9.4 Matrix inversion lemma

Fact 44 (Matrix inversion lemma). Assume A is nonsingular and $(A+B C)^{-1}$ exists. The following is true

$$
\begin{equation*}
(A+B C)^{-1}=A^{-1}\left(I-B\left(C A^{-1} B+I\right)^{-1} C A^{-1}\right) \tag{30}
\end{equation*}
$$

Proof. Consider

$$
(A+B C) x=y
$$

We aim at getting $x=(*) y$, where $(*)$ will be our $(A+B C)^{-1}$. First, let

$$
C x=d
$$

We have

$$
\begin{aligned}
A x+B d & =y \\
C x-d & =0
\end{aligned}
$$

Solving the first equation yields

$$
x=A^{-1}(y-B d)
$$

Then

$$
C A^{-1}(y-B d)=d
$$

gives

$$
d=\left(C A^{-1} B+I\right)^{-1} C A^{-1} y
$$

Hence

$$
\begin{aligned}
x & =A^{-1}\left(y-B\left(C A^{-1} B+I\right)^{-1} C A^{-1} y\right) \\
& =A^{-1}\left(I-B\left(C A^{-1} B+I\right)^{-1} C A^{-1}\right) y
\end{aligned}
$$

and (30) follows.
Exercise 45. The matrix inversion lemma is a powerful tool useful for many applications. One application in adaptive control and system identification uses

$$
\left(A+\phi \phi^{T}\right)^{-1}=A^{-1}\left(I-\frac{\phi \phi^{T} A^{-1}}{\phi^{T} A^{-1} \phi+1}\right)
$$

Prove the above result. Prove also the general case (called rank one update):

$$
\left(A+b c^{T}\right)=A^{-1}-\frac{1}{1+c^{T} A^{-1} b}\left(A^{-1} b\right)\left(c^{T} A^{-1}\right)
$$

