# Position And Orientation

### Xu Chen

#### 2021-03-29

### Contents

| 1 | Bas | ic concepts                      | 1 |
|---|-----|----------------------------------|---|
|   | 1.1 | Pose of the coordinate frame     | 2 |
|   | 1.2 | Coordinate frames: from 2d to 3d | 4 |

### 1 Basic concepts

- location, e.g., the object is 2m due north: represented as a vector containing a denominate number plus a direction
- orientation, e.g., the door is facing west
- pose: the combination of position and orientation, e.g., the car is 2m due north and facing west



- A point in space is a familiar concept from mathematics and can be described by a coordinate vector.
- A coordinate frame, or Cartesian coordinate system, is a set of orthogonal axes which intersect at a point known as the origin.
- An object:
  - comprises infinitely many points
  - unlike a point, also has an orientation.
  - If we attach a coordinate frame to an object, as shown in Fig. 2.1b, we can describe every point within the object as a constant vector with respect to that frame.

#### 1.1 Pose of the coordinate frame

- denoted by  $\xi$  pronounced ksi.
  - given two frames  $\{A\}$  and  $\{V\}$ ,  ${}^{A}\xi_{B}$  describes the relative pose of  $\{B\}$  w.r.t.  $\{A\}$ 
    - $\ast\,$  leading superscript: the reference coordinate frame
    - \* subscript: the frame being described
    - \* if the initial superscript is missing, we assume that the change in pose is relative to the world coordinate frame  $\{O\}$
    - \* imagine picking up  $\{A\}$  and applying a displacement and a rotation so that it is transformed to  $\{B\}$
- example



## ${}^{A}p = {}^{A}\xi_{B} \bullet {}^{B}p$

here, the operator  $\bullet$  transforms the vector, resulting in a new vector that describes the same point but w.r.t. a different coordinate frame.

• important characteristic of relative poses: they can be composed or compounded

 ${}^{A}\xi_{C} = {}^{A}\xi_{B} \bigoplus {}^{B}\xi_{C}$ : the pose of  $\{C\}$  relative to  $\{A\}$  can be obtained by compounding the relative poses from  $\{A\}$  to  $\{B\}$  and  $\{B\}$  to  $\{C\}$ .

the  $\bigoplus$  operator: indicates composition of relative poses.

• example



the point p can be described by

$${}^{A}p = \left({}^{A}\xi_{B}\bigoplus{}^{B}\xi_{C}\right){}^{C}p$$

#### 1.2 Coordinate frames: from 2d to 3d

- 2d coordinate frames: appropriate for e.g., mobile robots that operate in a planar world
- 3d coordinate frames: needed by e.g., the pose of a flying or underwater robot, or the end of a tool carried by a robot arm



$$\xi_F \bigoplus^{I} \xi_B = \xi_R \bigoplus^{I} \xi_C \bigoplus^{\circ} \xi$$
$$\xi_F \bigoplus^{F} \xi_R = \xi_R$$