Position And Orientation

Xu Chen

2021-03-29

Contents

1 Basic concepts 1
1.1 Pose of the coordinate frame 2
1.2 Coordinate frames: from 2d to 3d 4

1 Basic concepts

- location, e.g., the object is 2 m due north: represented as a vector containing a denominate number plus a direction
- orientation, e.g., the door is facing west
- pose: the combination of position and orientation, e.g., the car is $2 m$ due north and facing west

- A point in space is a familiar concept from mathematics and can be described by a coordinate vector.
- A coordinate frame, or Cartesian coordinate system, is a set of orthogonal axes which intersect at a point known as the origin.
- An object:
- comprises infinitely many points
- unlike a point, also has an orientation.
- If we attach a coordinate frame to an object, as shown in Fig. 2.1 b , we can describe every point within the object as a constant vector with respect to that frame.

1.1 Pose of the coordinate frame

- denoted by ξ - pronounced ksi.
- given two frames $\{A\}$ and $\{V\},{ }^{A} \xi_{B}$ describes the relative pose of $\{B\}$ w.r.t. $\{A\}$
* leading superscript: the reference coordinate frame
* subscript: the frame being described
* if the initial superscript is missing, we assume that the change in pose is relative to the world coordinate frame $\{O\}$
* imagine picking up $\{A\}$ and applying a displacement and a rotation so that it is transformed to $\{B\}$
- example

${ }^{A} p={ }^{A} \xi_{B} \bullet{ }^{B} p$
here, the operator \bullet transforms the vector, resulting in a new vector that describes the same point but w.r.t. a different coordinate frame.
- important characteristic of relative poses: they can be composed or compounded
${ }^{A} \xi_{C}={ }^{A} \xi_{B} \bigoplus^{B} \xi_{C}$: the pose of $\{C\}$ relative to $\{A\}$ can be obtained by compounding the relative poses from $\{A\}$ to $\{B\}$ and $\{B\}$ to $\{C\}$.
the \bigoplus operator: indicates composition of relative poses.
- example

the point p can be described by

$$
{ }^{A} p=\left({ }^{A} \xi_{B} \bigoplus{ }^{B} \xi_{C}\right)^{C} p
$$

1.2 Coordinate frames: from $2 d$ to $3 d$

- 2d coordinate frames: appropriate for e.g., mobile robots that operate in a planar world
- 3d coordinate frames: needed by e.g., the pose of a flying or underwater robot, or the end of a tool carried by a robot arm

