stops, no matter what, when
100 patients are treated; experiment E2 is stops when two patients have died.
So the rules for terminating the experiments differ. Nonetheless, certain pairs of
outcomes from the two experiments are, according to lp, evidentially equivalent.

For example, suppose E1 is conducted and two patients die. Let ω be the
binary sequence representing which patients died, and suppose the second death
is the 100th treated patient. Next, suppose the same data sequence ω is obtained
in experiment E2. Then in E1, we have PE1

θ (ω) = PE2

θ (ω) = θ2(1− θ)98. Thus,
by lp (here, the constant c is 1), the outcome ω in E1 is equivalent to the
outcome ω in E2.

In the literature on stopping rules, it is typically shown that the same argu-
ment works if one learns only the values of a sufficient statistic in each of the
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two experiments. That is, suppose E1 is conducted and one learns only E that
two patients die; formally, E is the set of all binary sequences of length 100
containing two zeroes (for each death). Similarly, suppose E2 is conducted and
one learns only F that 100 patients are treated; formally, F is the set of binary
sequences of length 100 containing two zeroes, one of which occurs in the 100th
spot. Then PE1

θ (E) =
(

100
2

)
θ2(1 − θ)98 and PE2

θ (F ) =
(

99
1

)
θ2(1 − θ)98, and so

letting c = 99

(100
2 )

, it follows that PE1

θ (E) = c · PE2

θ (F ) for all θ ∈ Θ. Thus, by

lp, the outcomes E and F are evidentially equivalently.

�

Proponents of lp think the stopping rule principle is a victory for their
methodology: if an experiment is stopped early because of lack of funding or
because the principal investigator passes away, a proponent of lp need not
modify the way she analyzes the data. Frequentists, in contrast, argue this
convenience comes at too great an epistemic cost. Namely, frequentists argue
that modal properties of the two experiments differ, and those modal properties
are epistemically important. That, even if the actual outcomes of E1 and E2

are identical, in experiment E1, more than two patients could have died, even if
100 must be treated. Similarly, in E2, more than 100 patients could have been
treated, even if two deaths are more-or-less guaranteed. For this reason, some
statisticians say that frequentist inferences, unlike Bayesian ones, depend upon
the sample space [Lindley, 2006].

Incompatibility with Classical Techniques

The differences between the modal properties of the two properties of the two
experiments is critical for certain classical methods. Here, we provide a typical
example that illustrates how the use of p-values in hypothesis testing can render
different verdicts in situations that are regarded as evidentially equivalent by
lp. Similar conflicts between lp and other frequentist devices (e.g., confidence
intervals) can be found in the opening chapters of [Berger and Wolpert, 1988].

Example 1 continued: In experiment E1, imagine the new drug is compared
with a conventional treatment that has a survival rate of 94%. Again, imagine
that two patients die in E1, and so the experimenter wants to know if there is
a statistically significant difference between the efficacy of the new treatment
(which produced a 98% survival rate in the sample) and that of the conventional
treatment. To do so, the experimenter decides to reject the null hypothesis –
that the new treatment is no better than the conventional one – if, under the
assumption the null hypothesis is true, the probability of two or fewer deaths
in a sample of 100 patients is below .05. However, given θ = .94, it is easy to
see that, if T is the number of deaths in the sample:

PE1

θ (T ≤ 2) =

2∑
n=0

(
100

n

)
.94100−n · (.06)n ≈ .0566
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which is not significant at the .05 level.

�

Example 2 continued: Suppose, in E2, 100 patients are treated before the
second death, and as above, imagine the new drug is compared with the con-
ventional treatment. Again, the experimenter wants to know if there is a sta-
tistically significant difference between the new and conventional treatment. To
do so, the experimenter decides to reject the null hypothesis if, under its suppo-
sition, there is less than a 5% chance of needing to treat at least 100 patients.
Given θ = .94, it is easy to see that, if T is the number of patients treated in E2

PE2

θ (T ≥ 100) =

∞∑
n=100

(
n

1

)
.94n · (.06)2 ≈ .014

which is significant at the .05 level.

�

2.3 Bayesianism and the three statistical principles

Bayesians endorse c, s, and lp: if two experimental outcomes are entailed to
be evidentially equivalent by atleast one of the principles, then every Bayesian
will treat the two outcomes identically when updating his or her beliefs.

In greater detail, Bayesianism is often defined to be the conjunction of two
theses. First, for any experiment E, one’s degrees of beliefQE (over the space Θ×
ΩE consisting both of hypotheses and experimental outcomes) should satisfy the
probability axioms. Given QE, one can define a measure πE

Q on Θ by πE
Q(Θ0) =

QE(Θ0×ΩE) where Θ0 ⊆ Θ; the function πE
Q is called the experimenter’s prior.

Second, for any outcome ω ∈ ΩE, one’s degrees of belief upon learning ω
should be updated by conditionalization, i.e, one’s degree of beliefs over Θ ought
to be represented by the posterior distribution:

QE(θ|ω) =
QE(θ) · Pθ(ω)∑
υ∈Θ Pυ(ω) ·QE(υ)

In philosophy and decision theory, Bayesians typically also tacitly assume that
one’s degrees of belief ought not vary with one’s choice of experiment, i.e.,
that πE

Q = πF
Q for any two experiments E and F. This seems like a reasonable

assumption if the measures in {QE}E∈E (where E represents all experiments)
do in fact represent some particular experimenter’s degrees of belief. For that
reason, we adopt the assumption for the remainder of the paper and we write
πQ for the agent’s prior.4

Define two experimental outcomes 〈E, ωE〉 and 〈F, ωF〉 to be Bayesian pos-
terior equivalent if QE(θ|ωE) = QF(θ|ωF) for all priors πQ and all θ ∈ Θ. In

4In practice, many Bayesian statisticians use particular priors for computational ease (e.g.,
by fitting a conjugate prior to one’s beliefs) and still others (typically, “objective” Bayesians)
think certain priors are rationally required in a way that might vary with the experiment.
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other words, two outcomes are Bayesian posterior equivalent if, no matter one’s
prior, one would update one’s degrees of belief (in the hypotheses) in identical
ways no matter which observation was made. It’s well-known that:

Proposition 1 If c, s, or lp entails two experimental outcomes are eviden-
tially equivalent, then the two outcomes are Bayesian posterior equivalent.

For brevity, we omit the proof. Further, Mayo-Wilson and Saraf [2020] prove
that lp completely characterizes Bayesian posterior equivalence.

Proposition 2 If two experimental outcomes are Bayesian posterior equiva-
lent, then lp entails the two are evidentially equivalent.5

Together, the two propositions may explain yet another reason frequentists
reject lp. The two propositions show not only do Bayesians endorse lp, but
if one endorses lp, then one must agree with Bayesians about which outcomes
are evidentially equivalent. And doing that seemingly requires rejecting many
classical methods.

2.4 Birnbaum’s Theorem

Birnbaum’s theorem is easy to state and prove: c and s entail lp. See below.
Since its publication, frequentists have argued that the Birnbaum’s formaliza-
tions of the conditionality and sufficiency principles are improper, i.e., that c
and s do not capture the intended, informal methodological precepts.6 That al-
lows frequentists to endorse other versions of the conditionality and sufficiency
principles but continue to reject lp. We will say a bit more about these maneu-
vers, but for now, it suffices to say that a primary motivation of our qualitative
generalization of Birnbaum’s theorem is that it shows Birnbaum’s result is ro-
bust under different formalizations of sufficiency and conditionality.7

Theorem 1 (Birnbaum [1962]) c and s entail lp.

Proof: Let ωE ∈ ΩE and ωF ∈ ΩF be outcomes of experiments E and F
respectively. Suppose there is some c > 0 such that PE

θ (ωE) = c · P F
θ (ωF) for all

θ ∈ Θ. We must show that ωE and ωF are evidentially equivalent using c and s.

5This theorem is valid only under the assumption that the two outcomes are drawn from
experiments with the same parameter space. In cases in which there are “non-informative
nuisance parameters” in one experiment but not the other, there might be pairs of outcomes
that are Bayesian posterior equivalent but which are unrelated via lp, as lp concerns only
outcomes drawn from experiments with the same parameter space. See [Berger and Wolpert,
1988, p. 41.5] for a generalization of lp that, we conjecture, addresses this problem.

6For instance, both Durbin [1970] and Kalbfleisch [1975] argues that Birnbaum’s version
of c is too strong. Some authors, like [Evans et al., 1986], do not pinpoint a problem with
one principle but rather argue that the way Birnbaum combines them is problematic. [Mayo,
2014] alleges Birnbaum’s proof is “invalid”, but this claim, we believe, is false, as Mayo’s
analysis rests on a mathematical framework that differs from Birnbaum’s.

7Gandenberger [2014] likewise shows Birnbaum’s proof is robust under weaker versions of
s and c. What distinguishes the present paper from [Gandenberger, 2014]’s is that we work
within a qualitative framework.
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To do so, define M to be the mixed experiment in which a coin of bias r = c
1+c

is flipped, and then F is conducted if heads is obtained and E otherwise. Notice
that r ∈ (0, 1) because c > 0.

By the conditionality principle c, it follows that the outcome ωE of E is
evidentially equivalent to the outcome 〈0, ωE〉 of M. Similarly, ωF of F is evi-
dentially equivalent to the outcome 〈1, ωF〉 of M. Thus, it suffices to show that
the outcomes 〈0, ωE〉 and 〈1, ωF〉 of M are evidentially equivalent.

To do so, note that in the mixed experiment M, the observations 〈0, ωE〉 and
〈1, ωF〉 have the same likelihood function because for all θ:

PM
θ (〈1, F 〉) =

c

1 + c
·P F
θ (F ) =

c

1 + c
·
(

1

c
PE
θ (E)

)
=

(
1− c

1 + c

)
·PE
θ (E) = PM

θ (〈0, E〉)

By lemma 1, the likelihood function is a sufficient statistic. Hence, because
〈0, ωE〉 and 〈1, ωF〉 have the same likelihood function, s entails that 〈0, ωE〉 and
〈1, ωF〉 are evidentially equivalent, as desired.

�

Evans et al. [1986] allege that lp follows from c alone, but their proof relies
on a considerably stronger version of c. Specifically, Evans et al. [1986]’s state-
ment of c, unlike Birnbaum’s, entails that ancillaries statistics (whether they
are the value of some “mixing” device) can often be ignored in the analysis of
an experiment. Because the technical details are subtle and irrelevant to the
remainder of the paper, we omit them.

3 Three Qualitative Evidential Principles

3.1 Axioms for Qualitative Conditional Probability

Given a set of hypotheses Θ, every qualitative experiment E will be repre-
sentable by a pair 〈ΩE,�E〉 such that �E is binary relation satisfying the axioms
below.8 The relation �E is the qualitative analog of the set of likelihood func-
tions in an experiment. The idea is that A|θ �E B|η represents the claim that
“experimental outcome B is at least as likely under supposition η as outcome A
is under supposition θ.” Notice that here, as in the remainder of the document,
we will typically use commas and write A|θ instead of A|{θ} when a singleton
{θ} appears to the right of the conditioning bar. Define A|θ ≈E B|θ to hold if
A|θ �E B|θ and vice versa.

Likelihoodists, like frequentists, do not think of PE
θ (E) as a conditional prob-

ability, but nonetheless, all statisticians agree that, in quantitative setting, the
measure PE

θ allows one to compare particular types of conditional probabil-
ities. For instance, if E,F, and G respectively represent the events that at

8For reasons discussed below, a qualitative experiment ought not be defined to be a pair,
just as in the quantitative setting an experiment is not to be defined to be a pair 〈Ω, {Pθ}θ∈Θ〉:
experiments are procedures that can be conducted, and not every mathematical possibility
need be physically realizable.

12



least six, seven, and eight heads are observed in a sequence of ten tosses, then
Pθ(E|F ) = 1 > Pη(G|F ) for any θ, η ∈ (0, 1). Although we list parameters to
the right of a conditioning bar below, note the qualitative proof of Birnbaum’s
theorem never treats {θ} as an event in a way that frequentists or likelihoodists
would criticize. But just like in the quantitative setting, we define the relation
�E so that one can make comparisons of the form E|θ, F �E G|η, F , where
E,F,G ⊆ ΩE are observable events. Notice here we write A|E, θ instead of
A|E ∩ {θ}.

For all A,B,C for which the following events are well-defined, we assume �
satisfies the following properties.

Axiom 1: �E is total, transitive, and reflexive.

Axiom 3: A|A ≈E B|B.

Axiom 4: A ∩B|B ≈E A|B,

Axiom 5: Suppose A ∩ B = A′ ∩ B′ = ∅. If A|C �E A
′|C ′ and B|C �E

B′|C ′, then A ∪B|C �E A
′ ∪B′|C ′; moreover, if either hypothesis is ≺E,

then the conclusion is ≺E.

Axiom 6: Suppose C ⊆ B ⊆ A and C ′ ⊆ B′ ⊆ A′. If B|A �E C
′|B′ and

C|B �E B′|A′, then C|A �E C ′|A′; moreover, if either hypothesis is �,
the conclusion is �.

Axioms 1-6 are a subset of [Krantz et al., 2006b]’s axioms for qualitative
conditional probability. Importantly, the above axioms are not sufficient for
for �E to be representable as a probability measure without some sort of rich-
ness assumption.9 Alternatively, other representation theorems (e.g., Alon and
Lehrer [2014]) assume a stronger form of additivity, which generalizes Scott’s
axiom [Fishburn, 1986]).

We briefly discuss the axioms and the ways in which we depart from [Krantz
et al., 2006a]’s presentation. We have omitted [Krantz et al., 2006a]’s second
axiom, which more or less prohibits conditioning on events that are equiprobable
with the empty set. That axiom is not necessary for our proofs, and since it’s
controversial whether one ought to be able to condition on events of probability
zero, we omit it. Axiom 3 is only one conjunct of [Krantz et al., 2006b]’s third
axiom, and their stronger axiom raises the same logical omniscience concerns
that the normality axiom (i.e., that the whole space is assigned probability one)
does in the quantitative setting. Our Axiom 3 requires only one to be able to
recognize that an event is self-identical.

Axiom 6 is primarily useful because it allows us to “multiply” in a qualitative
setting. To see it’s motivation in the quantitative setting, notice that if C ⊆
B ⊆ A and C ′ ⊆ B′ ⊆ A′, then

P (C|B) =
P (C)

P (B)
and P (B|A) =

P (B)

P (A)
,

9See [Krantz et al., 2006b, p. 205], which draws on [Kraft et al., 1959].
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and similarly for the A′, B′, and C ′. So if P (B|A) ≥ P (C ′|B′) and P (C|B) ≥
P (A′|B′), then

P (B)

P (A)
≥ P (C ′)

P (B′)
and

P (C)

P (B)
≥ P (A′)

P (C ′)
.

When we multiply the left and right-hand sides of those inequalties, we ob-
tain P (C)/P (A) ≥ P (C ′)/P (A′), which is equivalent to P (C|A) ≥ P (C ′|A′)
given our assumption about the nesting of the sets. For readers who find the
criss-crossed terms of Axiom 6 difficult to follow, we introduce the following al-
ternative axiom, which can be proven from the above axioms (see [Krantz et al.,
2006b, Lemma 11, p. 231])

Axiom 6’: Suppose C ⊆ B ⊆ A and C ′ ⊆ B′ ⊆ A′. If B|A �E B
′|A′ and

C|B �E C
′|B′, then C|A �E C

′|A′; moreover, if either hypothesis is �,
the conclusion is �.

3.2 Real vs. Conceptual Experiments

Before stating qualitative analogs of the three above statistical principles, we
first discuss one perhaps subtle philosophical issue between experiments and
their mathematical representations.

In the quantitative setting, two physical experiments E and F might be
represented by exactly the same mathematical pair 〈Ω, {Pθ}θ∈Θ〉. For example,
one might randomly assign patients a new treatment or placebo on the basis
of a coin flip. Alternatively, one could roll a fair die and assign treatment
based upon whether the roll was even or odd. Because each patient is treated
with the same probability in the two experiments, the probabilities of various
experimental outcomes are also the same. Of course, the difference between the
two experiments might not be epistemically relevant. Why? One might think
evidence is a function of exclusively the probabilities of various outcomes, not
how those outcomes are actually produced.10

Regardless, in the qualitative setting, that distinction between experiments
and their mathematical representation is obviously epistemically relevant. For
example, imagine you are interested in the unknown bias θ ∈ (0, 1) of a coin. In
experiment E the coin will be flipped 10 times and you learn only whether the
number of heads is greater than (G), equal to (E), or less than (L ) the number
of tails. F has an identical setup, but the coin will be flipped 20 times. The
experiments E and F have the same set of experimental outcomes {G,E,L},
and no matter the bias of the coin θ, the qualitative likelihood ordering of the
outcomes is the same: G|θ � L|θ � E|θ if θ > 1/2; L|θ � G|θ � E|θ if θ < 1/2,
and G|θ ∼ L|θ � E|θ if θ = 1/2. So E and F are represented by exactly the same
mathematical pair 〈Ω,�〉, despite conveying different amounts of information.

To state plausible, qualitative analogs of c, s, and lp, therefore, one must
appeal to more than the qualitative orderings representing various experiments.
Instead, one must assume there is an extra-mathematical, primitive notion of

10For a dissenting opinion, see [Kalbfleisch, 1975], who draws on [Basu, 1964]’s distinction
between an experiment that can be performed and one that is a mere mathematical possibility.
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experimental identity that can be used to distinguish, for example, (1) an ex-
periment in which E is conducted and then a particular sufficient statistic is
reported, from (2) an experiment that is represented by the same qualitative
structure as E and then only a sufficient statistic is reported. Similarly, to state
a plausible version of c, we will need to be able to distinguish a genuine mix-
ture M of two experiments E and F from some other experiment with the same
qualitative structure.11

3.3 Qualitative Sufficiency

A sufficient statistic, recall, is intended to be one the summarizes all relevant
information in the data. Formally, a sufficient statistic T for an experiment E
was defined to satisfy PE

θ (ω|T = t) = PE
υ (ω|T = t) for all ω and all θ, υ ∈ Θ.

That definition generalizes naturally:

Definition 1 (Sufficient Statistic) Let E be a qualitative experiment. A statis-
tic T : ΩE → R is sufficient (for E) if ω|T = t, θ ≈E ω|T = t, υ for all ω ∈ ΩE
and for all θ, υ ∈ Θ.

Given that definition, we can now state a qualitative sufficiency princi-
ple (qs): its statement is exactly the same as the quantitative version, except
one uses the qualitative definition of “sufficient.” Importantly, in light of the
above discussion of the distinction between real and conceptual experiments, we
emphasize that statement of qs involves a relation between E and ET , not E
and some experiment that is represented by the same mathematical pair as ET .

As in the quantitative case (see lemma 1), it turns out the likelihood function
is again a sufficient statistic.

Lemma 2 Let T : ω 7→ Lω = {ω′ ∈ ΩE : ω′|θ ≈E ω|θ for all θ ∈ Θ}. Then T is
sufficient.

To prove lemma 2, we need a preliminary lemma.

Lemma 3 If Lω = Lω′ , then ω′|Lω, θ ≈E ω|Lω, θ for all θ.

Proof: Suppose for the sake of contradiction there is some θ such that ω′|Lω, θ 6≈E
ω|Lω, θ. Then by Axiom 1 (specifically, totality of the ordering), either ω|Lω, θ ≺
ω′|Lω, θ or vice versa. Without loss of generality, assume ω|Lω, θ ≺E ω

′|Lω, θ.
Define:

A = {θ} A′ = A = {θ}
B = Lω ∩ {θ} B′ = B = Lω ∩ {θ}
C = {ω′} ∩ Lω ∩ {θ} C ′ = {ω} ∩ Lω ∩ {θ}

11To avoid objections to Birnbaum’s original argument for lp, Gandenberger [2014] likewise
draws extra-mathematical distinctions between different types of experiments. Because [Gan-
denberger, 2014]’s proof establishes lp in full generality, however, those distinctions turn out
not to matter. In contrast, the above examples show that the qualitative likelihood ordering
does not encode all of information in a sample, and so the distinction between two experiments
with identical qualitative structure is often epistemically significant.
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Clearly B|A ≈E B
′|A′ as B|A = B′|A′. Further:

C|B = {ω′} ∩ Lω ∩ {θ}|Lω ∩ {θ}
≈E {ω′}|Lω ∩ {θ} by Axiom 4

�E {ω}|Lω ∩ {θ} by assumption

≈E C ′|B′ by Axiom 4

So by Axiom 6’, it follows that C|A � C ′|A′, i.e., that

† ω′ ∩ Lω ∩ {θ}|θ � ω ∩ Lω ∩ {θ}|θ.

Now because ω, ω′ ∈ Lω = Lω′ , it follows that {ω}∩Lω = {ω} and similarly{ω′}∩
Lω = {ω′}. Thus, † entails {ω′} ∩ {θ}|θ � {ω} ∩ {θ}|θ. By Axiom 4, it fol-
lows that ω′|θ � ω|θ. But Lω = Lω′ by assumption, and hence, ω′|θ ≈E ω|θ,
contradiction.

�

We can now prove lemma 2.

Proof: We must show that ω|T = t, θ ≈E ω|T = t, υ for all ω and for all
θ, υ ∈ Θ, where T : ω 7→ Lω. So let θ, υ be arbitrary.

Consider first the case in which t 6= Lω, and so ω∩{T = t} = ∅. Then ω|T =
t, θ ≈E ω ∩ {T = t} ∩ {θ}|T = t, θ by Axiom 4, and so ω|T = t, θ ≈E ∅|T = t, θ.
Similarly, ω|T = t, υ ≈E ∅|T = t, υ. It suffices to show only that ∅|A ≈E ∅|B for
all A,B (when defined), and this is a fairly routine exercise (see [Krantz et al.,
2006a, p.229] for a proof).

Next, consider the case in which t = Lω, and so {T = t} = Lω. Then we
must show that ω|Lω, θ ≈E ω|Lω, υ. Suppose for the sake of contradiction not.
Then by Axiom 1 (specifically, totality of �), it follows that ω|Lω, θ ≺ ω|Lω, υ
or vice versa. Without loss of generality, assume ω|Lω, θ ≺ ω|Lω, υ.

Next, define Rω = Lω\{ω}. We claim there is some ω′ ∈ Rω such that either
(1) ω′|Lω, θ 6≈E ω|Lω, θ or (2) ω′|Lω, υ 6≈E ω|Lω, υ. If neither (1) nor (2) holds,
then we have ω′|Lω, θ ≈E ω|Lω, θ AND ω′|Lω, υ ≈E ω|Lω, υ for all ω′ ∈ Rω.
So by repeatedly applying Axiom 5 (recall, we’ve assumed ΩE is finite) to the
assumption that ω|Lω, θ ≺ ω|Lω, υ, we obtain that Rω|Lω, θ ≺ Rω|Lω, υ. But
then because Rω|Lω, θ ≺ Rω|Lω, υ and ω|Lω, θ ≺ ω|Lω, υ, one last application
of Axiom 5 yields that Lω|Lω, θ ≺ Lω|Lω, υ. By Axiom 4, it follows that
Lω, θ|Lω, θ ≺ Lω, υ|Lω, υ. But that contradicts Axiom 3.

So either (1) or (2) obtains. But notice that both contradict lemma 3 as
ω′ ∈ Rω ⊆ Lω.

�

3.4 Qualitative Conditionality

As in the case of sufficiency, to state a plausible, qualitative analog of c, one can-
not appeal to strictly mathematical facts about the ordering. Instead, one must
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appeal to the extra-mathematical notion of experimental identity to distinguish
a genuine mixture M of two experiments E and F from some other experiment
with the same (or worse yet, isomorphic) qualitative structure. But if one can
identify a “genuine” mixture M, the statement of c remains unchanged.

3.5 Qualitative LP?

Unlike s and c, there is no direct qualitative analog of lp. Why? The statement
of lp involves both multiplication and numerical constants. We will not define
“direct”, but we hope the idea is clear: a quantitative statement has a direct
qualitative analog if one can simply erase some “P”s, “Q”s , and parentheses
to obtain a well-formed expression in our qualitative framework.

Given there is no direct qualitative analog of lp, what properties must an
indirect analog ϕ have? We propose the following: (1) there a quantitative
statement ψ that is mathematically equivalent to lp and (2) ϕ is the direct
qualitative analog of ψ. Here is the quantitative principle ψ that is mathemat-
ically equivalent to lp.

Mixed Experiment Principle (mep): Let E and F be two experiments over
the same parameter space Θ. Two pieces of evidence E from ωE and F from
ωF are evidentially equivalent if there is a mixture M of E and F such that
PM
θ (〈0, ωE〉) = PM

θ (〈1, ωF〉) for all θ ∈ Θ.

It is easy to see that lp and mep are equivalent.

Proposition 3 lp and mep are equivalent.

Proof: To show mep entails lp, suppose there is a mixture PM
θ (〈0, ωE〉) =

PM
θ (〈1, ωF〉) for all θ ∈ Θ. By definition of mixed experiment, this means that
c · PE

θ (ωE) = (1 − c) · P F
θ (ωF) for all θ ∈ Θ. Thus, PE

θ (ωE) = 1−c
c · P

F
θ (ωF) for

all θ ∈ Θ. Since 0 < c < 1, we know 1−c
c > 0, and so lp entails E and F are

evidentially equivalent.
The proof of the other direction is omitted because it’s similar to the proof

of Birnbaum’s theorem.

�

Importantly, if lp entails two outcomes ωE and ωF to be evidentially equiv-
alent, then the mixed experiment constructed in the above proposition is not
some purely theoretical or “conceptual” experiment: it really can be performed
by constructing a randomizing device that yields one outcome with probability
c/(1 + c) and a second outcome otherwise, and to construct such a randomizing
device, one needs only a random number generator with sufficiently many out-
comes, or an urn with sufficiently many balls, etc. So those who wish to reject
lp must also reject mep. Notice that mep generalizes straightforwardly to the
qualitative setting, and so we take the following principle to be the qualitative
analog of lp.
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Qualitative Mixed Experiment Principle (qmep): Let E and F be two
experiments over the same parameter space Θ. Two pieces of evidence ωE from
E and ωF from F are evidentially equivalent if there is a mixture M of E and F
such that 〈0, ωE〉|θ ≈M 〈1, ωF〉|θ for all θ ∈ Θ.

3.6 Generalizing Birnbaum’s Theorem

We now prove a qualitative analog of Birnbaum’s theorem, namely, we show
that the qualitative versions of sufficiency and conditionality (which have the
same statements of the quantitative ones for all intents and purposes) together
entail qmep. The proof is essentially the same as in the quantitative case.

Theorem 2 qs and qc entail qmep.

Proof: Let M be a mixture of two experiments E and F such that 〈0, ωE〉|θ ≈M
〈1, ωF〉|θ for all θ ∈ Θ. We must show that ωE from E and ωF from F are eviden-
tially equivalent. To do so, note that by conditionality, ωE from E is evidentially
equivalent to 〈0, ωE〉 from M. Similarly, again by conditionality, ωF from F is
evidentially equivalent to 〈1, ωF〉 from M. So by transitivity of evidential equiv-
alence, it suffices to show that the two outcomes 〈0, ωE〉 and 〈1, ωF〉 of M are
evidentially equivalent. By assumption, 〈0, ωE〉|θ ≈M 〈1, ωF〉|θ for all θ ∈ Θ. In
other words, the outcomes 〈0, ωE〉 and 〈1, ωF〉 have the same likelihood functions
in M, or in symbols, L〈0,ωE〉 = L〈1,ωF〉. By lemma 2, the likelihood function is a
qualitative sufficient statistic. Hence, by the Weak Sufficiency Principle, 〈0, ωE〉
and 〈1, ωF〉 are evidentially equivalent, as desired.

�

4 Future work: Relation to Qualitative Bayesian-
ism

s, c, and lp are all intricately connected to Bayesianism, as discussed in §2.3.
Is there any relationship between these principles and some sort of qualitative
version of Bayesianism?

As discussed above, Bayesianism is typically understood as the conjunction
of (1) probabilism and (2) the thesis that one’s degrees of belief ought to be
updated by conditionalization. To obtain a weaker (perhaps more plausible)
theory of rationality, one might instead pick some subset A of the above axioms
(or the necessary axioms of some other representation theorem) and endorse the
following conjunction: (1’) rational comparative beliefs should satisfy A (which
are necessary but insufficient for a probabilistic representation) and (2’) after
learning E, a rational agent’s degree of belief in H should be H|E. For each
set A, we can obtain in this way a theory that might be called A-qualitative
Bayesianism. Here, we will investigate the case in which A is all the axioms
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above, but we do not claim those axioms A are sufficient for rational (condi-
tional) belief.

Recall, in the quantitative setting, we defined two experimental outcomes
ωE and ωF to be Bayesian posterior equivalent if QE(·|ωE) = QF(·|ωF) for all
priors πQ, i.e., every Bayesian would update her degrees of belief upon learning
ωE in the same way she would upon learning ωF. Although our qualitative
framework does not allow us to compare posterior probabilities of outcomes
drawn from different experiments (because the relation ≈E, unlike numerical
equality, is indexed to a specific experiment E), we can analogously define two
outcomes ω, ω′ ∈ ΩE of the same experiment E to be A-posterior equivalentE
if θ|ω ≈E θ|ω′ for all θ and all orderings �E satisfying the axioms of A, i.e.,
every agent whose degrees of belief satisfy the axioms of A would update her
degrees of belief upon learning ωE in the same way she would upon learning
ωF.12 Then we can prove a qualitative analog of (part of) proposition 1.

Theorem 3 If the Weak Sufficiency Principle entails two outcomes are eviden-
tially equivalent, then they are A-posterior equivalentE.

The proof of this theorem is long, and so it is omitted. We state the theorem
only to motivate several important open technical and philosophical questions
raised by our work.

From a technical perspective, here are several central issues. In the quan-
titative setting, it is well-known that if any of s, c, or lp/mep entail that two
outcomes are evidentially equivalent, then they are Bayesian posterior equiv-
alent (again, see proposition 1). Theorem 3 is analogous to the result for the
Weak Sufficiency Principle, but it is not clear how to formulate analogous results
for qs, qc and qmep in our framework. Why? As noted above, the relation
≈E, unlike numerical equality, is indexed to a specific experiment E. So in our
current framework, there is no mechanism for comparing an agent’s posterior
degree of belief H|ωE after an experiment E to her posterior H|ωF after an
experiment F. Further research is necessary.

From a philosophical perspective, those technical questions matter. Re-
call, the in quantitative setting, lp completely characterizes Bayesian posterior
equivalence (i.e., two outcomes are Bayesian posterior equivalent if and only if
lp entails they are evidentially equivalent). See proposition 2. In the quantita-
tive setting, Birnbaum’s theorem, therefore, amounts to a proof that frequentist
assumptions entail that one’s beliefs ought to abide by Bayesian norms. So an
analogous proof, showing that two outcomes are A posterior equivalent if and
only if qmep entails them to be, would show that norms analogous to those
adopted by the Bayesian persist even if one substantially weakens the axioms
for rational belief. And our qualitative generalization of Birnbaum’s theorem,
therefore, would amount to a proof that very weak frequentist assumptions en-
tail that one’s beliefs ought to abide by qualitatively-Bayesian norms.

12Of course, one must assume that such agents agree upon the qualitative likelihood or-
derings just as, in the quantitative setting, Bayesians agree upon the likelihood functions
{Pθ(ω)}θ∈Θ.
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