# Delta Robot Kinematics 3D printing-building by learning

X. Chen

University of Washington

March 10, 2020

#### History

Originated from delta robots (invented in 1980s, Switzerland)

#### Device for the movement and positioning of an element in space

Page bookmark US4976582 (A) - Device for the movement and positioning of an element in space

Inventor(s): CLAVEL REYMOND [CH] ±

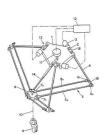
Applicant(s): SOGEVA SA [CH]  $\pm$ 

Classification: - international: *B25J11/00; B25J17/00; B25J17/02; B25J9/06; B25J9/10;* (IPC1-7)

- cooperative: <u>B25J17/0266</u>; <u>B25J9/0051</u>; <u>B25J9/1065</u>; <u>Y10T74/20207</u>

Application number: US19890403987 19890906

Priority number(s): CH19850005348 19851216



## Today

Widely used in pick-n-place operations of relatively light objects.



#### Fundamental Principles



- Actuators are all located in the workspace on the base
- Arm made of light materials

Hence the moving parts of the printer have a small inertia, allowing for very high speed and high accelerations.

# Core Advantage

 $\mathsf{demo1} \mid \mathsf{demo2}$ 

#### Problem Definition

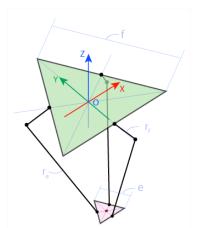
- forward kinematics: joint angles to position of the end effector
- inverse kinematics: (desired) position of the end effector to required joint angles



#### **Inverse Kinematics**

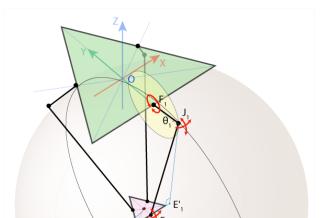
#### Dimensions:

- f: side of the fixed triangle (green in picture)
- e: side of the end effector triangle (pink in picture)
- $ightharpoonup r_f$ : length of upper joint
- $ightharpoonup r_e$ : length of lower joint (parallelogram joint)



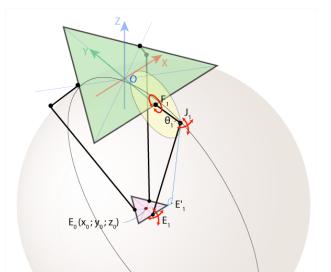
#### Inverse Kinematics » Geometry

- ▶ joint  $F_1J_1$  only rotates in YZ plane ( $F_1J_1$  forms a circle of radius  $r_f$ )
- ▶ J1 and E1 are called universal joints:  $E_1J_1$  rotates freely relative to  $E_1$ , forming a sphere of radius  $r_e$
- the fixed triangle and the end effector triangle are always parallel (no rotational motion for the end effector triangle)



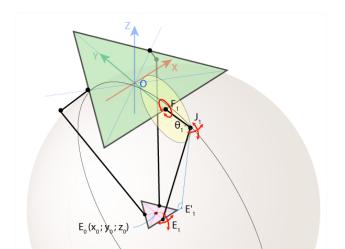
#### Inverse Kinematics » Geometry

- define: the position of the center of the end effector as  $E_0(x_0, y_0, z_0)$
- ▶ goal: given  $E_0(x_0, y_0, z_0)$ , find  $\theta_i$ ; i = 1, 2, 3



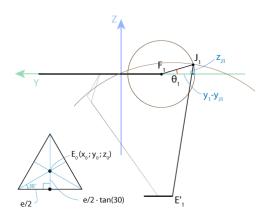
► The sphere intersects with the YZ plane, forming a circle with center  $E'_1$  and radius  $E'_1J_1$ :

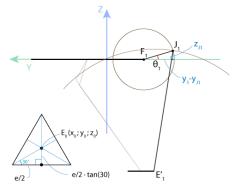
$$|E_1'J_1|^2 + |E_1E_1'|^2 = |E_1J_1|^2 = r_e^2$$



Let's focus on the geometry in the YZ plane to find  $\theta_1$ .

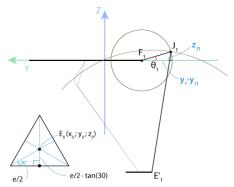
Big picture: decide  $E_1'$  and  $|E_1'J_1|$   $\Rightarrow$  Find the intersection of the two circles  $\Rightarrow$  Find  $J_1 \Rightarrow \theta_1 = \arcsin \frac{z_{J_1}}{r_f}$ 





 $\triangleright$   $E_1$  is the projection of  $E_0$  to the bottom side of the end effector triangle on the XZ plane:

$$|EE_1| = \frac{e}{2} \tan 30^o = \frac{e}{2\sqrt{3}} \Longrightarrow E_1(x_0, y_0 - \frac{e}{2\sqrt{3}}, z_0)$$



▶  $E_1$  is the projection of  $E_0$  to the bottom side of the end effector triangle on the XZ plane:

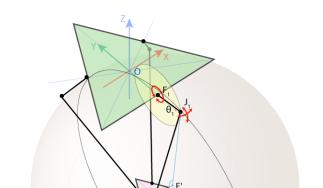
$$|EE_1| = \frac{e}{2} \tan 30^o = \frac{e}{2\sqrt{3}} \Longrightarrow E_1(x_0, y_0 - \frac{e}{2\sqrt{3}}, z_0)$$

 $ightharpoonup E'_1$  is the projection of  $E_1$  onto the YZ plane:

$$|E_1E_1'| = x_0$$

► We have

$$|E_1'J_1|^2 + |E_1E_1'|^2 = |E_1J_1|^2 = r_e^2$$

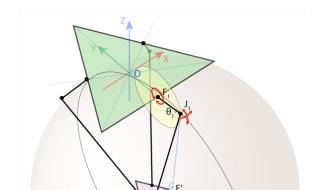


► We have

$$|E_1'J_1|^2 + |E_1E_1'|^2 = |E_1J_1|^2 = r_e^2$$

and

$$|E_1E_1'|=x_0$$



▶ We have

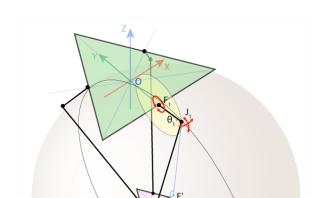
$$|E_1'J_1|^2 + |E_1E_1'|^2 = |E_1J_1|^2 = r_e^2$$

and

$$|E_1E_1'|=x_0$$

► Hence

$$|E_1'J_1|^2 + |E_1E_1'|^2 = |E_1J_1|^2 = r_e^2$$



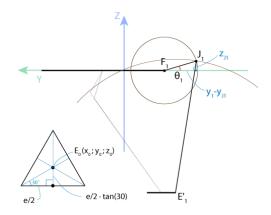
► The intersection of the two circles are defined by

$$(y_{J_1} - y_{F_1})^2 + (z_{J_1} - z_{F_1}^2)^2 = r_f^2$$

and

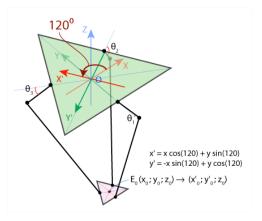
$$(y_{J_1} - y_{E'_1})^2 + (z_{J_1} - z_{E'_1}^2)^2 = r_e^2 - x_0^2$$

ightharpoonup solve for  $z_{J_1}$  and  $y_{J_1}$  to get  $\theta_1$ 



# Inverse Kinematics » $\theta_2$ and $\theta_3$

- $ightharpoonup heta_2$  and  $heta_3$  can be similarly derived.
- but there is a shortcut: rotating the axis, we can use the exact same formula on the new coordinates

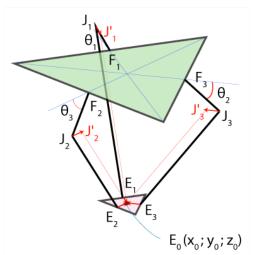


# ## Forward Kinematics

## Forward Kinematics

#### Goal:

- given  $\theta_1$ ,  $\theta_2$ ,  $\theta_3$
- ▶ find  $E_0(x_0, y_0, z_0)$



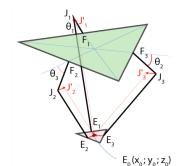
#### Forward Kinematics

#### Solution concept:

- ▶ given  $\theta_1$ ,  $\theta_2$ ,  $\theta_3$
- ightharpoonup compute the coordinates of  $J_1$ ,  $J_2$ ,  $J_3$
- ▶ move  $J_1$ ,  $J_2$ ,  $J_3$  to  $J_1'$ ,  $J_2'$ ,  $J_3'$  using transition
- compute the intersection of the three spheres centered at  $J_1'$ ,  $J_2'$ ,  $J_3'$

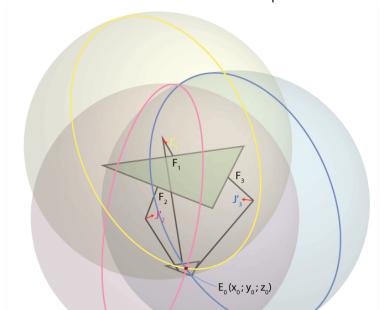
$$(x - x_j)^2 + (y - y_j)^2 + (z - z_j)^2 = r_e^2$$

ightharpoonup the intersection is  $E_0$ 

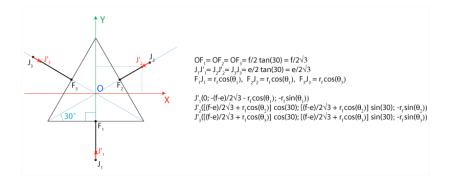


#### Forward Kinematics

Illustration of the intersection of the three spheres



# Forward Kinematics » $J'_1$ , $J'_2$ , $J'_3$



### Forward Kinematics » equation for the intersection point

$$\begin{cases} x^2 + (y - y_1)^2 + (z - z_1)^2 = r_e^2 \\ (x - x_2)^2 + (y - y_2)^2 + (z - z_2)^2 = r_e^2 \Rightarrow \begin{cases} x^2 + y^2 + z^2 - 2y_1y - 2z_1z = r_e^2 - y_1^2 - z_1^2 \\ x^2 + y^2 + z^2 - 2x_2x - 2y_2y - 2z_2z = r_e^2 - x_2^2 - y_2^2 - z_2^2 \end{cases}$$
(2)
$$(x - x_3)^2 + (y - y_3)^2 + (z - z_3)^2 = r_e^2 \Rightarrow \begin{cases} x^2 + y^2 + z^2 - 2y_1y - 2z_1z = r_e^2 - y_1^2 - z_1^2 \\ x^2 + y^2 + z^2 - 2x_2x - 2y_2y - 2z_3z = r_e^2 - x_3^2 - y_3^2 - z_3^2 \end{cases}$$
(3)
$$w_1 = x_1^2 + y_1^2 + z_1^2 \Rightarrow \begin{cases} x^2 + y^2 + z^2 - 2y_1y - 2z_1z = r_e^2 - y_1^2 - z_1^2 \\ x^2 + y^2 + z^2 - 2x_2x - 2y_2y - 2z_3z = r_e^2 - x_3^2 - y_3^2 - z_3^2 \end{cases}$$
(3)

$$\begin{cases} x_2x + (y_1 - y_2)y + (z_1 - z_2)z = (w_1 - w_2)/2 & (4) = (1) - (2) \\ x_2x + (y_1 - y_3)y + (z_1 - z_3)z = (w_1 - w_3)/2 & (5) = (1) - (3) \\ (z_2 - x_3)x + (y_2 - y_3)y + (z_2 - z_3)z = (w_2 - w_3)/2 & (6) = (2) - (3) \end{cases}$$

From (4)-(5):

$$\begin{split} &x = a_1 z + b_1 \qquad (7) & y = a_2 z + b_2 \qquad (8) \\ &a_1 = \frac{1}{d} \Big[ (z_2 - z_1)(y_3 - y_1) - (z_3 - z_1)(y_2 - y_1) \Big] & a_2 = -\frac{1}{d} \Big[ (z_2 - z_1)x_3 - (z_3 - z_1)x_2 \Big] \\ &b_1 = -\frac{1}{2d} \Big[ (w_2 - w_1)(y_3 - y_1) - (w_3 - w_1)(y_2 - y_1) \Big] & b_2 = \frac{1}{2d} \Big[ (w_2 - w_1)x_3 - (w_3 - w_1)x_2 \Big] \\ &d = (y_2 - y_1)x_3 - (y_3 - y_1)x_2 \end{split}$$

Now we can substitute (7) and (8) in (1):  $(a_1^2+a_2^2+1)z^2+2(a_1+a_2(b_2-y1)-z_1)z+(b_1^2+(b_2-y_1)^2+z_1^2-r_e^2)=0$ 

Solve the last equation and calculate  $x_0$  and  $y_0$  from equations (7) and (8).

#### References

- ▶ Paul Zsombor-Murray, Descriptive Geometric Kinematic Analysis of Clavel's "Delta" Robot, 2004
- http://reprap.org/wiki/Delta\_geometry